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Abstract
Markov statistical methods may make it possible to develop an unsupervised learning process that
can automatically identify genomic structure in prokaryotes in a comprehensive way. This approach
is based on mutual information, probabilistic measures, hidden Markov models, and other purely
statistical inputs. This approach also provides a uniquely common ground for comparative
prokaryotic genomics. The approach is an on-going effort by its nature, as a multi-pass learning
process, where each round is more informed than the last, and thereby allows a shift to the more
powerful methods available for supervised learning at each iteration. It is envisaged that this
"bootstrap" learning process will also be useful as a knowledge discovery tool. For such an ab initio
prokaryotic gene-finder to work, however, it needs a mechanism to identify critical motif structure,
such as those around the start of coding or start of transcription (and then, hopefully more).

For eukaryotes, even with better start-of-coding identification, parsing of eukaryotic coding regions
by the HMM is still limited by the HMM's single gene assumption, as evidenced by the poor
performance in alternatively spliced regions. To address these complications an approach is
described to expand the states in a eukaryotic gene-predictor HMM, to operate with two layers of
DNA parsing. This extension from the single layer gene prediction parse is indicated after
preliminary analysis of the C. elegans alt-splice statistics. State profiles have made use of a novel
hash-interpolating MM (hIMM) method. A new implementation for an HMM-with-Duration is also
described, with far-reaching application to gene-structure identification and analysis of channel
current blockade data.

Background
Motivations for seeking MM and HMM Variants
Part of the problem in developing a reliable gene predic-
tor is having reliable, biologist-verified, training data. In
its simplest form, the training data needed is the raw
genomic DNA together with a minimal annotation that

labels coding regions. For the prokaryotic gene prediction
much of the problem with obtaining high-confidence
training data can be circumvented by using a bootstrap
gene-prediction approach. This is possible in prokaryotes
because of their simpler and more compact genomic
structure: simpler in that long ORFs (open reading
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frames) are usually long genes, and compact in that motif
searches upstream usually range over hundreds of bases
rather than thousands (as in human).

In work on prokaryotic gene prediction (focusing on V.
cholerae), software (smORF) was developed for an aug-
mented ORF (open reading frame) characterization.
Using that software, with a simple start-of-coding heuris-
tic, it was possible to establish very good gene prediction
for ORFs of length greater than 500 nucleotides. The
smORF gene identification was used in a bootstrap gene-
annotation process (where no initial training data was
provided). The strength of the gene identification was
then improved by use of a software tool that performed
gap-interpolating-Markov-modeling (gIMM). When
applied to the identified coding regions (most of the >500
length ORFs), six gIMMs were used (one for each frame of
the codons, with forward and backward read senses). If
poorly gIMM-scoring coding regions were rejected, per-
formance improved. Failure analysis clearly indicates that
start-codon modeling is needed in order to strengthen
predictions. One of the benefits of the gIMM software is
its gap-interpolating generalization. This permits motifs
to be identified, particularly those sharing the same
approximate alignment with the start-of-coding region.
Using the bootstrap-identified genes from the smORF-
based gene-prediction (including errors) as a train set per-
mitted an unsupervised search for upstream regulatory
structure. The classic Shine-Dalgarno sequence (the ribos-
ome binding site) was the strongest signal in the 30-base
window upstream from the start codon.

In preliminary work, a Hidden Markov Model based gene
predictor was trained and tested on the C. elegans genome.
Splice signal motifs and intron/exon statistical profiles
were extracted, from which a gene predictor was con-
structed. To boost detection of exons, and indirectly
introns, EST information was included. As with the
prokaryotic research, further work entails identification of
transcription regulation fingerprints, such as the promoter
motifs, to clarify starts on transcription, etc. Even with bet-
ter start-of-coding identification, however, parsing of
eukaryotic coding regions by the HMM is still limited by
the HMM's single gene assumption, as evidenced by the
typically poor gene-prediction performance in alterna-
tively spliced regions. To address these complications an
approach is described to expand the states in the gene-pre-
dictor HMM to operate with two layers of DNA parsing.
This extension from the single layer gene prediction parse
was indicated after preliminary analysis of the C. elegans
alt-splice statistics. State profiles were implemented using
a hash-interpolating MM (hIMM) in this process (see
Methods).

Another development described here is the incorporation
of length distribution information, on exons and introns
for example (see Figure 1, figure 2 and figure 3), into the
HMM optimization via a novel, algorithmically conven-
ient, implementation of HMM-with-Duration (an HMM
that includes true length distribution information). One
important application of such an HMM-with-duration
includes feature extraction from channel current data. In
this setting, information about the mean dwell times for
the upper level and lower level is used as a first step in dis-
criminating the class type. HMM with duration incorpo-
rates the length distribution information (dwell times
distribution) on upper level and lower level states into the
HMM optimization.

Markov Chains
Key property of a Markov chain:

P(xi | xi-1, ..., x1) = P (xi | xi-1) = ,

where  are sometimes referred to as "transition

probabilities" due to their sequential product contribu-
tion to sequence probability:

P(x) = P(xL, xL-1 ..., x1) = P(x1) ∏i = 2..L 

Cy is the count of events y, and Cxy is the count of simulta-
neous events x and y, Ty is the count of strings of length
one, and Txy is the count of strings of length two:

ax xi i−1

ax xi i−1

ax xi i−1

Frequencies of different length junk regions in a test subset of C. elegansFigure 1
Frequencies of different length junk regions in a test subset of 
C. elegans.
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 = P(x | y) = P(x,y)/P(y) = [Cxy/Txy]/[Cy/Ty]

Since Txy+1 = Ty → Txy ≅ Ty (sequential data sample prop-

erty if one long training block),  = Cxy/Cy = Cxy/

ΣxCxy, so Cxy is complete info for determining transition

probabilities.

Viterbi Path
The recursive algorithm for the most likely state path
given an observed sequence (the Viterbi algorithm) is
expressed in terms of vki, the probability of the most prob-
able path that ends with observation Zi = zi, and state Si =
k. The recursive relation is vki = maxn{ekiankvn(i-1)}, where
the maxn{...} operation returns the maximum value of the
argument over different values of index n, and the bound-
ary condition on the recursion is vk0 = ek0pk. The akl are the
transition probabilities P(Xi = l|Xi-1 = k) to go from state k
to state l. The ekb are the emission probabilities P(Si = b|Xi
= k) while in state k. The Viterbi path labelings are then
recursively defined by p(Si|S(i+1) = n) = argmaxk{vkiakn},
where the argmaxn{...} operation returns the index n with
maximum value of the argument. The evaluation of
sequence probability (and its Viterbi labeling) take the
emission and transition probabilities as a given. Estimates
on those emission and transition probabilities are usually
obtained by the Expectation/Maximization (EM) algo-
rithm (commonly referred to as the Baum-Welch algo-
rithm in the context of HMMs [1]).

Further details on the information measures used, such as
mutual information, and on Expectation/Maximization
(EM), are placed in Appendix A.

EVA Projection
The HMM method is based on a stationary set of emission
and transition probabilities. Emission broadening, via
amplification of the emission state variances, is a filtering
heuristic that leads to level-projection that strongly pre-
serves transition times between major levels (see [13] for
further details). Results from the emission variance ampli-
fication (EVA) emission broadening method are
described in [13] (with varying amounts of variance
amplification). This approach does not require the user to
define the number of levels (classes). This is a major
advantage compared to existing tools that require the user
to determine the levels (classes) and perform a state pro-
jection. This allows kinetic features to be extracted with a
"simple" FSA (Finite State Automaton) that requires min-
imal tuning.

Results
Ab initio prokaryotic gene-finding
Ab initio gene-finding begins with identification of codon
structure on the basis of a simple, genome-wide, mutual
information analysis. The idea is to examine the genome's
two-base pairings, so first consider pairings where the
bases are adjacent in the genome, i.e., a sample set consist-
ing of all dinucleotides found upon moving a window of
two-base width across the genome. The counts on those
pairings can be used to obtain a mutual information
between the first base and second base. The next iteration
is to take two-base-pairings separated by one base (gap =

ax xi i−1

ax xi i−1

Frequencies of different length exon regions in a test subset of C. elegansFigure 3
Frequencies of different length exon regions in a test subset 
of C. elegans.

Frequencies of different length intron regions in a test subset of C. elegans (with smoothing)Figure 2
Frequencies of different length intron regions in a test subset 
of C. elegans (with smoothing).
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1), etc., with mutual information results as shown in Fig-
ure 4 (applied to V. Cholerae). This overall method is gen-
eralized further to define a gap-interpolating Markov
model (details in Methods).

Ab initio gene-finding can then identify the stop codons
and, thus, ORFs (see Figure 5). A generalization to codon
void regions, then, leads to recognition of different, over-
lapping, potential gene regions (with two orientations). A
tool has been developed to identify the genomic ORF
topology in this generalized way, named "smORF" (see
Figure 6 and Table 1 for further definitions and results).
This genome-topology tool also clearly shows differences
between bacteria (a possible "fingerprint" tool) (see Fig-
ure 6 and Figure 7).

smORF offers information about open reading frames
(ORFs), and tallies information about other such codon
void regions (an ORF is a void in three codons: TAA, TAG,
TGA). This allows for a more informed selection process

when sampling from a genome, such that non-overlap-
ping gene starts can be cleanly and unambiguously sam-
pled. The goal is, initially, to identify key gene structures
(e.g., stop codons, etc.) and use only the highest confi-
dence examples to train profilers. Once this is done,
Markov models (MMs) can be constructed on the sus-
pected start/stop regions and coding/noncoding regions.
The algorithm then iterates again, informed with the MM
information, and partly relaxes the high fidelity sampling
restrictions (essentially, the minimum allowed ORF
length is made smaller). A crude gene-finder can be con-
structed on the high fidelity ORFs by use of a very simple
heuristic: scan from the start of an ORF and stop at the
first in-frame "atg". This analysis was applied to the V.
cholerae genome (Chr. I). 1253 high fidelity ORFs were
identified out of 2775 known genes. This first-"atg" heu-
ristic provided a gene prediction accuracy of 1154/1253
(92.1% of predictions of gene regions were exactly cor-
rect). If small shifts are allowed in the predicted position
of the start-codon relative to the first-"atg" (within 25
bases on either side), then prediction accuracy improves
to 1250/1253 (99.8%). This actually elucidates a key
piece of information needed to improve such a prokaryo-
tic gene-finder. Basically, information is needed to help
identify the correct start codon in a 50 base window. Such
information exists in the form of DNA motifs correspond-
ing to the binding footprint of regulatory biomolecules
(that play a role in transcriptional or translational con-
trol).

An examination of he void sizes encountered for various codons (smORFs), or groupings of codons, reveals the stop codons very clearly as codons with anomalously lengthy stop-codon void regionsFigure 5
An examination of the void sizes encountered for various 
codons (smORFs), or groupings of codons, reveals the stop 
codons very clearly as codons with anomalously lengthy 
stop-codon void regions. Shown in green are the standard 
ORFs (voids in the codon subset {(taa),(tag),(tga)}), which are 
clearly behaving differently from other codon voids (blue) 
when length is greater than 500 bases. The voids shown in 
blue are voids in the codon subset {(aaa),(gaa),(gat)}.
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The y-axis shows the mutual information on base-pairs in he V.cholerae gemone, the x-axis is the gap size between bases used to construct the base pairsFigure 4
The y-axis shows the mutual information on base-pairs in he 
V. cholerae gemone, the x-axis is the gap size between bases 
used to construct the base pairs. Mutual Information, 
MI(X;Y) is: μ = ΣxΣyp(xy)log(p(xy)/p(x)p(y)). If X and Y are 
independent r.v's then MI = 0. If we have a DNA sequence 
x1.... xixi+1 xi+2........xn (where xk = {a,c,g, or t}) then we can 
get counts on pairs xixi+1 for i = 1..n, and assuming stationar-
ity on the data, and large enough n, we can speak of the joint 
probability p(X,Y). Calculation of MI(X,Y) then gives an indi-
cation of the linkage between base probabilities in dinucle-
otide probabilities. This can be extended to linkages when 
the two bases aren't sequential (have a base gap between 
them greater than zero), such as pairs based on xixi+2 (gap = 
1), etc. This type of statistical framework can then be iter-
ated to higher order MI calculations in a variety of ways to 
explore a number of statistical linkages and build towards a 
motif identifier based on such linkages (gIMM). Such an analy-
sis on the V. Cholerae Chr. I genome, above, clearly indicates 
a three-component encoding of data, i.e., a 3-element codon 
structure is revealed. Furthermore, judging from the strong 
linkages for gaps 1 through 5, it is also clear that hexamer 
Markov model statistics will be strong in many regions of the 
genome.
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For an ab initio gene-finder to work, it will need to have a
mechanism to identify critical motif structure, such as
those around the start of coding or start of transcription
(and then, hopefully more). In essence, a Markov model
is needed with greater "reach" – the gap-interpolating
Markov model (gIMM) was developed for this purpose,
and is described in the Methods. To set up an ab initio
motif discovery windows around the (1253) purported
start of genes were sampled. The windows ranged from
the 40 bases preceding the start codon to the first 20 bases

of coding (a 60 base window). Some of the windows rep-
resent noise, as the first pass of the bootstrap feature
extraction has only 92.1% accuracy. Even so, the gIMM is
able to clearly discern the Shine-Dalgarno consensus
sequence. With the critical motifs already discerned, fur-
ther iterations of the MM construction, possibly as an
HMM now, will undoubtedly aid in improving perform-
ance.

Alternate-Splice Labeling Scheme for Eukaryotic HMM
The labeling scheme assigns a label to each base in the
sequence. Exon frame position 0 bases have label 0 if in
the forward read or A if in the reverse. Likewise, exon
frame position 1 bases have label 1 or B, and exon frame
position 2 bases have label 2 or C. Introns, for purposes of
the analysis here, are represented as 'i' or 'I' for intron on
the forward or reverse strand (in the HMM implementa-
tion the intron states are actually split out in order to
maintain proper frame on re-entry to coding regions via
state transition restrictions). Junk DNA is labeled 'j'.

Track Label Information
Suppose there were multiple annotations regarding the
labeling of a base (i.e., alternative splicing). As the
genome is traversed in the forward direction, gene anno-
tations that aren't in conflict with annotations already
seen are used to determine labels on label-track-one. If a
gene annotation is in conflict (an alternative splicing)
then its label information is recorded on a second, adja-
cent, label track. Table 2 shows the label counts on track
one and on track two (where the default base label is
taken to be 'j'). From Table 2 it can be seen that about 8%
of the first chromosome of C. elegans genes has alternate
splicing. Similarly, Table 3 shows the transition counts
between labels.

V-Labels and V-Transitions
Counts on coding-overlap V-label are shown in Table 4.
Notice how the V-labels tend NOT to favor overlapping
that is a simple frame-shift in a given read direction (i.e.,
the V01 count is very low compared to V00, etc.). There
are 263 transitions on V-labels with non-zero counts.
Many of the V-transitions have very low counts and can
either be ignored in the initial model, or can have their
stat's boosted by bringing information from related
genomes (C. Briggsae). Ignoring those V-transitions with
negligible counts as not allowed transitions, as well as
those implicitly describing no alternative splicing locally
(an overlap with 'j' in either track), reduces to an active V-
transition set consisting of 86 transitions between V-
labels. This is a tractable number of states to manage in
the HMM analysis, suggesting a simple and direct
approach to alternative splice HMM analysis. The number
of V-transitions, whether counting all 263, or the 86
'active' ones, is still much smaller than the 72*72 = 5,184

a. Topology Index Histograms shown for the V. cholerae gemone, the x-axis is the gap size between bases used to construct the base pairsFigure 6
a. Topology Index Histograms shown for the V. cholerae Chr. 
I genome, where the x-axes are the topology index, and the 
y-axes show the event counts (i.e., occurance of that particu-
lar topolgy index in the genome). The topology index is com-
puted by the following scheme: (i) initialize index for all bases 
in sequesnce to zero. (ii) Each base in a forward sense ORF, 
with length greater than a specified cut-off, is incremented by 
+10,000 for each such ORF overlap. Similarly, bases in 
reverse sense ORFs are incremented by +1,000 for each 
such overlap. Voids larger than the cut-off length in the non-
standard smORFs each give rise to an increment of +1. The 
figure shows that V. cholerae only has a small portion of its 
genome involved in multiple gene encodings. b. Shows a 
close-up view of the 10000 topology index peak.
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transitions that would have been surmised for track anno-
tations that were entirely independent.

HMM-with-Duration with application to channel current 
signal analysis
Synthetic Data Generation
We have generated two sets of synthetic data with states
upper level (UL) and lower level (LL) (see Figure 8). The
life times of the UL & LL are drawn from a Poisson distri-
bution. The means of UL & LL dwell times for data set 1
are 20 ms & 40 ms respectively. The means of UL & LL
dwell times for data set 2 are 40 ms each. A mean value of
48 pA is used for LL and a mean value of 72 pA is used for
UL. We have assumed that the noise at UL & LL vary at
around +/- 5pA around their respective means (Gaussian
distribution). Hence we have assumed a variance of 2.78.
See Figure 8.

The HMM-with-Duration implementation (described in
the Methods) has been tested in terms of its performance
at parsing synthetic blockade signals with attributes and
visual appearance almost indiscernible from the experi-
mentally observed blockade data. The benefit of the syn-
thetic data is that the mean lifetimes of the blockade levels
can range over an exhaustive set of possibilities for thor-
ough testing of the HMM-with-Duration. The synthetic
data was designed to have two levels, with lifetime in each
level determined by a governing distribution (Poisson
and Gaussian distributions with a range of mean values
were considered). In Figure 8, the data was generated with
Poisson distributed lifetimes and parsed by an HMM's
with and without duration, with length distribution gen-
erated from a Poisson (Figure 8a) or a Gaussian (Figure
8b) Distributions. The results clearly demonstrate the
superior performance of the HMM-with-duration over its
simpler, HMM without Duration, formulation. With use
of the EVA-projection method described in the Back-
ground (and in [13]) this affords a robust means to obtain
kinetic feature extraction. The emission broadening intro-

duced in the HMM w/wo duration comparison in Figure
8a and 8b, is precisely what occurs with EVA-projection,
with similar susceptibility to failure due to over-represen-
tation of brief blockade lifetimes in the HMM without
Duration parse. Using HMM with duration this problem
is resolved, brief toggles between states are now penalized
according to the statistical rarity of the comparatively brief
lifetime events (see Fig.'s 8a and 8b). Resolving this prob-
lem is critical for accurate kinetic feature extraction, and
the results suggests that this problem can be elegantly
solved with a pairing of the HMM-with-Duration stabili-
zation with EVA-projection.

Discussion
aTOPO
As already mentioned, the gIMM tool identifies statisti-
cally anomalous motifs (usually restricted to some zone
upstream). Another tool being developed, "aTOPO" (for
motifs with Anomalous TOPOlogy), uses the information
from the upstream zones swept with the gIMM tool to
annotate upstream motifs, and offers further information
on whether an anomalous motif is biologically significant
by looking at is positional distribution and its correlations
to other motifs. This work is still preliminary, so this will
not be discussed further.

Methods
Expectation/Maximization
Expectation/Maximization, EM, is a general method to
estimate the maximum likelihood when there is hidden
or missing data. The method is guaranteed to find a max-
imum, but it may only be a local maximum, as is shown
here (along the lines of [1]). For a statistical model with
parameters θ, observed quantities x, and hidden labels π,
the EM goal is to maximize the log likelihood of the
observed quantities with respect to θ : log P(x|θ) =
log[ΣπP(x,π|θ)]. At each iteration of the estimation proc-
ess we would like the new log likelihood, P(x|θ), to be
greater than the old, P(x|θ*). The difference in log likeli-

Table 1: Topology-Index Histogram results are shown for Vibrio Cholerae. The N = 400 set correspond to indexing with ORFs greater 
than 400 bases long. Similarly, the N = 200 set correspond to indexing with ORFs greater than 200 bases long.

N = 400 N = 200

Score Count Score Count

0 1653287 0 846889
1000 649241 1000 1017629
2000 400 2000 1554
10000 630232 10000 954394
11000 27986 11000 138817
20000 3 12000 161

20000 1700
21000 5
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a. Topology-Index histograms are shown for the Chlamydia trachomatis genomeFigure 7
a. Topology-Index histograms are shown for the Chlamydia trachomatis genome. b. Topology-Index histograms are shown for 
the Deinococcus radiodurans genome. C. trachomatis, like V. cholerae, shows very little overlapping gene structure. D. radiodurans, 
on the other hand, is dominated by genes that overlap other genes (note the strong 11000 peak).
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hoods can be written such that one part is a relative
entropy, the positivity of which makes the EM algorithm
work:

log P(x|θ) - log P(x|θ*) = Q(θ|θ*) - Q(θ*|θ*) +
D[P(π|x,θ*)||P(π|x,θ)],

where D[...||...] is the Kullback-Leibler divergence, or rela-
tive entropy, and Q(θ|θ*) = ΣπP(x,π|θ). Now a greater log
likelihood results simply by maximizing Q(θ|θ*) with
respect to parameters θ. The EM iteration is comprised of
two steps: (1) Estimation – calculate Q(θ|θ*), and (2)
Maximization – maximize Q(θ|θ*) with respect to param-
eters θ.

For an HMM the hidden labels π correspond to a path of
states. Along path π the emission and transition parame-
ters will be used to varying degrees. Along path π, denote
usage counts on transition probability akl by Akl(π) and
those on emission probabilities ekb by Ek(b,π) (following
[1] conventions), P(x,π|θ) can then be written:

P(x,π|θ) = ∏k = 0∏b[ekb]^Ek(b,π) ∏k = 0∏l = 1[akl]^Akl(π).

Using the above form for P(x,π|θ), Akl for the expected
value of Akl(π) on path π, and Ek(b) for the expected value
of Ek(b,π) on path π, it is then possible to write Q(θ|θ*)
as:

Q(θ|θ*) = Σk = 1Σb Ek(b) log[ekb] + Σk = 0Σl = 1 Akl log[akl].

It then follows (relative entropy positivity argument
again) that the maximum likelihood estimators (MLEs)
for akl and ekb are:

akl = Akl /(Σl Akl) and ekb = Ek(b)/(Σb Ek(b)).

The latter estimation is for when the state sequence is
known. For an HMM (with Baum-Welch algorithm) it
completes the Q maximization step (M-step), which is
obtained with the MLEs for akl and ekb. The E-step requires
that Q be calculated, for the HMM this requires that Akl
and Ek(b) be calculated. This calculation is done using the
forward/backward formalism with rescaling in the next
section.

Emission and Transition Expectations with Rescaling
For an HMM, the probability that transition akl is used at
position i in sequence Z is:

p(Si = k, S(i+1) = l|X) = p(Si = k, S(i+1) = l, Z)/p(Z), where

p(Si = k,S(i+1) = l,Z) = p(z0,...,zi,Si = k)p(S(i+1) = l|Si =
k)p(zi+1|S(i+1) = l)p(zi+2,...,zL-1|S(i+1) = l).

In terms of the previous notation with forward/backward
variables:

p(Si = k, S(i+1) = l|X) = fki akl el(i+1) bl(i+1) /p(Z),

So the expected number of times akl is used, Akl, simply
sums over all positions i (except last with indexing):

Akl = Σi fki akl el(i+1)bl(i+1)/p(Z),

Similarly, the probability that b is emitted by state k at
position i in sequence Z:

p(zi = b, Si = k|X) = [ p(z0,...,zi,Si = k) p(zi+1,...,zL-1|Si = k)/
p(Z) ] δ(zi-b),

where a Kronecker delta function is used to enforce emis-
sion of b at position i. The expected number of times b is
emitted by state k for sequence Z:

Table 4: V-label Counts.

V00, V11, V22: 17,839 VA0, VB2, VC1: 0
V01, V12, V20: 3 VA1, VB0, VC2: 0
V02, V10, V21: 58 VA2, VB1, VC0: 829
V0A, V1C, V2B: 741 VAA, VBB, VCC: 16,169
V0B, V1A, V2C: 957 VAB, VBC, VCA: 0
V0C, V1B, V2A: 5164 VAC, VBA, VCB: 54

Table 2: (a) shows the Track 1 Label Counts, and (b) shows the 
Track 2 Label Counts.

(a)
0 : 571,187 A : 518,431 I : 1,634,653
1 : 571,187 B : 518,431 i : 1,779,392
2 : 571,187 C : 518,431 j : 7,336,733
(b)
0 : 21,599 A : 64,475 I : 325,471
1 : 21,599 B : 64,471 i : 81,289
2 : 21,599 C : 64,467 j : 13,354,661

Table 3: (a) shows the Track 1 Transition Counts, and (b) shows 
the Track 2 Transition Counts.

(a)
01 : 569,483 BA : 516,874 II : 1,628,572
12 : 569,490 CB : 516,868 ii : 1,772,795
20 : 566,732 AC : 514,309 jj : 7,334,177
0i, i1 : 1,704 IA, BI : 1,557 j0, 2j : 1,257
1i, i2 : 1,696 IB, CI : 1,563 Aj, jC : 1,161
2i, i0 : 3,197 IC, AI : 2,961
(b)
01 : 21,554 BA : 64,296 II : 324,751
12 : 21,548 CB : 64,275 ii : 81,073
20 : 21,441 AC : 63,986 jj : 13,354,350
0i, i1 : 45 IA BI : 175 j0, 2j : 38
1i, i2 : 51 IB, CI : 192 Aj, jC : 136
2i, i0 : 120 IC, AI : 353
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a. Synthetic data with Poisson distributed length statistics is shown in the upper traceFigure 8
a. Synthetic data with Poisson distributed length statistics is shown in the upper trace. Emission broadening is introduced with 
an emission variance amplification factor of 20. This effectively broadens the noise band (thickness) seen in the upper trace by 
a factor of 20, which leads to a blurring between the upper and lower levels of blockade since the noise bands now overlap 
(i.e., a toggling cross-over instability is introduced to challenge the projection method). The middle trace shows the clean, 
highly accurate Viterbi parsing into the appropriate levels that is still obtained with the HMM-with-Duration implementation. 
The lower trace shows the Viterbi parse with a simple HMM, that is uninformed about the underlying length distributions, thus 
giving rise to a Viterbi traceback parse that fails to penalize unlikely, very short duration, blockade events (seen as the unstable, 
rapid level-projection toggles). b. Synthetic data with Gaussian distributed length statistics is shown in the upper trace, with the 
suceessful HMM-with-Duration parsing shown in the middle trace. Emission broadening is introduced with an emission vari-
ance amplification factor of 20 as in Fig. 8a, with a similar failure in the HMM-without-Duration's ability to parse critical kinetic 
feature information.

a

b
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Ek(b) = Σi fki bki/p(Z) δ(zi-b),

In practice, direct computation of the forward and back-
ward variables can run into underflow errors. Rescaling
variables at each step can control this problem. One res-
caling approach is to rescale the forward variables such
that ΣiFki = 1, where Fki is the rescaled forward variable,
and Bki is the rescaled backward variable: Fki = aβkekiFβ(i-1)/
si, and Bki = akβeβ(i+1) Bβ(i+1)/ti+1, where si and ti+1, are the
rescaling constants. The expectation on counts for the var-
ious emissions and transitions then reduce to:

Akl = Σi Fki akl el(i+1) Bl(i+1)/[ΣkΣl Fki akl el(i+1)] and Ek(b) = Σi
Fki Bki δ(zi-b).

Gap Interpolating Markov Model (gIMM)
We construct a gIMM using Mutual Information (MI).
Based on the three reading frames of the DNA, the Mutual
Information is frame dependent.

 Find out which position among the 24 prior positions
has the maximum mutual information with frame posi-
tion 0. Suppose it is p1

Frame positions: ...012012012012012012012|012012...

Prior positions: ...------------------987654321

 Find out a position from p = 1...24 and p ≠ p1 such that
it has the maximum mutual information with frame posi-
tion 0 and the prior position p1. If it is p2:
MI(x0,x1;x2)>MI(x0,x1;xk).

 Repeat the above procedure until we get an nth-order
MI-linkage, this defines an interpolated Markov model
that allows for gaps (gIMM). Likewise, for the frame 1 and
2, and reverse frames.

 Most importantly, this can also be done for the regions
upstream of coding regions, with reference base just prior
to the start codon, in searches for regulatory motifs.

Hash Interpolated MM (hIMM)

 Given the current state and the emitted sequence as
x1,...., xL; compute:

P(xL|x1,...., xL-1) ≈ Count(x1,...., xL)/Count(x1,...., xL-1)

Iff Count(x1,...., xL-1) ≥ 400 i.e. only if the parental
sequence shows statistical significance

 Store P(xL|x1,...., xL-1) in the hash

 Maintain a separate hash for each of the following states
– Junk, Intron and Exon0, Exon1 & Exon2

Pseudo Code:

 The emission probabilities for states such as (jj), (ee)
and (ii) are computed using hash IMM as:

Given sequence 'x1,...., xL'

If sequence is defined;

Return Probability

Else

Recurse on 'x1,...., xL-1'

 Minimum string length allowed for:

1. Junk Region = 6

2. Intron Region = 6

3. Exon Region = 8

UL/LL Data Generation Method
We generated 75000 random numbers that were Gaussian
distributed with mean 48 pA and variance 2.78. We also
generated 50000 random numbers that were Gaussian
distributed with mean 72 pA and variance 2.78.

Since the dwell times of the UL & LL are Poisson distrib-
uted, the transition times (duration times between state
transitions) are assumed to be exponentially distributed.
Therefore for data set 1, the mean interval between succes-
sive UL states is 40 ms and the mean interval between suc-
cessive LL states is 20 ms.

Cumulant Distribution Function (CDF) of exponential
distribution:

F = 1 - exp (-t/a) where 'a' is the mean

Hence t = a.loge(1 - F)

We generate uniformly distributed 'F' between [0, 1). We
then compute 't' from the above equation.

We have 50,000 samples per second. Hence a dwell time
of 't' ms corresponds to 50.t samples rounded off to the
nearest integer.
Page 10 of 12
(page number not for citation purposes)



BMC Bioinformatics 2006, 7(Suppl 2):S14
HMM-with-Duration via Cumulant Transition 
Probabilities

 The transition probabilities for (ee) – (ee); (jj) – (jj) and
(ii) – (ii) type transitions are computed as:

Prob(jj|jlength = L) = Prob(jlength ≥ L+1)/Prob(jlength ≥ L)

 The transition probabilities for transitions such as (jj) –
(je), (ee) – (ej), (ee) – (ei), (ii) – (ie) are computed as:

If the total number of (ej) transitions is 60 and the total
number of (ei) transitions is 40, then:

Prob(ei|elength = L) = Prob(elength = L)/Prob(elength ≥ L) ×
40/(40 + 60)

Prob(ej|elength = L) = Prob(elength = L)/Prob(elength ≥ L) ×
60/(40 + 60)

Pseudo Code:

 Maintain separate counters for the junk, exon and
intron regions.

 The counters are updated as:

1. The exon counter is set to 2 for a (je) – (ee) transition

2. The exon counter gets incremented by 1 for every (ee) –
(ee) transition

 Prob(elength ≥ L+1) is computed as:

We have Prob(elength ≥ L+1) = 1 - Σi = 1..L Prob(elength = i)

Hence we generate a list such that for each index 'k > 0',
the value 1 - Σi = 1..k Prob(elength = i) is stored

HMM-with-Duration Viterbi Implementation

 The transition probabilities for (UL) – (UL); (LL) – (LL)
are computed as:

Prob(ul|ul_len = L) = Prob(ul_len ≥ L+1)/Prob(ul_len ≥
L)

 The transition probabilities for transitions such as (UL)
– (LL), (LL) – (UL) are computed as:

Prob(ul-ll|ul_len = L) = Prob(ul_len = L)/Prob(ul_len ≥ L)

Pseudo Code (see dynamic programming table in Figure
9):

 Maintain separate counters for the UL and LL regions

 The counters are updated as:

1. The UL counter is set to 1 for a (ll) – (ul) transition

2. The UL counter gets incremented by 1 for every (ul) –
(ul) transition

 Prob(ul_len ≥ L+1) is computed as:

We have Prob(ul_len ≥ L+1) = 1 - Σi = 1 
L Prob(ul_len = i)

Hence we generate a list such that for each index 'k > 0',
the value 1 - Σi = 1 

kProb(ul_len = i) is stored

 Prob(ul_len = L) is computed as:

We generate a list such that for each index 'k', the value
Prob(ul_len = k) is stored

Appendix A
Information measures
The fundamental information measures are Shannon
entropy, mutual information, and relative entropy (also
known as the Kullback-Leibler divergence or distance).
Shannon entropy: σ = -Σxp(x)log(p(x)), is a measure of
the information in distribution p(x). Mutual Information:
μ = ΣxΣyp(xy)log(p(xy)/p(x)p(y)), is a measure of infor-
mation one random variable has about another random
variable. Relative Entropy (Kullback-Leibler distance): ρ =
Σx p(x) log(p(x)/q(x)), is a measure of distance between
two probability distributions. Mutual information is a

The HMM dynamic programming table is modified to track new count index information at each cell to enable the HMM-with-Duration implementationFigure 9
The HMM dynamic programming table is modified to track 
new count index information at each cell to enable the 
HMM-with-Duration implementation. The figure shows a 
view of Viterbi modifications in the dynamic programming 
table – the transition probabilities are now modified to be a 
ratio of transition probability cumulants. The transition prob-
ability cumulant is calculated based on a predetermined 
length distribution profile and uses information on the length 
that is also a (new) cell-level parameter. There are two new 
cell-level parameters, one each for tracking length on UL and 
LL states. (For gene-finding, the information to track at the 
cell-level would be the length of the purported exon, intron, 
or junk, region.)

State i-1 i i+1 i+2 i+3

UL 0.021    0

LL 0.006 0 0 0.01 0.12 

0.13
Pk(i) 

UL_Count = n 

0.11 0.09

Pk(i) 

UL_Count = n+1 
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special case of relative entropy between a joint probability
(two-component in simplest form) and the product of
component probabilities.

Hidden Markov Models with possible Side Information
Hidden Markov Models [1] provide a statistical frame-
work for sequences of observations obeying stationary
Markov statistics. The "hidden" part of the HMM consists
of the labelings, si, for each observation, zi, where the
index i labels the observation. The stationary statistics for
a first order HMM are described in terms of emission
probabilities, eni = p(Zj = zi|Sj = n), and transition proba-
bilities, anm = p(Sj = m|S(j-1) = n). (The indexing on j is left
in for clarity on the transition probability definition; from
stationarity the expressions are valid for any choice of j.)
Given (i) sequence of observations zi, (ii) hidden labels si,
and (iii) stationary Markov statistics, one can calculate: (i)
p(Z0...L-1), or (ii) the most likely hidden labeling (path
with largest contribution to p(Z0...L-1)), or (iii) the re-esti-
mation of emission and transmission probabilities such
that p(Z0...L-1) is maximized (using Expectation/Maximi-
zation).

Forward and Backward Variables
The forward/backward variables can be used to evaluate
p(Z0...L-1) by breaking the sequence probability p(Z0...L-1)
into two pieces via use of a single hidden variable treated
as a Bayesian parameter: p(Z0...L-1) = Σkp(Z0...i,si =
k)p(Zi+1...L-1,si = k) = Σkfkibki, where fki = p(Z0...i,si = k) and
bki = p(Zi+1...L-1,si = k). A proof for the two-piece split is
obtained by directly expanding the sequence probability
(via Chow expansion: P(xyz) = P(x)P(y|x)P(z|xy), and
Markov conditional reduction: P(xyz) = P(x)P(y|x)P(z|y),
with appropriate notational book-keeping). Given sta-
tionarity, the state transition probabilities and the state
probabilities at the ith observation satisfy the trivial rela-
tion pqi = Σkakqpk(i-1), where pqi = p(Si = q), and pq0 = p(S =
q), and the latter probabilities are the state priors. The triv-
ial recursion relation that is implied can be thought of as
an operator equation, with operation the product by akq
followed by summation (contraction) on the k index. The
operator equation can be rewritten using an implied sum-
mation convention on repeated Greek-font indices (Ein-
stein summation convention): pq = aβqpβ . Transition-
probabilities in a similar operator role, but now taking
into consideration local sequence information via the
emission probabilities, are found in recursively defined
expressions for the forward variables, fki = aβkeki fβ(i-1), and
backward variables, bki = akβeβ(i+1) bβ(i+1). The recursive
definitions on forward and backward variables permit
efficient computation of observed sequence probabilities
using dynamic programming tables. It is at this critical
juncture that side information must mesh well with the
states (column components in the table), i.e., in a manner
like the emission or transition probabilities. Length infor-

mation, for example, can be incorporated via length-dis-
tribution-biased transition probabilities (as described in a
new method in the Methods).
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