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Hamiltonian thermodynamics of a Lovelock black hole
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We consider the Hamiltonian dynamics and thermodynamics of spherically symmetric spacetimes within a
one-parameter family of five-dimensional Lovelock theories. We adopt boundary conditions that make every
classical solution part of a black hole exterior, with the spacelike hypersurfaces extending from the horizon
bifurcation three-sphere to a timelike boundary with fixed intrinsic metric. The constraints are simplified by a
Kuchartype canonical transformation, and the theory is reduced to its true dynamical degrees of freedom.
After quantization, the trace of the analytically continued Lorentzian time evolution operator is interpreted as
the partition function of a thermodynamical canonical ensemble. Whenever the partition function is dominated
by a Euclidean black hole solution, the entropy is given by the Lovelock analogue of the Bekenstein-Hawking
entropy; in particular, in the low temperature limit the system exhibits a dominant classical solution that has no
counterpart in Einstein’s theory. The asymptotically flat space limit of the partition function does not exist. The
results indicate qualitative robustness of the thermodynamics of five-dimensional Einstein theory upon the
addition of a nontrivial Lovelock tern]{.S0556-282(97)03806-X

PACS numbg(s): 04.60.Ds, 04.20.Fy, 04.60.Kz, 04.70.Dy

[. INTRODUCTION parameter of the spacetime as a new canonical variable, use
this transformation to simplify the constraints, and reduce the
A gravitational theory whose Lagrangian density consistgheory to its true dynamical degrees of freedom. At the quan-
of multiples of lower-dimensional Euler densities has thetum level, we wish to derive from the quantum theory a
property that the field equations are second order in the mepartition function that describes the equilibrium thermody-
ric [1,2]. These theories, known as Lovelock theories, in-namics of a Lovelock black hole in the canonical ensemble.
clude Einstein’s theory with a cosmological constant in all The issues of prime interest are twofold. First, although
dimensions greater than 2, and in five or more dimensiontovelock theories have the same set of canonical variables as
they provide genuine curvature squared generalizations dfinstein’s theory, the Lovelock Hamiltonian is, in general, a
Einstein’s theory. Among all curvature squared generalizamultivalued function of the canonical variablgs,8]. One
tions of Einstein’s theory, Lovelock theories therefore have anticipates that this multivaluedness may introduce addi-
special status in that they preserve the number of degrees tibnal features in the canonical formulation and Hamiltonian
freedom: A generic curvature-squared action yields fieldreduction, even though the Lovelock analogue of Birkhoff's
equations that are fourth order in the metric, containing thusheorem[5] strongly suggests that the local considerations
more degrees of freedom than Einstein’s theory. This hashould differ little from those in Einstein’s theory. Second,
generated wide interest in Lovelock theories, especially ircertain Lovelock black holes have thermodynamical proper-
the contexts of cosmology and black hole physgigs19. ties that differ qualitatively from those of Einstein black
The purpose of the present paper is to analyze the clasdioles; in particular, a Lovelock black hole can be stable
cal and quantum dynamics of spherically symmetric Love-against Hawking evaporation in asymptotically flat space
lock gravity by the Hamiltonian methods recently developed 11]. This leads one to ask whether Lovelock theories might
by Kuchar[20]. These methods have previously been appliecadmit quantum thermodynamical ensembles with boundary
to spherically symmetric EinstegiMaxwell) gravity in four  conditions that do not give rise to well-defined ensembles in
dimensiong§20-24, vacuum dilatonic gravity in two dimen- Einstein’s theory.
sions[23,25,24, and to related systen}&7,29); for related The number of possible Lovelock terms in the action in-
discussion, see Refi29—35. At the classical level, we wish creases with the dimension of the spacetime, and different
to find a canonical transformation that introduces the masshoices for the coefficients yield qualitatively different theo-
ries. In this paper we shall aim for concreteness at the ex-
pense of generality. We concentrate on a specific one-
*On leave of absence from Department of Physics, University ofparameter family of Lovelock theories exhibiting both a
Helsinki. Electronic address: louko@wam.umd.edu multivalued Hamiltonian and asymptotically flat black hole
"Present address: Institute for Systems Research, University &olutions that are stable against Hawking evaporation.
Maryland, College Park, Maryland 20742. Electronic address: We take the only bulk contributions to the action to be the
jzsimon@isr.umd.edu Einstein-Hilbert term and the four-dimensional Euler den-
*Electronic address: winters@csd.uwm.edu sity. In D spacetime dimensions, the action then rddds
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1 A the thermodynamical properties of the system are highly
S=ﬂf dPx\/—g| R+ E(RabcdRade_4RabRab+ R?) similar to those of the corresponding system in four dimen-
sions[21,36,31. For high boundary temperatures, the parti-

+ (boundary terms (1.2)  tion function is dominated by a black hole that fills most of

the box. For low boundary temperatures, on the other hand,
wherex is theD-dimensional gravitational constant ands  there is no dominant classical solution. One can argue that
the single Lovelock parametér.For D=5, the four- the behavior of the partition function suggests a topological
dimensional Euler density contributes to the equations ophase transition from a black hole to “hot flat space”
motion, and we obtain a one-parameter family of generalizaf36,37).
tions of Einstein’s theory. In these theories, asymptotically For A>0, the partition function displays several qualita-
flat black hole solutions that are stable against Hawkingively different regions depending on the relative magnitudes
evaporation occur only whe@=5 andA>0 [11], and we  of the box, the temperature, and In the high temperature
shall therefore concentrate on this case. For the interest gfnjt, with the other two parameters fixed, the partition func-
comparison, we shall also include the limiting case of five-jop, is again dominated by a classical black hole solution that
dimensional Einstein theoryy =5 andx =0. _ _fills most of the box. In the low temperature limit, with the

We shall formulate the spherically symmetric Hamil- 46 1y parameters fixed, the partition function is rajeo

tonian theory with thermodynamically motivated l:’Ound""rydominated by a black hole solution: This black hole is small

conditions similar to those introduced in RE21]. In a clas- compared with the box, and it has no analogue in Einstein’s

sical solution, one end of the spacelike hypersurfaces will b corv. However. it is small compared with the size of the
at the bifurcation three-sphere of a nondegenerate Killin Y. : ' pared w .
0x, the existence of the new dominating solution at low

horizon, and the other end will be on a timelike hypersurfac v h . f he behavi f th
in an exterior region of the spacetime. We shall refer to thd®MPeratures only has a minor effect on the behavior of the

two ends respectively as the “left” end and the “right” end, partition function. .In this sense, we can say_that _the qualitg-
as motivated by the Penrose diagram in which our classicdiVe thermodynamical behavior of the pure Einstein system is
solutions are embedded in the right-hand-side asymptoticall§table against the addition of the Lovelock parameter.
flat region[11]: In a solution, one can think of the left end as ~ When the size of the box is taken to infinity, the partition
the inner one and the right end as the outer one. At the lefiunction does not have a well-defined limit, neither for
end we fix the rate at which the spacelike hypersurfaces are=0 nor forA>0. For\ =0 this is not surprising: Just as in
boosted with respect to the coordinate time, and at the righour dimensions, it reflects the fact that a Schwarzschild hole
end we fix the intrinsic metric on the timelike hypersurface.in asymptotically flat space is not stable against Hawking
ForA>0, the super-Hamiltoniahl turns out to be a mul- evaporatiorf36,37]. For A>0, on the other hand, the theory
tivalued function of the canonical variables. However, ourdoes admit asymptotically flat black hole solutions that are
boundary conditions are sufficient to uniquely determithe stable against Hawking evaporatigi1l], and one might
near the left end of the spacelike hypersurfaces, and thigierefore have expected the infinite box limit to exist. The
solution for H can then be uniquely extended to the full reason why this is not the case becomes apparent when one
spacelike hypersurfaces by continuity. Our boundary conditries to repeat our analysis with boundary conditions that
tions_ at the horizon thus eliminate _the _difficulties due to thereplace the right-hand-side timelike boundary by an asymp-
multivaluedness of the super-Hamiltonian. _ totically flat infinity. The classical reduction and the con-
_ We shall find that the theory admits a natural generalizagyction of a quantum theory proceed without difficulty, but
tion of the canonical transformation of Ref0,21]. The the effective Euclidean action of the system turns out to be

constrc_':unts become _exceedln_gly simple, _and a .Ham'lton'aﬂnbounded below, and the formal integral expression for the
reduction leads again to a single canonical pair of uncon-

. . . artition function is divergent. The effective action has a
strained degrees of freedom. In a classical solution, onF

member of the pair is the mass parameter, and its conjugal 80&1] m‘”‘m“”." corresponding to the b_Iagk hole th‘f"t.‘s stable
momentum is the difference of the Killing times at the left 292inst Hawking evaporatid@8], but this is not sufficient to

and right ends of the spacelike hypersurfaces ensure the existence of the full canonical ensemble. Another
After taking the curvature radius at the right end of theSystem with locally thermodynamically stable classical solu-

hypersurfaces to be time independent, we quantize the rdions but no well-defined canonical ensemble is four-
duced theory by Hamiltonian methods. Following ReXl], dimensional Einstein-Maxwell theory with fixed charge in
we analytically continue the time evolution operator toasymptotically flat spacg24].
imaginary time and take the trace, and interpret the resulting The rest of the paper is as follows. In Sec. Il we introduce
object as the partition function of a thermodynamical canonithe notation and present the Hamiltonian formulation in the
cal ensemble. This ensemble describes black hole spacetimeetric variables. In Sec. 1ll we perform a canonical transfor-
in a spherical “box” whose size and boundary temperaturemation to Kuchatype variables and reduce the theory to its
are fixed. unconstrained Hamiltonian degrees of freedom. The reduced
In the special case of Einstein’s theokys 0, we find that  theory is quantized and the partition function constructed in
Sec. IV, and the thermodynamics is analyzed in Sec. V. Sec-
tion VI presents a brief summary and discussion. Appendix
We have set=#=1: The gravitational constant has the di- A reviews briefly the classical solutions to the theory. The
mension of(length®~2, and the Lovelock parameter has the  classical and quantum mechanical analyses under asymptoti-
dimension of(length 2. cally flat boundary conditions are outlined in Appendix B.
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For the rest of paper, we shall use Planckian units thagimensional Einstein gravity, =0, the analysis would pro-
have been tailored for 'numer:lca.l convenience: We Seéeed in an entire|y ana|ogous manner, with the obvious
c=%=1 andx=6=2. All dimensionful constants have thus technical simplifications.

disappeared. The Hamiltonian form of the actiof2.2) is

1 : :
Il. METRIC FORMULATION Ssz dtjodr(PAA'FPRR—NH—NrHr), 2.0

In this section we introduce the model and present the
Hamiltonian formulation in the metric variables.

We begin with the general five-dimensional spherically
symmetric Arnowitt-Deser-MisnetADM) metric

where the super-Hamiltonian constraint and the supermo-
mentum constraint are given, respectively, by

IR\’ R’ 2
ds?=—N2dt>+ A2(dr+N'dt)>+R?dQ2. (2.1 H=y{ Pr+y AR_A(X) ]_AR 1_<X) }
Here dQ2 is the metric on the unit three-sphere, aNd R\ A R\ 2
N, A, andR depend on the coordinatésandr only. The + X) RZ+\ 1_(X) ” (2.539
coordinater has the range €r=<1; this is convenient in
view of our boundary conditions, which will make the radial H,=R'Pg— AP}, 2.5b

proper distance on the constarttypersurfaces finite. Unless
otherwise stated, we assume both the spatial metric and thﬁq

. X , e quantityy is determined in terms of the canonical vari-

spacetime metric to be nondegenerate. In particular, we takeb : .
o ables by the cubic equation

A, R, andN to be positive.

Inserting the metric(2.1) in the Lovelock action(1.1) R\ 2
with D=5, integrating over the three-sphere, and dropping a 0= %Xy3+y RZ+A|1— (— +P,. (2.6)
total derivative, we recover the action A
1 Note that the form of the supermomentum, E@.5b), is
S§=f dtj drL, (2.2 completely determined by the fact that it must generate spa-
0

tial diffeomorphisms in all the canonical variables, together
with the observation thaR and P, are spatial scalars
whereasA andPg are spatial densitig0].
. R , Depending on the values df, R, andP, , the cubic(2.6)
[A—(N"A)"J(R-N'R") can have up to three real solutions fgr The super-
N Hamiltonian is therefore a potentially multivalued function
N2 o of the canonical variables. Such multivaluedness arises ge-
1 (R_) (R=N'R") ” nerically in Lovelock theories, owing to the presence of ki-
A 3N? netic terms higher than quadratic in the velocities in the La-
. , grangian density7,8]; in our case, the highest kinetic terms
(R—N'R’)? ~( R in Eq. (2.3 are quartic in the velocities. We shall address
- N “MA this phenomenon in more detail below. The geometrical
meaning ofy is revealed by observing that the equation of

where

L=-

{1 R2+\

R'\? motion obtained by varyings , Eq. (2.4), with respect to
+NAR 1- A Pr reads
’ 2 -
R’ ~ R’ R=Ny+N'R’. 2.
—N(X) [R2+)\ 1_(X) H (2.3 Y (&0

In a classical solutiory is therefore uniquely determined by

The overdot and the prime denote, respectivelygt) and the embedding of the spacelike hypersurface in the space-

al(dr). We have writtenh = 3\, conforming to the notation time. Conversely, when multiple real solutions to 2.6

of Ref. [11]. We have verified that the Lagrangian equationseXiSt’ it can be verified that they generically lead to different

of motion obtained from local variations S§ Eq.(2.2), are spacetimes.

equivalent to the full spherically symmetric Lovelock equa- Let us turn to the boundary conditions. From the Love-
tions [35] derived from the actiori1.1). The reduction of lock generalization of Birkhoff's theorenb] it follows that

. . . . . the local properties of the classical solutions are completely
the action by spherical symmetry is therefore consistent W'”E:haracterized by a discrete binary parameter and a continu-

the gquaﬂo_ns of motion, ar!d We can t_ﬂée Eq.(2.2), as the ous, masslike parameter. The general solution is shown in
starting point Of. t.he dynamical analysis. We s_hgll address t,h urvature coordinates in Appendix A. We wish to concen-
boundary conditions and boundary terms within the Hamily 010 o the black hole solutions, whose global structure is
tonian formulation below. . similar to that of Kruskal manifold11]. We further wish to

For the reasons discussed in Sec. |, we take0. For  attach the left end of our spacelike hypersurfaces to the bi-
presentational simplicity, we shall assume 0 until explic-  furcation three-sphere and to prescribe there the rate at which
itly stated otherwise in Sec. V. In the limiting case of five- the hypersurfaces are boosted with respect to our coordinate
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time. The right end of the hypersurfaces will then be in the We have therefore arrived at a variational principle with
right-hand-side exterior region, and we wish to prescribe thehe desired boundary conditions. The Lovelock generaliza-
metric on the timelike hypersurface that this end traces. Wéion of Birkhoff's theorem guarantees that classical solutions
must now specify boundary conditions and boundary termgxist, and makes possible a complete description of the so-
that achieve this. lutions. One should note, however, that our Hamiltonian ac-
Consider first the left end of the hypersurfaces. Followingtion does not directly reflect the split of the variables at
the analogous treatment in Refg1,23,24,26 we adopt at r=1 into the dynamical degrees of freedom versus the
r—0 the falloff boundary data. With the data on the timelike boundary, the
evolution no longer forms a hyperbolic system.

A(t,r)=Aq(t)+0(r?), (2.8a
_ 2 4 I1l. CANONICAL TRANSFORMATION
R(L1) =Ro(D) +Ry(O)r*+0(r, (2.80 AND HAMILTONIAN REDUCTION
PA(t,r)=0(r3), (2.80 In this section we simplify the constraints by a canonical
transformation and reduce the theory to unconstrained
Pr(t,r)=0(r), (2.80 Hamiltonian variables. The treatment will closely follow
Refs.[20,21,24,2%
N(t,r)=N;(t)r+0(rd), (2.8 To begin, suppose that we are given the canonical data
(A,R,P,,PR) on a spacelike hypersurface embedded in a
N'(t,r)=Ni(t)r+0O(r?), (2.8f)  classical solution. We wish to reconstruct from this data both

the spacetime and the location of the hypersurface in the
whereA andR, are positive andN;=0. HereO(r") stands  spacetime.
for a term that is bounded at—0 by a constant times", As we have noted above, the embedding of the hypersur-
and whose derivatives fall off accordingly. As in Refs. face in the classical solution defines a unambiguous value of
[21,23,24,2% these conditions guarantee that the classicay: From the equation of motiori2.7), one finds that this
solutions have a bifurcate horizon, they put the left end ofajue isy,,:=N"1(R—N'R’). To reconstructyy,e from
the spacelike hypersurfaces at the bifurcation three-spherghe canonical data, one needs to solve the c(®®, which
and they are consistent with the constraints and preserved B{ay have up to three real solutions. Neat0, the falloff
the Hamiltonian evolution. They also ensure that the cubig2 g8) guarantees that the cubic has a unique real solution, and
(2.6) has a unique real solution fgrnearr =0. In a classical  thjs solution must therefore be equalytg,. Asr increases,
solution, the future unit normal vector(t) to the spacelike  two spurious real solutions may appear, but it is straightfor-
hypersurfaces at=0 then evolves according to ward to verify that neither of the spurious real solutions can
, ever be equal ty,. Thereforey;cis recovered from Eq.
N3(t)Ny(t,) = —cos}‘( J' Aol(t)Nl(t)dt). (2.9 _(2.6) t_)y choosing th_e unique real root negar 0 and fol!ow-
ty ing this root by continuity to alt. We note that, generically,
neither of the spurious roots for satisfies the constraint
Next, consider the boundary conditions in the variationalH=0.
principle. Atr=0, we follow Refs[21,23,24,26 and make After y=y,.,. has been recovered, the reconstruction pro-

N;/Aq a prescribed function of. By Eq. (2.9), this means  ceeds in full analogy with that in Ref20]. The functionF
fixing the rate at which the constamthypersurfaces are appearing in the metrieAl) is given by
boosted at r=0. At r=1, we make R and
—gu=N?—(AN")? prescribed positive-valued functions of R'\?
t. This means fixing the intrinsic metric on the three-surface F= (X) -y 3.9
r=1 and, in particular, fixing this metric to be timelike.

Finally, we need the boundary terms to be added to thend from Eq.(A2) one finds for the mass the expression
bulk action(2.4). As in Ref.[21], it can be verified that the

appropriate term at=0 is M=1R%(1-F)+ik(1-F)2 (3.2
f dtRo(%RSHA\)(NﬂAo), (2.10 Finally, one finds
,_Ay
and the appropriate term a1 is the integral ovet of T =F (3.9
+ AN’

which specifies the location of the hypersurface up to trans-

lations in the Killing time. This completes the reconstruction.
Next, we wish to promote the reconstruction equations

into a canonical transformation, valid even when the equa-

NA!R?R’—N'AP, — iR(R?+\)In NCAN

R_’)[l— E(R_’)Z_ R(R-N'R)

+AN

A 3\ A N? tions of motion do not hold. Provided we stay within a suf-
o 3 C s ficiently narrow neighborhood of the classical solutionss
_AN'A R N (R') 91 again uniquely recovered as a function of the canonical data
3N |N?—(AN")? A? 213 by taking the unique real root of E¢2.6) nearr=0 and
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continuously following this root as increases. Computing
the Poisson bracket betwed&h and T’ suggests that-T'
could serve as the momentum conjugatépif this holds,
the new momentum conjugate B1 =R is fixed by the fact
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transformation as canonical even whigris explicitly t de-
pendent at =1: As in Refs.[21,23,26, it will be seen that
no apparent inconsistency will result. From the viewpoint of
thermodynamics, the case of principal interest will in any

that the supermomentum constraint generates spatial diffe@ase be the one wheRis independent of atr=1.
morphisms in all the variables and must thus read By construction, our transformation is well defined in a
PuM’+PgrR’. These considerations suggest the transformasufficiently narrow neighborhood of the classical solutions. It

tion

M:=1R%(1-F)+ iR (1-F)?, (3.43
Ay

Pui=— o, (3.4b

R:=R, (3.49

Pr:=F (A "2R'H,—yH), (3.4d

with F given by Eq.(3.1). We now need to examine whether
this transformation is indeed canonical.

To proceed, we arrange the difference of the integrands in

the Liouville forms as
PASA+PrSR— Py 6M—Pr4SR

R’ +yA

yA

=6 T

AP —AYyA X R )%+ 3R (R®+\)In

- - |R+yA !
AYA IR —1(R%+)\)In —yAHﬁR] . (3.5

+ R —y

Both terms on the right-hand side of E@.5) are well de-
fined. Upon integration fromm=0 tor=1, the second term
only produces contributions from the two ends. The contri
bution fromr =0 vanishes because of the fallgf#.8). The
contribution fromr =1 vanishes ifSR vanishes there. A$

should in the context of the Liouville form be understood as
a time derivative, this happens when the boundary condition&®

fix R to be independent df atr=1. If this is the case, we

see that the difference of the Liouville forms is an exact form

1 1
fdr(PAaAJrPR@R)—f dr(Py M + PrSR)
0 0
l ~
=5U drl AP,— YA Y(R")2
0

. | R'+yA
+iR'(R?+\)In R’—zAH]’

!

(3.6

and the transformation is canonical.

If, on the other hand, the boundary conditionsRixo be
explicitly t dependent at=1, one cannot similarly argue
that SR would vanisf atr=1. As mentioned at the end of
Sec. Il, the canonical variables et 1 do not cleanly split

into “independent” degrees of freedom versus boundary
data, and it us unclear to us what the proper attitude here

also has a unique inverse. Equatid3s4g and (3.409, to-
gether with the falloff implied by Eq(2.8), determineF
uniquely in terms ofM and R. Equations(3.1) and (3.4b),
together with the fact thak is by assumption positive, then
determineA andy. P, is obtained from Eq(2.6), andPg
finally from Eq. (3.4d.

To obtain the action in the new variables, we note that the
constraint terms can be written as

NH+N'H,=NMM'+NRPg, (3.7

where
NM=—NF A IR'—=N'F Ay, (3.8a
NR=Ny+N'R’. (3.8b

This suggests that one could tak#' and NR as the new
independent Lagrange multipliers in the action. Examining
the falloff atr =0 reveals, however, that fixing™ atr=0

to a value that is independent of the canonical variables is
not equivalent to fixingNlAg1 to a value that is independent
of the canonical variables. This difficulty can be remedied by
redefining the Lagrange multipliers near 0 as in Ref[24],

and the appropriate boundary termsrat0 andr=1 can
then be constructed as in Refg1,24,28. After these steps,
the constraints can be eliminated by a Hamiltonian reduction
as in Refs[20,21,26, and one recovers a reduced theory in
a true Hamiltonian form. The steps follow the cited refer-
ences so closely that we shall here omit the detail and pro-
ed directly to the reduced action.

The reduced action reads

Sred= f dt(pm—h). (3.9

The coordinatem arises from the unreduced theory as the
r-independent value thaM takes when the constraint

M’=0 holds. The momentum is related to the unreduced
variables by

1
pzzf drPy. (3.10
0

The Hamiltonianh is given by

h=—NoRn(1RZ+1X)
X — [ VQ?F+B2-B
—(B%+\)| VQ?F+B?+1BIn

VQ2F+B2+B

should be. We shall, nevertheless, proceed to regard the

2This appears to have gone unmentioned in Rgfs,23,24.

+3AQ 4 Q*F+B?)3?, (3.1))

where
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No:=N3/Ay, (3.12 Z(B;B;X)=( flﬁdx)_l flﬁdxexq—l*)}, 2
Rh:=v2m— 3\, (3.13 ’ ’
where the effective actioh, is given by’
F:=1+BTZ(1—\/1+4L}) (3.14 A
\ B* /" «=BBH1—\F) 1+@<1—ﬁ><2+ﬁ>}

andB andQ? are, respectively, the values Bfand — gy, at
r=1. HereB, Q?, andN, are considered prescribed func-
tions oft, satisfyingB>0, Q?>>0, andN,=0. The range of
m is 2\ <m< B2+ I\, corresponding to € R,<B, and the
range ofp is the full real axis.R, is equal toRy, and in a
classical solution it equals the horizon radius. B2

The equation of motion fom implies thatm is indepen- F=1+ —
dent oft: The value ofm is simply the mass parameter of the A
classical solution. The equation of motion foreflects the
fact that, by Eqs(3.3), (3.4b), and(3.10), p is equal to the
difference in the Killing times at the two ends of the space
like hypersurface.

\
—2mBX| 9%+ 537/, 4.3

with

2x2\ N2

4.9

We have introduced the integration varialle R,,/B, and
_the smooth and slowly varying positive functigi(x) arose
from the choice of the inner product.

We now interpret the objec(B;B;\), Eq. (4.2, as the
partition function of a thermodynamical canonical ensemble
describing black holes in a spherical box with curvature ra-

In this section we quantize the reduced Hamiltoniandius B and and inverse boundary temperat@eThe ther-
theory and obtain a partition function as the trace of themodynamical properties of this ensemble will be analyzed in

IV. QUANTIZATION AND THE PARTITION FUNCTION

analytically continued time evolution operator.

the next section.

From now on, we take the boundary radius independent of

time, B=0. We also subtract from the Hamiltonid8.11)
the value that the terms arising frams 1 would take on flat

V. THERMODYNAMICS IN THE CANONICAL
ENSEMBLE

spacetime. This subtraction does not affect the equations of

motion, but it does renormalize the value of the action: It is

analogous to subtracting th€, term in Einstein’'s theory

As noted above, the partition function(3;B;\), Eq.
(4.2, is manifestly well defined. Further, the form of the

[39,40.. Writing Q: = JQZ>0, the new Hamiltonian is given integral in Eq.(4.2) guarantees that theconstant volumge

by heat capacityC= 8%(4*(In2)/3p?), is always positive(see,

for example, Sec. IV of Ref26]), and that the ensemble has

a well-defined density of stat¢36—38,43. These properties

support the interpretation of the partition function in terms of

a genuine thermodynamical equilibrium ensembile, in spite of

the fact that we arrived at the partition function via an ana-

The first of the two terms in Eq4.1) is the Lovelock ana- lytic continuation and not via direct statistical mechanics ar-

logue of the quasilocal energy of Brown and YdkL—43. guments.

The second term arises from the bifurcation three-sphere, To proceed, we shall estimate the integral in EQ2) by

and it will give rise to the black hole entropy. the saddle point approximation. We shall throughout assume
Quantization proceeds exactly as in R¢f1,24,26. We  u(x) to be so slowly varying that its precise form will not

take the wave functiong to be functions of the configura- affect the saddle point analysis. We shall also assume that

tion variablem, with 2\ <m< B2+ 3}, and we introduce an the action is sufficiently rapidly varying to make the saddle

inner product with some smooth and slowly varying weightPoint approximation is justified, without attempting to ex-

factor. The Hamiltonian operator is taken to act by multipli- Plicitly state the necessary conditions; typically, it will be

cation by the functiorh in Eq. (4.1), ¢(m)—h(m)y(m), throughout assumed that the system is “macroscopic,”

and the unitary time evolution operator is easily found. WeB>1.

then analytically continue the arguments of the time evolu- The critical points ofl, are at the roots of the equation

tion operator to imaginary values: We sgpdt=—ip, in-

terpretingB3>0 as the inverse temperature at the boundary,

and [Nodt= —27i, motivated by the regularity of the clas-

sical Euclidean solutions. The trace of the analytically con-

tinued time evolution operator is divergent, but we can argudhe critical points give precisely the Lorentzian black hole

as in Refs[21,24,24 that an acceptable renormalization is solutions whose Hawking temperature at the boundary, cal-

achieved by introducing a suitable regularization, dividing

by the trace of the regularized identity operator, and finally

eliminating the regulator. In this fashion, we obtain for the S3This effective action has been obtained previoUdg] by the

renormalized trace the manifestly well-defined expression Euclidean Hamiltonian reduction method of RES7].

h=Q(1— VF[B?+ 1A (1—VF)(2+ F)]

—NoRh(3R2+1). 4.2

BX

AR 2
o 5= | X+ JF. (5.1

B?
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culated in the usual way from the surface graVitd] and  Expectedly, the situation is closely similar to that in four-
the blueshift factor, is equal t8. The mass of the hole is dimensional Einstein theoy36,37,45.

m= 1B2x?+ I\, and the value of, at a critical point equals We now turn to the case>0, in whichl, always has at
the Euclidean action of the corresponding Euclideanizedeast one critical point.

black hole solution. Whenever the partition function is domi-  Consider first the limit of small with fixed B and3. The
nated by a critical point, we recover for the thermal energyg

: ituation differs from that in the case=0 only in that there
expectation value and the entropy the results

is now one new critical point, a local minimum, at

4(Inz) N x=2mAB 1 1+ 0O(A?). At the new critical point, I,
(E)=— B ~B2(1-\F)| 1+ 3p2(1- VR (2+ \/E)} = I\B+O(N\?). Therefore, as\—0, the partition function
(5.29 smoothly approaches that of Einstein’s theory. In particular,
' when B?<372B2, it would be straightforward to compute
J '\ the first order correction ii to the thermal energy and the
S= 1—,8% (InZ)~2mB3x %x2+? entropy (5.4), assuming that the corrections to the saddle

point approximation are small.
= LR24 1 Consider next the sma# limit with fixed B andX. There
2mRy(1RE+X), (5.2b
is only one critical point, atx=1—im"23(B%+\) 1B2
wherex andF are evaluated at the critical point. Expression+ (%), and this critical point is the global minimum of
(5.2 for the entropy agrees with the result first obtained byl . One can think of this critical point as the counterpart of
Euclidean methodgL1]. the larger of the two critical points of the case=0: The

We can now extract physical information by analyzing thep|,ck hole fills almost all of the box. The disappearance of

critical point structure ofl, in various limits of interest in the smaller critical point of the case=0 is related to the

the three pa.rar.netevs B, gnd,B. - , i fact that, for fixed\, the Hawking temperature of the Love-
As a preliminary, consider the case=0, in which our  |5c hole in asymptotically flat space is bounded below by
Lovelock theory reduces to Einstein’s theory. Although we; 1+~ 45 . L
. L - - 77T A [11]. If the saddle point approximation to the
have for presentational simplicity assumert0, itis easy 0 patition function remains good, the thermal energy and the
see that the partition function for Einstein’s theory is cor- entropy are given by

rectly recovered by taking the limk—0 in Egs. (4.2—

(4.4). In particular, Eq.(4.4) reduces toF=1—x?, and the (E)y~B?+2N—17 'BB+0O(B?), (5.63
critical point equation(5.1) reduces to
B S~2 831+——'8—2 +0(B* 5.6
——=xy1-x2 (5.3 ~2mB%\ 3+ 527 522 (p%). (5.6b
27B
The condition for critical points to exist i8<B, and the Consider next the largg limit with fixed B andX. There

critical  points  are  then at x=x.:=2"Y41 s again only one critical point, ak=27AB 18" 1FL?
+\1— 7 2B~2B%)Y2 When the critical points are distinct, +O(BY),  where Foi=1+B2R L(1-V1tA2B 4).

X, is @ local minimum andk_ a local maximum. When - rpig critical point is the global minimum, and it has no coun-
B<3m"B7, the partition function gets its d0m|nant2cor31tr|- terpart in Einstein’s theory: It corresponds to a small,
b%t'%n from the global minimum ak=x. . When >3 «yrely Lovelock,” black hole. If the saddle point approxi-
7°B?, on the other hand, the partition function gets its domi-mation to the partition function remains good, the thermal

nant contribution from the vicinity of the global minimum at energy and the entropy are easily read off from &g as
x=0. The limiting case3?= 37?B? represents a phase tran-

sition where the dominant contribution shifts froos x, to A
x=0 asg increases. When the saddle point dominates, tth>%Bz(1—Fé/2) 1+ 3_82(1_F‘1’/2)(2+ Fgfz)} +0(B72),
thermal energy and entrof$.2) take the form

(5.7
(E)~B*(1-V1-x%), (5.49 e
S~27B3%3 = 27R?, (5.4b S~——5+0(B7). (5.7b

and the relation between the thermal energy and the mass can cgnsider then the large limit with fixed B and 8. There

be written as is again only one critical point, ak=1—37 2B2\"1

(E)? +0O(X"2), and this critical point is the global minimum. The
m~(E)— 55z (5.9  hole is again “purely Lovelock,” but it now fills almost all
of the box.

Equation(5.5) displays explicitly how the mass gets a con-  Finally, consider the larg® limit with fixed A and g.
tribution both from the thermal energy and from the gravita-One critical point is ak=1— 37 B~282+O(B~%). This
tional binding energy associated with the thermal energycritical point is the global minimum, and it can be regarded
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as the counterpart of the larger of the two critical points ofconditions that enforce every classical solution to be part of
the casex =0. If B>47-r)§1’2, there are in addition two other the exterior region of a black hole, with the spacelike hyper-

critical points, at x=_1im" 1B !g(1+ /1—16772)1,8*2) surfaces extending from the horizon bifurcation three-sphere
+0(B73). The, fact that 4the two smaﬁ critical points exist to a timelike boundary with fixed intrinsic metric. We sim-

only for B>4m\2 is related to the above-mentioned phe- pI|f|gd the constraints by a canonlcalvtransform_atlon t_hat gen-
eralizes the one introduced by Kuchar four-dimensional

nomenon that the Hawking temperature of our Lovelock hole hericall tric Einstein th d duced th
in asymptotically flat space is bounded below By spherically symmetric Einstein theory, and we réduced the

A theory classically to its true dynamical degrees of freedom.
I\ "Y2[11]. If the saddle point approximation is good, the Y y y J

X _ After Hamiltonian quantization, we interpreted the trace
thermal energy and the entropy are obtained by replacings e analytically continued time evolution operator as the
both O terms in Eq.(5.6) by O(B™ 7).

N partition function of a thermodynamical canonical ensemble,
We therefore see that for>0 the partition function is  describing black holes in a spherical box whose size and
always dominated by a black hole solution in the limits thathoundary temperature are fixed. In the special case where the
we have considered. In the high temperature limit and in thg ovelock parametei vanishes and the theory reduces to
Iarge box Ilmlt, the situation is very similar to that for Einstein’s theory, we found that the thermodynamics is
A =0, in that the dominating black hole solution fills most of highly similar to that of the corresponding system in four-
the box. In the low temperature limit, on the other hand, thedimensional Einstein theory: In particular, for high boundary
Lovelock theory does exhibit a dominating black hole solu-temperatures the partition function is dominated by a classi-

box andh <B2. however. the presence of the new dominat-)‘>o’ the situation was more versatile. In the high tempera-

, ; ._ture limit, with A and the box size fixed, the partition func-
nd so!utlon df)es. not a.ppear to make th.e thermopynammaﬂj)n is again dominated by a black hole that fills most of the
behavior qualitatively different from that in the case=0. box. In the low temperature limit, on the other hand, the
One can read these results as evidence for stability of thﬁartition function is nowalso domfnated by a black hé)le
qualitative thermodynamical behavior of Einstein’s theorygq) ion: this black hole is small, and it has has no analogue

upon the addition of the Lovelock parameter. in Einstein theory. Nevertheless Xfis small compared with
For\>0, the critical point structure df, is entirely de-  the size of the box, the new dominating solution has little
termined by two parameters, which can be convenientlyjyalitative effect on the thermodynamical properties. In this
taken to bexB~2 and BB~ 1. Numerical experimentation sense, the qualitative thermodynamical behavior of the Ein-
suggests that there are never more than three critical pointstein system is stable upon the addition of the Lovelock pa-
WhenAB~? is fixed and sufficiently large, there is only one fameter. o o
critical point for anyBB~L: This critical point is the global ~ When the box size is taken to infinity, we found that the
minimum, and it migrates smoothly from the large Lovelock Partition function has no well-defined limit, neither for

hole to the small Lovelock hole 38B~* increases. When A=0 norforA>0. While this is not surprising for Einstein’s

AB~2 s fixed and sufficiently small, on the other hand, thetheory, in view of the similar phenomenon in four dimen-

transition between the unique minima for small and Iarges'ons[36‘3ﬂ’ one might have hoped the theory witr 0 to

BB~ ! takes place via a phase in whith has three critical fare better on the grounds that this theory admits asymptoti-
points, a maximum surrounded by two minima: &8~ cally flat black hole solutions that are stable against Hawking

tends to zerdinfinity), only the larger(smalled of the two evaporatiorf11]. However, even though a classical solution

minima prevails. When three critical points exist, one cang::;lgogmgﬁzf Haa\\;vviill;degr\}zdol::gg[t&osr]] fngtlﬁgvgg;t( be
find regions of the parameter space where the global mini; 9 g P '

mum is at either of the two local minima. We have, howevertheory in asymptotically flat space provides an example

not attempted to corroborate these numerical experiment\gher.e the mere gmstence Of.SUCh a locally stqble classpal
analytically. Solution does not imply the existence of well-defined canoni-

It should be emphasized that the partition function has non';lI en_semble: An_other such example occurs - in four-
dimensional Einstein-Maxwell theory in asymptotically flat

well-defined limit asB— oo with fixed B and\, neither for space[24].
A =0 nor forA>0. As with Einstein’s theory in four dimen- In the classical theory with >0, we saw that the super-
sions[36,37, this reflects the fact that the thermodynamicalHamiltonian emerges as a multivalued function of the ca-
canonical ensemble is not well defined in asymptotically flathonical variables, as is generically the case in Lovelock theo-
space. We shall give a more detailed comparison of theies [7,8]. Nevertheless, our thermodynamically motivated
boxed Lovelock theory to Lovelock theory in asymptotically hboundary conditions were sufficient to uniquely specify the
flat space in Appendix B. super-Hamiltonian near the horizon, and the uniqueness
could be extended to the full spacelike hypersurfaces by con-
tinuity. Another boundary condition that would uniquely
specify the super-Hamiltonian in this fashion is the asymp-
In this paper we have investigated the Hamiltonian dy-totically flat falloff (B1) discussed in Appendix B. However,
namics and thermodynamics of five-dimensional sphericallyone expects there to exist boundary conditions of interest for
symmetric Lovelock theories in which the only contributions which such uniqueness does not occur, and in such cases one
to the Lagrangian density are the Einstein-Hilbert term andvould need to seek other criteria for specifying the super-
the four-dimensional Euler density. We adopted boundaryHamiltonian. If one regards the Lovelock theory as a pertur-

VI. SUMMARY AND DISCUSSION
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bation to Einstein’s theory or as a toy model for semiclassidike or timelike depending on the sign &f, and the curva-
cal gravity with a back reaction, one possible criterion of thisture radius of the three-sphere. Fo=0, the general solu-
kind is perturbative expandability of the solutionsNr{46].  tion is the five-dimensional Schwarzschild solution, obtained
In conclusion,_our resu!ts p_rovide evidence for the ro_bugt-from Eq. (A2) with the lower sign as the limik—0. In
ness of the classical Hamiltonian structure and the qualitativgqgition to), the only local parameter in the solution is the
thermodynamical structure of spherically symmetric Einsteinmassiike quantityo.
gravity in five dimensions upon the addition of the four-
dimensional Euler density in the action. To put this conclu-
sion in proper perspective, one should remember that bot i e A
our particular Lovelock theory and our boundary conditionsSPace provided we take> 3\ and, fora>0, choose the
were handpicked so that the global aspects of the probled@Wer sign in Eq.(A2) [11]. The curvature coordinates are
remained virtually identical to those in pure Einstein gravity. 900d individually in each region not containing horizons:
It is tempting to think that this may exemplify a more general 1 "€ horizons are nondegenerate, and the Penrose diagram of
connection between the global properties of tepace of the conventional maX|m§I analytic exten_smn is S|m|Iar_to
classical solutions and the qualitative behavior of thermodyfhat ©of Kruskal manifold. The horizon radius is
namical equilibrium ensembles: One might conjecture thaR,= v w—3\. In our units, the ADM mass ¥ = jw.
whenever the global properties of a Lovelock theory are suf-
ficiently similar to those of Einstein’s theory, then also the  APPENDIX B: ASYMPTOTICALLY ELAT INFINITY
equilibrium thermodynamics, with finite or infinite boundary
conditions, will be qualitatively similar to that in Einstein’s  In this appendix we adapt the analysis of the main text to
theory. Another example supporting such a conjecture is praoundary conditions that replace the timelike boundary by an
vided by the asymptotically anti—de Sitter Lovelock theoriesasymptotically flat infinity. We shall see that quantization
of Ref.[47], which include as a special case Einstein gravityalong the lines of Sec. IV will not lead to a well-defined
in three and four dimensions with a negative cosmologicafanonical ensemble.
constant. However, to give the conjecture a more substantial In the metric theory of Sec. II, we let take the range
meaning, one would need a more systematic understandifg<r <. At r—, we introduce the falloff
of the possible global structures that the various Lovelock
theorie[s) may hage. A(LD)=1+M (Or 2+ 0%(r 279, (Bla

For the reasons discussed in Sec. |, we take0. The
ﬁolution then describes a black hole in asymptotically flat

R(t,r)=r+0%(r 179, (B1b)
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that this falloff makes the coordinates asymptotic to hyper-

spherical coordinates in Minkowski space, it is consistent

with the constraints, and it is preserved by the time evolu-
In this appendix we briefly review the classical solutionstion. N.(t) gives the rate at which the asymptotic

to our Lovelock theory. Minkowski time advances with respect to the coordinate
By the Lovelock generalization of Birkhoff's theoreis], ~ time t. When the equations of motion holM . (t) is inde-

the general solution to the theoty.1) for A0 can be writ-  Pendent oft, and its value is the ADM mass.

ten in the local curvature coordinates,R) as The total action takes the for®= Sy +S;5, where

APPENDIX A: LOVELOCK BLACK HOLE

— 2 -1 2 2 2 ~
ds’=—FdT*+ F R+ RAd, A1) SﬁzzfdtRo(%R(%+7\)(N1/A0)_fdtN+M+, (82)

where ) ) o
andSy is as in Eq.(2.4) except that the upper limit of the

R2 PYRY r integral is replaced by infinity. The canonical transforma-
F=1+—|1+\/1+ _4), (A2)  tion and Hamiltonian reduction proceed as in Sec. lll. The
A R action of the reduced theory is as in E§.9), but with the

) Hamiltonian now given by
with A= 3\. The coordinate§ andR are, respectively, the R
Killing time, whose constant-value hypersurfaces are space- h=N,m-— NORh(%RﬁvL N). (B3)
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ensemble does not exist under the asymptotically flat bound-

range ofp is the full real axis. Although in the main text we ary conditions, neither fok=0 norA>0. In this sense, the

assumed for presentational S|mpI|city>0, it is easily veri-
fied that the above derivation extends to the cas&®, and
the reduced HamiltoniatB3) is valid for all A\=0.

Quantization can now proceed as in the main text. We

analytically continue the time evolution operator
I Nodt=—27i and [N, dt=—ig, interpretingB as the in-

asymptotically flat Lovelock theory is thermodynamically no
better behaved than asymptotically flat Einstein theory.
The critical points ofl; give the (Lorentzian classical
solutions that have the inverse Hawking temperatgrat
|nf|n|ty For A=0 there exists exactly one critical point,
which is a local maximum: This is similar to what happens

verse temperature at the infinity. For the renormalized trac#ith Einstein’s theory in four dimensiori86]. ForA >0, the
of the analytically continued time evolution operator, we ob-situation is more versatile. Critical points exist when

tain formally

z(ﬁ;X)sz:ﬁd Roexp(— 1), (B4)
where the effective actioh, is given by

=3B(Ri+3N) —27R,(3RA+N). (B5)

The smooth and slowly varying positive functiga(Ry,)
arose from the choice of the inner product, akds a nor-

malization constant, possibly dependenTXohut presumably

not on B. However, the integral in Eq(B4) is divergent
becausd tends to—« at largeR,;,.

Thus, the canonical

B%=16m2\, and when the inequality is genuine, there are
two critical points. The critical point with the small@argen
value of Ry, is a local minimum(maximum, respective)y
The local minimum gives the classical solution that was
found to be stable against Hawking evaporation in REf].
While the stability of this solution against Hawking evapo-
ration reflects its being a local minimum of [38], the
divergence of the integral i{B4) demonstrates that this local
stability is not sufficient to guarantee the existence of the
canonical ensemble. The effects of the Lovelock parameter
on the asymptotically flat thermodynamics are thus qualita-
tively very similar to those of a fixed charge in asymptoti-
cally flat four-dimensional Einstein-Maxwell theory
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