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Preface 
 

 
This is intended to be a simple and accessible book on theoretical physics, 
with topics ranging from introductory physics to advanced theoretical 
physics. This book draws from undergraduate and graduate physics 
studies at Caltech, graduate mathematical physics studies at the Maths 
Institute, Oxford, and graduate physics studies at the University of 
Wisconsin – Milwaukee. This book begins with the theoretical 
descriptions of the core physics: (i) Lagrangians and Hamiltonians in 
classical mechanics; (ii) variational field dynamics – electromagnetism and 
general relativity; (iii) quantum mechanics and quantum field theory; and 
(iv) thermodynamics, statistical mechanics, and phenomenology. Then 
advanced theoretical descriptions are explored in three settings (some of 
this material is described in four Phys. Rev. D publications, see the 
Introduction for further details). Those setting are: (1) quantum field 
theory in curved spacetime, with attention to the the nature of the 
vacuum; (2) minisuperspace quantum gravity explorations with attention 
to spherical dust shell collapse; and (3) black hole thermodynamics. 
 
This book can be used as a textbook for four one-semester introductory 
graduate physics courses based on the material (i)-(iv) above. This book 
also provides the material for three one-semester advanced graduate 
physics courses based on the material in (1)-(3) in the above. Exercises are 
provided at the end of each chapter and detailed derivations are provided 
for many of the solved examples. The concluding chapter of this book 
tries to take in the various theoretical underpinnings of physics and arrive 
at a notion of where things are going next. The future direction proposed 
influences the selection of ‘tangential’ topics discussed in the early 
chapters, so short introduction on the hypothesis is described next.  
 
 
In Ch. 9 Hypercomplex Thermal Quantum Gravity, the central role of path 
integrals and of time Euclideanization is posited as fundamental in and of 
itself. The core hypothesis is that complex wavefunctions can be written 
in a path integral formalism with propagators that involve fields based on 
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Cayley algebras at all orders. The Cayley algebras with no zero divisors 
include the Real Numbers (R), the Complex Numbers (C), the 
Quaternions (denotd H by tradition, since discovered by Hamilton), and 
the Octonians (O – discovered by Cayley, along with the higher-order 
‘Cayley algebras’). The stationary phase of a solution, or highly peaked 
density of states in the Euclideanized time domain, is not possible for 
fields over the Cayley algebra’s that have zero divisors. The zero divisors 
are posited to disrupt all such higher order Cayley field propagations, 
thereby eliminating them from path integral considerations except when 
such a short step is taken that the likelihood of a disruptive (to phase or 
cohesion) zero divisor occurance is low. This would be inside the Planck 
time. The deFinetti restriction to complex time propagator may be relaxed 
as well at such short timescales. Thus, it is hypothesized that the Cayley 
algebra zero divisors (described in Ch. 9 and the Appendix) appear to play 
a critical role in understanding how this hypercomplex formalism reduces 
to the RCHO subalgebra’s (that have no zero divisors) that can be used to 
represent the SU(3)xSU(2)xU(1) Standard Model.  
 
Thus, the path integral formalism appears to be fundamental in many 
respects, and when coupled with complex wavefunctions made from 
hypercomplex fields, the path integral formalism appears to offer a 
number of simplifications in describing the physical model.  
 
The underlying Cayley algebra, that mostly cancels-out in the path integral 
(or has comparatively lower density of states) to yield an RCHO sub-
algebra, may indicate how, in the multidimensional imaginary (thermal) 
time, the time-reversal invariance is broken and an arrow of time 
established. One explicit mechanism giving rise to loss of time-reversal 
invariance is the non-unique inverse that would be allowed if working 
with a semigroup, and such a construct appears in what follows. 
 
The direct sum decomposition of a Cayley algebra in the neighborhood of 
an element of the algebra is always quaternionic to lowest order, further 
suggestive of the local H-algebra representation to directly describe the 
SU(2)xU(1) part of the model, with similar constructs for the sub-algebras 
in the Octonians giving rise to the SU(3) part of the model.  
 
Euclideanization, via analytic continuation in the time-domain, takes 
advantage of a relation that is known to exist between the path-integral 
formalism (with Action variation in quantum mechanics) and the Weiner 
Path Integral formalism in statistical mechanics. Evidently time is 
multidimensional in the two-dimensional complex number sense, why not 
more, and have the time parameterization generalize via Cayley algebra’s 
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in their own right? The answer might be that they do, but that once again 
we have a path, or state-density, suppression due a break in a critical 
multiplicative coherence relation, in this case the de Finetti relation (where 
there are caustics in information flow if the multiplicative propagators are 
not complex valued). This suppression of hypercomplex time allows a 
much more structured, complex analytic, modeling environment to be 
explored, one where the de Finetti relations are satisfied, and Bayesian 
statstics is thereby operational. Furthermore, analytic continuation does 
not exist in the same general sense in the quaternionic and higher 
algebras. Analytic breaks and de Finetti breaks in the propagation of 
Feynman type and Weiner type path integral representations, thus, may 
explain why time should have complex number attributes only. For the 
spatial components, there is not the unsettling complications found in the 
hypercomplex time case either (regarding interpretation of ‘time’), in the 
sense that it could be ‘whatever works’ insofar as representing elementary 
particles and their interactions. 
 
The concluding chapter, thus, introduces the notion that an infinite, or 
higher order, Cayley field theory may reduce to an RCHO field theory due 
to path-integral (or density of states) properties alone. Also note that in 
the RCHO Theory we may have a ‘semiquantum’ regime at the Planck 
length. In efficiently realizing the ‘imaginary’ confinement that must be 
enforced in the theory, an inequality constraint may be introduced in the 
Lagrangian theory. In the appendix the SVM method is described for 
solving Lagrangians with inequality constraints. A universal geometric 
algebra, thus, may underlie the physical description of reality, with 
computationally efficient processes when allowed to have tabular memory 
during computation, possibly indicating that NP=P (from complexity 
theory) by its very existence. Realizing NP=P optimality in practice, 
however, would probably be as difficult as recovering the dispersed, or 
Cayley-encoded, information content from a black hole radiative 
extinction event. 
 

Stephen Winters-Hilt 
New Orleans, June 2011 
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Chapter 1 

 

Introduction 
 

 
 
This book describes physics, the science of the fundamental nature of 
reality and its constructs. A description of the first half of the book is 
given in Sec. 1.A on Introductory Physics – Theory and Mathematics. In 
Sec. 1.B is given an overview of most of the rest of the book, where 
problems are shown with trying to pin down the role of time. The last 
section, 1.C, describes the overall conclusion of the book, that there are 
hypercomplex representations of solutions that may resolve many of the 
problems encountered in trying to have a unified physics theory. 
 
1.A Introductory Physics – Theory and Mathematics 
The fundamental variational calculus tools used in physics are introduced 
in Ch. 2 Variational Calculus – Finding the Optimum, where Classical 
Mechanics methods are described, including Lagrangian and Hamiltonian 
formulations, least action, oscillations, special relativity, and introductory 
general relativity (in a non-geometric tensor calculus setting). Ch. 2 also 
describes information theory constructs in a variational and geometric 
context, where a dual geometric construct naturally appears, the possible 
significance of which is discussed in Ch. 9. 
 
Variational methods must operate with some parameterized set of models 
or representations to ‘vary’ over. Three dimensional space, for example, 
has a number of natural ‘flux’ (or flow) constructs in terms of vector 
calculus. The source/sink (div) and rotational (curl) aspects of fluxes and 
flows are fundamental components even in the earliest formulations of 
electromagnetic fields. It turns out the the div and curl components in 
variational calculus are naturally occurring constructs when working with 
quaternion numbers and not real numbers. The original formulation by 
Maxwell of his equations were with reference to quaternions in this 
respect, and it was only when the equations made it across the Atlantic 
into the hands of American Physicists that the quaternion references were 
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dropped and the familiar vector calculus definitions introduced (invented) 
to use in place of the quaternion-based (multiplicative) formulation. In Ch. 
3 Flux and Geometrodynamics, the description begins with the classical 
(vector calculus based) electrodynamics theory, followed by a brief 
description, in modern notation, of the Maxwell equation in quaternionic 
form. Quaternion invariances in the theory are the familiar Lorentz 
Invariances in Special Relativity, where the speed of light and transverse 
wave invariances result as before. Although the quaternionic formulation 
may be more fundamental in some ways, vector calculus provided the first 
step towards arriving at tensor calculus, where invariant flux evaluations 
across specified surfaces appear as contracted tensor calculus terms, 
which leads to a generalization that allows for a tensor calculus 
geometrodynamics description. Ch. 3 concludes with a description of 
Einstein’s equations and General Relativity. 
 
A number of experiments in the early 1900’s pointed to problems with 
the classical physics descriptions in terms of real numbers. Although early 
physicists and electrical engineers already used complex numbers to keep 
track of phase information in describing wave phenomenon, this was 
typically viewed as more artifice (mathematical convenience) than reality  
in some fundamental way. In Ch. 4 Algebraic Reality – the advent of Quantum 
Mechanics, the early (standard) derivations and descriptions of quantum 
mechanics are given, followed by extensive details on the path integral 
formalism (that will be central to discussions in Ch. 9). The quantum 
mechanical description reduces to the classical description as appropriate 
(in the path integral formalism, as well as in the Schrodinger and 
Heisenberg formulations), but now a new fundamental structure is 
indicated: an analytic complex probability amplitude. Once an analytic 
complex probability amplitude is posited a number of things happen 
automatically: (1) wave phenomena, such as interference, are now trivially 
explained in terms of a fundamental, underlying complex probability 
amplitude in the theory; (2) the wave-aspect of theory has well-known 
localization limits from the Fourier Transform Uncertainty Principle on 
transform pairs, that directly translate to both the kinematic and dynamic 
versions of the Heisenberg uncertainty relations. The quantization of 
possible bound solutions (standing wave modes), and the quantization of 
operators generating transformations on compact spaces (angular 
momentum operators), then result with distinctive effects (the Stern –
Gerlach experiment, etc.), as discussed in Ch. 4. 
 
Observation in quantum mechanics typically interferes with what is being 
observed (limits on quantum non-demolition are discussed in Ch. 4). 
Early discoveries in quantum mechanics were confounded by two sets of 
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mysteries, one having to do with the representation of reality itself, and 
one having to do with the representation of the measurement process that 
is established by the experiment. These matters are discussed briefly in 
Ch. 4, as well as a description of relativistic quantum mechanics (Dirac).  
 
Once moving to a relativistic theory a number of interesting mathematical 
objects join the toolkit, including spinors and Dirac matrices. It will be 
shown that generalizations to quantum field theory (Ch. 6) will give rise to 
even more mathematical objects, such as the Gell-Mann matrics in color 
SU(3) gauge field theory. It turns out, however, that each of these esoteric 
mathemativcal inventions, particularly the Dirac and Gell-Mann matrices, 
and their equations, can be expressed directly in terms of quaternionic and 
octonionic algebra formulations of the theory (just as esoteric perhaps, 
but we are now talking about the fundamental Cayley algebra’s), where 
there is only the multiplicative operation of the respective Cayley algebra, 
and no need for matrix constructs, or vector calculus operations. 
 
The discovery of the fundamentally algebraic nature of reality would have 
been quicker if there was more universal acceptance of the strangely 
appearing complex probability amplitude construct central to the theory. 
Having a differential equation acting on a complex function, the notion of 
analyticity naturally arises, and it is at this juncture that it is instructive to 
understand how close the early quantum mechanics theorists were to 
establishing that a propagator-based theory would require such a complex 
probability amplitude. We begin with the Diffusion equation, a 
fundamental motion found for random walks, among other things. 
(Markov chains and Martingales are briefly reviewed in Ch. 4 to put the 
fundamental nature of the Diffusion equation into context.) By 
considering the time parameter to be analytic, and by performaing analytic 
continuation to complex time, the Schrodinger equation results. The real 
diffusion equation acts on a real density function (with a measure, so 
equivalent to a probability, e.g., this gives rise to standard probability 
theory and statistics). The complex Schrodinger equation acts on a 
complex wavefunction, interpreted as a probability amplitude, not a 
probability itself. Just like the Diffusion equation has a propagator 
formalism, so does the Schrodinger equation. By the deFinetti relation, 
however, for a propagator-based theory to be completely multiplicative, 
the propagator must be complex valued. A complex, analytic, propagator 
formalism, and wavefunction description, thereby is indicated and 
quantum mechanics results. 
 
The fundamental existence of Equilibrium and Flow phenomena in 
physics can be related to the fundamental existence of the Law of Large 



4 
 

numbers, the Asymptotic Equipartition Property (AEP), and the 
Martingale Limit Theorems in stochastic analysis. In Thermodynamics, 
the central function describing the system is the partition function. In 
Statistical Mechanics the partition function is part of a larger construct, in 
terms of a density of states and path integral formulation. These topics are 
discussed in Ch. 5 Thermodynamics, Statistical Mechanics, & Phenomenology, 
where detail is first given to the derivation of the fundamental laws of 
thermodynamics. When cast in a path integral formalism, with a 
multiplicative propagator, the theory is directly transformable, via rotation 
to complex time, to a quantum or quantum field theory path integral 
formalism (the latter described in Ch. 6). The complex time rotation, or 
Euclideanization of a quantum mechanical path integral to arrive at a 
statistical mechanics path integral, is actually a central method to making 
the quantum path integral well-defined (see Ch. 4). The extensive use of 
complex time manipulations in thermal quantum field theory (see Ch. 6) 
lends further credence that there is some meaning to complex time 
beyond the convenience of it’s compact representation for both quantum 
mechanical and statistsical mechanical attributes of a system.  
 
1.B Quantum field theory and general relativity – the role of time 
When quantum mechanics and special relativity are combined, quantum 
field theory results. Just describing the simplest field theories and their 
scattering results can be revealing about the nature of reality. In Ch. 6 The 
Quantum Vacuum and Perturbative Reality, it is shown that even with the 
simplest field theory, nothing!, the quantum vacuum observed is related to 
the observer’s trajectory (with causal horizon effects) and local time sense. 
In curved spacetimes where horizon effects occur, there may exist no 
trajectory free of particle production effects (so you can’t have nothing). 
So our motion (i.e., trajectory) effects the representation of the 
measurement device (mentioned earlier in regards to quantum 
measurement). The maximal Fermi Normal Coordinate (FNC) 
parameterization (foliation) of the observer’s neighborhood along their 
trajectory must map information flow at boundary via a non-trivial 
Bogoliubov transformation, so have particle influx from the maximal 
FNC boundary -- unless the FNC region extends throughout the 
spacetime and there is no boundary. 
 
The immense success of quantum field theory was established with the 
renormalization of QED via the Feynman Path Integral approach to 
arrive at a highly accurate perturbation theory result. This success also 
strengthens the notions of thinking of reality in terms of perturbation 
theory algebraic constructs – e.g., semigroups. Quantum field theory also 
offers a string of other successes in describing causal horizon particle 
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production effects, such as with Hawking radiation. In Ch. 6 these matters 
are explored and a critical dependence on “choice” of time in defining the 
quantum vacuum is revealed. 
 
So, we’ve come all the way to QFT to find no answers regarding time, 
only further representational complexities and mysteries regarding the 
nature of time. Time appears to be related to your local notion of 
‘nothingness’ or ‘unchangingness’, and to your local trajectory as observer 
(see Ch. 6). Even if a choice of time might be uniquely specified by a 
patchwork of FNC spatial slices, with non-trivial Bogoliubov transform 
particle fluxes specified at mesh regions (where one FNC patch overlaps 
and continues with another FNC patch), this approach does not seem to 
offer further insight into the nature of time.  
 
In order to consider a non-field-theory situation, where symmetries have 
eliminated all but a few of the degrees of freedon, and where a full general 
relativity solution is still possible, spherical dust shell collapse is described 
in Ch. 7 Geometry and Action. Again, however, the nature of time remains 
elusive, and it is found that the choice of time in the collapse quantization 
scheme critically impacts the spectrum of observations. 
 
In Ch. 8 Thermal Geometrodynamics, the path integral formulation of a black 
hole (BH) is described, and using an analytic function of time, the 
Hawking-Gibbons form of BH entropy is obtained by using 
Euclideanization. The Hamiltonian Thermodynamics of some BH 
systems are then described, and an attempt is made to understand the role 
of time in this context. The key metric parameters of the BH theory obey 
fall-off conditions at asymptotic boundary regions. This represents a 
fundamental semigroup parameterization of the perturbatively stable 
(metric) parameters of the BH theory. This is an entirely separate 
appearance of perturbatively stable behavior from that appearing in the 
QED renormalization via Feynman path integrals described in Ch. 4 and 
Ch. 6. In thermal geometrodynamics, as with thermal quantum field 
theory, the success of Euclideanization is profound. 
 
1.C Universal hypothesis of number, computation, and physics 
Reality is known to be variationally optimal, perturbatively stable, 
algebraic in a variety of ways, and has thermality via Euclideanizable 
(complex) time. The variational optimization itself can result from 
selection for stationary phase in a path integral description, where the 
fundamental construct is the propagator.  
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In Ch. 9 a Universal Hypothesis is provided for describing physical reality. 
The hypothesis builds from a collection of constructs known to be useful, 
but not typically construed as fundamental. The pillars of the universal 
hypothesis are as follows: 

(1) Reality is described in terms of a completely multiplicative 
propagator. 
(2) The path integral formalism resuling from the propagotor has 
two forms, Feynamn Path Integral and Weiner Path Integral, 
according to the introduction of an analytic (complex) time 
parameter, where the forms are related via Euclideanization. 
(3) The Path Integral formalism selects against fields involving 
algebras with zero divisors, thereby reducing to a RCHO(S) 
based theory, where equilibrium and martingale constructs occur 
asymptotically no matter the initial condition. 
(4) The algebraic field propagated, from one field algebra to the 
next, either has a shared quaternionic sub-algebra, or evolves 
towards a common quaternionic sub-algebra by means of a 
maximum divergence step. 

 
In order to have a completely multiplicative description the propagator 
must be complex valued. This can be proved by considering how many 
real parameters f(n) are needed to specify an n-dimensional mixed state. 
By mixed state we essentially mean matrix representation, symmetric, with 
a real diagonal (where the symmetry operation is conjugation for the 
Cayley algebras). For the mixed state to be parameterized by real values 
there are [n+n(n-1)/2] parameters (denote Cayley order for reals as k=1, 
for complex, k=2, for quaternions, k=3, etc.). The number of real values 
in the self-conjugate k-th order Cayley algebra mixed state is f(n) = kn(n-
1)/2+n, and we only get f(n)=n2 when k=2. The importance of having 
f(n)=n2 is that now have f(nanb)=f(na)f(nb), which results in a ‘completely 
multiplicative’ theory, thus, the propagator must be complex valued. 
 
In Ch. 9 Hypercomplex Thermal Quantum Gravity, the central role of path 
integrals and of time Euclideanization is posited as fundamental in and of 
itself. The core hypothesis is that complex wavefunctions can be written 
in a path integral formalism with propagators that involve fields based on 
Cayley algebras at all orders. The Cayley algebras with no zero divisors 
include the Real Numbers (R), the Complex Numbers (C), the 
Quaternions (denotd H by tradition, since discovered by Hamilton), and 
the Octonians (O – discovered by Cayley, along with the higher-order 
‘Cayley algebras’). The stationary phase of a solution, or highly peaked 
density of states in the Euclideanized time domain, is not possible for 
fields over the Cayley algebra’s that have zero divisors. The zero divisors 
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are posited to disrupt all such higher order Cayley field propagations, 
thereby eliminating them from path integral considerations except when 
such a short step is taken that the likelihood of a disruptive (to phase or 
cohesion) zero divisor occurance is low. This would be inside the Planck 
time. The deFinetti restriction to complex time propagator may be relaxed 
as well at such short timescales. Thus, it is hypothesized that the Cayley 
algebra zero divisors (described in Ch. 9 and the Appendix) appear to play 
a critical role in understanding how this hypercomplex formalism reduces 
to the RCHO subalgebra’s (that have no zero divisors) that can be used to 
represent the SU(3)xSU(2)xU(1) Standard Model.  
 
Thus, the path integral formalism appears to be fundamental in many 
respects, and when coupled with complex wavefunctions made from 
hypercomplex fields, the path integral formalism appears to offer a 
number of simplifications in describing the physical model. In brief, the 
idea is that paths over the Sedenions (S) and higher-order Cayley algebras 
have zero divisors, so can have their phase information lost, or scrambled, 
in path intregral contributions, and thereby eliminated when summed. 
This would ‘disappear’ algebraic constructs in the theory with zero 
divisors (and very quickly if a quantum evolution ‘step’ is on the order of 
a Planck length). The lowest Cayley algebras, the RCHO algebras are, 
thus, considered critical to the field descriptions in this hypothesis (called 
the RCHO hypothesis in what follows). As will be shown, SU(2) can be 
represented using quaternions (SU(2) is isomorphic to quaternions of 
absolute value 1) and SU(3) can be represented as the sub-group of 
octonian automorphisms leaving a given imaginary unit invariant. If we 
restrict to matter fields with SU(3) derived by such automorphisms on the 
quaternion field’s three imaginary values, we arrive at the three matter 
generations, as observed. In this context, the emergent RCHO matter 
field phenomenologies have no zero-divisors, so have inverses, so 
describe the usual time-reversal invariant theories (and thereby introduce 
the usual entropic paradox).  
 
The direct sum decomposition of a Cayley algebra in the neighborhood of 
an element of the algebra is always quaternionic to lowest order, further 
suggestive of the local H-algebra representation to directly describe the 
SU(2)xU(1) part of the model, with similar constructs for the sub-algebras 
in the Octonians giving rise to the SU(3) part of the model.  
 
Euclideanization, via analytic continuation in the time-domain, takes 
advantage of a relation that is known to exist between the path-integral 
formalism (with Action variation in quantum mechanics) and the Weiner 
Path Integral formalism in statistical mechanics. Evidently time is 
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multidimensional in the two-dimensional complex number sense, why not 
more, and have the time parameterization generalize via Cayley algebra’s 
in their own right? The answer might be that they do, but that once again 
we have a path, or state-density, suppression due a break in a critical 
multiplicative coherence relation, in this case the de Finetti relation (where 
there are caustics in information flow if the multiplicative propagators are 
not complex valued). This suppression of hypercomplex time allows a 
much more structured, complex analytic, modeling environment to be 
explored, one where the de Finetti relations are satisfied, and Bayesian 
statstics is thereby operational. Furthermore, analytic continuation does 
not exist in the same general sense in the quaternionic and higher 
algebras. Analytic breaks and de Finetti breaks in the propagation of 
Feynman type and Weiner type path integral representations, thus, may 
explain why time should have complex number attributes only. For the 
spatial components, there is not the unsettling complications found in the 
hypercomplex time case (regarding interpretation of ‘time’), in the sense 
that it could be ‘whatever works’ insofar as representing elementary 
particles and their interactions. 
 
The Feynman-Cayley-Shannon Information Hypothesis 
The central hypothesis that results is that we have maximal 
Euclideanizable propagation, or flow, of Feynman-Cayley-Shannon 
Information (see Ch. 9). The first primal physical construct in this 
approach is a multiplicatively complete propagator that is Euclideanizable, 
such that a Feynman Path Integral (FPI) approach results in real time and 
the Weiner Path Integral (WPI) results in the FPI imaginary time analytic 
continuation. The well-defined Weiner Path Integral provides a means to 
indirectly evaluate the Feynaman Path Integral, and in that manner make 
it well-defined also. The flow of information is now summarized in terms 
of stationary phase solutions, for FPI, or in terms of highly-peaked 
density of states, for WPI. The core elements, the little steps used to build 
the paths, are traversed by use of propagators. In Ch. 9 the central ESCK 
relations are given, and how in the context of a random walk they 
automatically reduce to the diffusion equation. In the larger sense of 
Markov processes, Markov Chains (MCs), and hidden Markov models 
(HMMs), it is found that Martingales place a central role (Ch. 9 provides 
details). MCs induce martingales by themselves alone, while the core 
algorithms in HMM analysis involve dynamic programming tables (tabular 
memory usage) in a log-likelihood ratio evaluations (a tabular multiple 
martingale construct).  
 
The appearance of martingales in the core propagator construct isn’t 
surprising given the role of each in describing evolution by repeated steps, 
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but the fundamental aspect of martingales, in describing equilibrium and 
stationarity, is not generally well-known. Martingales have convergence 
and limit properties like those encountered for the strong law of large 
numbers, the backward martingale convergence theorem directly leading 
to a the strong law of large numbers as well as the asymptotic 
equipartition (AE) property. The AE property, in turn, is fundamental to 
both thermodynamics and statistical mechanics, where equilibrium states 
are proposed that satisfy the AE property, likewise with the Path Integral 
approaches, where the AE approach allows all paths to simply be 
“summed” and not a weighted sum with some unknown set of weights. 
The AE Property originated with the work of Shannon, who was applying 
it to problems in signal processing, communication, and information 
theory.  The multiplicatively complete propagator that is Euclideanizable 
is, thus, hypothesized to induce martingales in a variety of forms with the 
equilibrium, near-equilibrium stationarity (flow), and AE properties 
emerging as a result. The stationary phase solution in the FPI approach 
leads to classical physics solutions and semiclassical quantum mechanics 
solutions. In the WPI approach, the natural occurance of martingales is 
effectively a stationary expectation solution, where stationary expectations 
are expected to occur in equilibrium. 
 
The first primal physical construct in this approach is a multiplicatively 
complete propagator (thus complex) that is Euclideanizable and that 
induces martingales. The second primal physical construct is the field 
upon which the propagator is defined. If the field theory involves the 
higher order Cayley algebras above the octonians, then the path integral 
construct will not contribute as greatly due to the occurrence of zero 
divisors in the theory (an aspect of irreversibility, e.g., no inverses, in the 
theory). This is hypothesized to suppress all the highe order Cayley 
algebra fields that have zero divisors (unless endowed with meaning, such 
as light cone encodings in the case of the split octonian representation in 
terms of two quaternions). Thus, the effective quantum field that results is 
based on the Octonian algebra at highest order as a group with no zero 
divisors, or is based on the Conway-Smith split-Sedenion algebra that is 
the highest order for a semigroup with no zero divisors (with only one-
sided multiplication). As mentioned previously, reality appears to be 
perturbatively described at a fundamental level, as shown in the highly 
successful QED and related theories. Multiplication with perturbation 
expansion is a semigroup operation and suggests that the split-Sedenions 
be taken to reach the highest order ‘no zero divisor’ theory consistant 
with a perturbative (semigroup) theory. 
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A number of embedded Cayley algebra’s arise in a natural way. Recall that 
embedded in a Cayley algebra at any order above quaternionic, there is a 
quaternionic sub-algebra. Similarly, within that quaternionic algebra is a 
complex sub-algebra. The embeddings on sub-algebras works for 
octonians within higher order Cayley algebras, also, but beyond that the 
sub-algebras don’t appear to embed – the three element associator symbol 
inherent to all the Cayley algebras can have two orthogonal doubly pure 
zero divisors inserted to provide a mapping of all the higher order Cayley 
algebras to the Octonion sector generated by the associator with the two 
(sedenion or higher order) zero divisors indicated (so only have a C ⊂ H 
⊂ O embedding description within the higher order Cayley algebras). 
 
This appears to suggest a Conway-Smith split-Sedenian perturbation field 
theory construct. Embedded in the split Sedenian semialgebra are two 
octionic subalgebras, which suggest a representation of stable matter in 
terms of octionic fields (when non-associative contributions are dropped 
one arrives at Maxwell’s equations). Embedded within the Octonian 
matter respresentation is a quaternionic spacetime representation. The 
quaternionic spacetime parameterization automatically provide notions of 
flow and vector calculus relations such as div and curl in the definition of 
group multiplication. Within the quaternionic representation is a complex 
algebra representation, this is the only Cayley algebra that will mesh with 
the propagator (and wavefunction) restriction to be only complex in the 
time parameter. So we are talking about a propagator that operates on a 
sedenion filed and that propagates that field to another sedenain field. In 
this propagation we know that the reference spacetime changes via some 
Galilean or Lorentzian shift (depending on approximation needed) if ‘in 
equilibrium’, or a maximum divergence shift in the sedenian field 
otherwise (the third primal construct appears here as the maximum 
divergence principle, which reduces to the maximum entropy principle. 
When the field approaches equilibrium, the sedenians can be viewed as 
sharing the same quaternionic subspace. Thus, the equilibrium theory, or 
near equilibrium theory, both describe a 16 dim object propagating to 
another 16 dim object, where a 4 dim subspace is shared. In other words, 
this is a 16+16-4 =28 theory, or a 26 dimensional theory with a 2 dim 
object (a string). It may be that string theory arises in this context in a new 
way. If a link to string theory can be demonstrated, then significant 
progress would be made to establishing a well-defined theory of quantum 
gravitation. This is because many of the renormalization difficulties are 
eliminated in the string formalism.  
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In the split-sedenion hypothesis, the gravitational degress of freedom are 
only free to enter via a ‘geometric’ octonion, to differentiate from the 
‘matter’ octonian mentioned above. The non-associative components 
resulting from these octionic fields may be reduced in their path integral 
support due to density of states spreading effects – by dropping the non-
associative terms it is shown in [X] that Maxwell’s equations can be 
obtained. As mentioned, when not in equilibrium, the sedenion 
propagation is to be done according to the maximal divergence. When in 
this form, where the divergence is nonzero, a dually flat (local 
quaternionic) descriprion exists, showing the deeper significance of the 
evolutionary process in the context of the em-algorithm in information 
geometry [X], (which is the justification for the maximal divergence rule in 
the third primal construct).  
 
The above approach motivated by Feynaman, Cayley, and Shannon, 
recovers everything except quantum gravity. If gravitational fields can be 
represented in terms of octionic algebras, however, this process may 
become straightforward. Even if successful to that extent, however, 
eventually a quantum gravity renormalization will run afoul of its use of a 
dimensionful coupling constant, thereby giving rise to a countable infinity 
of terms requiring renormalization. The current approach, however, still 
offers a way out in terms of the infinite number of counter terms that 
come from suppression of the infinite higher order Cayley algebras. This 
also might clarify where the break in the underlying time-reversal 
invariance occurs. Given the possible relation to a description in 26 dim 
with a 2 dim object (string), the renormalization difficulties may be 
trivially eliminated by relating this theory to the well-behaved (no point-
singularity) 26 dim string theory. 
 
The familiar semiclassical regime is defined according to the wavelength 
of the object. In the RCHO Theory we may have a ‘semiquantum’ regime 
at the Planck length as well. In efficiently realizing the ‘imaginary’ 
confinement that must be enforced in the theory (of the higher oder 
Cayley algebras), an inequality constraint may be introduced in the 
Lagrangian theory. A universal geometric algebra, thus, may underlie the 
physical description of reality, where path integral evolution is described 
in terms of a multiplicative propagator, possibly indicating that NP=P 
(from complexity theory) by its very existence. Realizing NP=P optimality 
in practice, however, would probably be as difficult as recovering the 
dispersed, higher order Cayley-algebra encoded, information content from 
a black hole radiative extinction event. 

Stephen Winters-Hilt 
New Orleans, Oct 2011 
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