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We consider the Hamiltonian dynamics and thermodynamics of spherically symmetric spacetimes within a
one-parameter family of five-dimensional Lovelock theories. We adopt boundary conditions that make every
classical solution part of a black hole exterior, with the spacelike hypersurfaces extending from the horizon
bifurcation three-sphere to a timelike boundary with fixed intrinsic metric. The constraints are simplified by a
Kuchař-type canonical transformation, and the theory is reduced to its true dynamical degrees of freedom.
After quantization, the trace of the analytically continued Lorentzian time evolution operator is interpreted as
the partition function of a thermodynamical canonical ensemble. Whenever the partition function is dominated
by a Euclidean black hole solution, the entropy is given by the Lovelock analogue of the Bekenstein-Hawking
entropy; in particular, in the low temperature limit the system exhibits a dominant classical solution that has no
counterpart in Einstein’s theory. The asymptotically flat space limit of the partition function does not exist. The
results indicate qualitative robustness of the thermodynamics of five-dimensional Einstein theory upon the
addition of a nontrivial Lovelock term.@S0556-2821~97!03806-X#

PACS number~s!: 04.60.Ds, 04.20.Fy, 04.60.Kz, 04.70.Dy

I. INTRODUCTION

A gravitational theory whose Lagrangian density consists
of multiples of lower-dimensional Euler densities has the
property that the field equations are second order in the met-
ric @1,2#. These theories, known as Lovelock theories, in-
clude Einstein’s theory with a cosmological constant in all
dimensions greater than 2, and in five or more dimensions
they provide genuine curvature squared generalizations of
Einstein’s theory. Among all curvature squared generaliza-
tions of Einstein’s theory, Lovelock theories therefore have a
special status in that they preserve the number of degrees of
freedom: A generic curvature-squared action yields field
equations that are fourth order in the metric, containing thus
more degrees of freedom than Einstein’s theory. This has
generated wide interest in Lovelock theories, especially in
the contexts of cosmology and black hole physics@3–19#.

The purpose of the present paper is to analyze the classi-
cal and quantum dynamics of spherically symmetric Love-
lock gravity by the Hamiltonian methods recently developed
by Kuchař@20#. These methods have previously been applied
to spherically symmetric Einstein~-Maxwell! gravity in four
dimensions@20–24#, vacuum dilatonic gravity in two dimen-
sions@23,25,26#, and to related systems@27,28#; for related
discussion, see Refs.@29–35#. At the classical level, we wish
to find a canonical transformation that introduces the mass

parameter of the spacetime as a new canonical variable, use
this transformation to simplify the constraints, and reduce the
theory to its true dynamical degrees of freedom. At the quan-
tum level, we wish to derive from the quantum theory a
partition function that describes the equilibrium thermody-
namics of a Lovelock black hole in the canonical ensemble.

The issues of prime interest are twofold. First, although
Lovelock theories have the same set of canonical variables as
Einstein’s theory, the Lovelock Hamiltonian is, in general, a
multivalued function of the canonical variables@7,8#. One
anticipates that this multivaluedness may introduce addi-
tional features in the canonical formulation and Hamiltonian
reduction, even though the Lovelock analogue of Birkhoff’s
theorem@5# strongly suggests that the local considerations
should differ little from those in Einstein’s theory. Second,
certain Lovelock black holes have thermodynamical proper-
ties that differ qualitatively from those of Einstein black
holes; in particular, a Lovelock black hole can be stable
against Hawking evaporation in asymptotically flat space
@11#. This leads one to ask whether Lovelock theories might
admit quantum thermodynamical ensembles with boundary
conditions that do not give rise to well-defined ensembles in
Einstein’s theory.

The number of possible Lovelock terms in the action in-
creases with the dimension of the spacetime, and different
choices for the coefficients yield qualitatively different theo-
ries. In this paper we shall aim for concreteness at the ex-
pense of generality. We concentrate on a specific one-
parameter family of Lovelock theories exhibiting both a
multivalued Hamiltonian and asymptotically flat black hole
solutions that are stable against Hawking evaporation.

We take the only bulk contributions to the action to be the
Einstein-Hilbert term and the four-dimensional Euler den-
sity. In D spacetime dimensions, the action then reads@11#
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wherek is theD-dimensional gravitational constant andl is
the single Lovelock parameter.1 For D>5, the four-
dimensional Euler density contributes to the equations of
motion, and we obtain a one-parameter family of generaliza-
tions of Einstein’s theory. In these theories, asymptotically
flat black hole solutions that are stable against Hawking
evaporation occur only whenD55 andl.0 @11#, and we
shall therefore concentrate on this case. For the interest of
comparison, we shall also include the limiting case of five-
dimensional Einstein theory,D55 andl50.

We shall formulate the spherically symmetric Hamil-
tonian theory with thermodynamically motivated boundary
conditions similar to those introduced in Ref.@21#. In a clas-
sical solution, one end of the spacelike hypersurfaces will be
at the bifurcation three-sphere of a nondegenerate Killing
horizon, and the other end will be on a timelike hypersurface
in an exterior region of the spacetime. We shall refer to the
two ends respectively as the ‘‘left’’ end and the ‘‘right’’ end,
as motivated by the Penrose diagram in which our classical
solutions are embedded in the right-hand-side asymptotically
flat region@11#: In a solution, one can think of the left end as
the inner one and the right end as the outer one. At the left
end we fix the rate at which the spacelike hypersurfaces are
boosted with respect to the coordinate time, and at the right
end we fix the intrinsic metric on the timelike hypersurface.

For l.0, the super-HamiltonianH turns out to be a mul-
tivalued function of the canonical variables. However, our
boundary conditions are sufficient to uniquely determineH
near the left end of the spacelike hypersurfaces, and this
solution for H can then be uniquely extended to the full
spacelike hypersurfaces by continuity. Our boundary condi-
tions at the horizon thus eliminate the difficulties due to the
multivaluedness of the super-Hamiltonian.

We shall find that the theory admits a natural generaliza-
tion of the canonical transformation of Refs.@20,21#. The
constraints become exceedingly simple, and a Hamiltonian
reduction leads again to a single canonical pair of uncon-
strained degrees of freedom. In a classical solution, one
member of the pair is the mass parameter, and its conjugate
momentum is the difference of the Killing times at the left
and right ends of the spacelike hypersurfaces.

After taking the curvature radius at the right end of the
hypersurfaces to be time independent, we quantize the re-
duced theory by Hamiltonian methods. Following Ref.@21#,
we analytically continue the time evolution operator to
imaginary time and take the trace, and interpret the resulting
object as the partition function of a thermodynamical canoni-
cal ensemble. This ensemble describes black hole spacetimes
in a spherical ‘‘box’’ whose size and boundary temperature
are fixed.

In the special case of Einstein’s theory,l50, we find that

the thermodynamical properties of the system are highly
similar to those of the corresponding system in four dimen-
sions@21,36,37#. For high boundary temperatures, the parti-
tion function is dominated by a black hole that fills most of
the box. For low boundary temperatures, on the other hand,
there is no dominant classical solution. One can argue that
the behavior of the partition function suggests a topological
phase transition from a black hole to ‘‘hot flat space’’
@36,37#.

For l.0, the partition function displays several qualita-
tively different regions depending on the relative magnitudes
of the box, the temperature, andl. In the high temperature
limit, with the other two parameters fixed, the partition func-
tion is again dominated by a classical black hole solution that
fills most of the box. In the low temperature limit, with the
other two parameters fixed, the partition function is nowalso
dominated by a black hole solution: This black hole is small
compared with the box, and it has no analogue in Einstein’s
theory. However, ifl is small compared with the size of the
box, the existence of the new dominating solution at low
temperatures only has a minor effect on the behavior of the
partition function. In this sense, we can say that the qualita-
tive thermodynamical behavior of the pure Einstein system is
stable against the addition of the Lovelock parameter.

When the size of the box is taken to infinity, the partition
function does not have a well-defined limit, neither for
l50 nor forl.0. Forl50 this is not surprising: Just as in
four dimensions, it reflects the fact that a Schwarzschild hole
in asymptotically flat space is not stable against Hawking
evaporation@36,37#. Forl.0, on the other hand, the theory
does admit asymptotically flat black hole solutions that are
stable against Hawking evaporation@11#, and one might
therefore have expected the infinite box limit to exist. The
reason why this is not the case becomes apparent when one
tries to repeat our analysis with boundary conditions that
replace the right-hand-side timelike boundary by an asymp-
totically flat infinity. The classical reduction and the con-
struction of a quantum theory proceed without difficulty, but
the effective Euclidean action of the system turns out to be
unbounded below, and the formal integral expression for the
partition function is divergent. The effective action has a
localminimum, corresponding to the black hole that is stable
against Hawking evaporation@38#, but this is not sufficient to
ensure the existence of the full canonical ensemble. Another
system with locally thermodynamically stable classical solu-
tions but no well-defined canonical ensemble is four-
dimensional Einstein-Maxwell theory with fixed charge in
asymptotically flat space@24#.

The rest of the paper is as follows. In Sec. II we introduce
the notation and present the Hamiltonian formulation in the
metric variables. In Sec. III we perform a canonical transfor-
mation to Kucharˇ-type variables and reduce the theory to its
unconstrained Hamiltonian degrees of freedom. The reduced
theory is quantized and the partition function constructed in
Sec. IV, and the thermodynamics is analyzed in Sec. V. Sec-
tion VI presents a brief summary and discussion. Appendix
A reviews briefly the classical solutions to the theory. The
classical and quantum mechanical analyses under asymptoti-
cally flat boundary conditions are outlined in Appendix B.

1We have setc5\51: The gravitational constantk has the di-
mension of~length!D22, and the Lovelock parameterl has the
dimension of~length!2.
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For the rest of paper, we shall use Planckian units that
have been tailored for numerical convenience: We set
c5\51 andk56p2. All dimensionful constants have thus
disappeared.

II. METRIC FORMULATION

In this section we introduce the model and present the
Hamiltonian formulation in the metric variables.

We begin with the general five-dimensional spherically
symmetric Arnowitt-Deser-Misner~ADM ! metric

ds252N2dt21L2~dr1Nrdt!21R2dV3
2. ~2.1!

Here dV3
2 is the metric on the unit three-sphere, andN,

Nr , L, andR depend on the coordinatest and r only. The
coordinater has the range 0<r<1; this is convenient in
view of our boundary conditions, which will make the radial
proper distance on the constantt hypersurfaces finite. Unless
otherwise stated, we assume both the spatial metric and the
spacetime metric to be nondegenerate. In particular, we take
L, R, andN to be positive.

Inserting the metric~2.1! in the Lovelock action~1.1!
with D55, integrating over the three-sphere, and dropping a
total derivative, we recover the action

SS
L5E dtE

0

1

drL, ~2.2!

where

L52
@L̇2~NrL!8#~Ṙ2NrR8!

N

3HR21l̂F12SR8

L
D 21~Ṙ2NrR8!2

3N2 G J
2

~Ṙ2NrR8!2

N
FLR2l̂SR8

L
D 8G

1NLRF12SR8

L
D 2G

2NSR8

L
D 8HR21l̂F12SR8

L
D 2G J . ~2.3!

The overdot and the prime denote, respectively,]/(]t) and
]/(]r ). We have writtenl5 1

2l̂, conforming to the notation
of Ref. @11#. We have verified that the Lagrangian equations
of motion obtained from local variations ofSS

L , Eq. ~2.2!, are
equivalent to the full spherically symmetric Lovelock equa-
tions @3–5# derived from the action~1.1!. The reduction of
the action by spherical symmetry is therefore consistent with
the equations of motion, and we can takeSS

L , Eq.~2.2!, as the
starting point of the dynamical analysis. We shall address the
boundary conditions and boundary terms within the Hamil-
tonian formulation below.

For the reasons discussed in Sec. I, we takel̂>0. For
presentational simplicity, we shall assumel̂.0 until explic-
itly stated otherwise in Sec. V. In the limiting case of five-

dimensional Einstein gravity,l̂50, the analysis would pro-
ceed in an entirely analogous manner, with the obvious
technical simplifications.

The Hamiltonian form of the action~2.2! is

SS5E dtE
0

1

dr~PLL̇1PRṘ2NH2NrHr !, ~2.4!

where the super-Hamiltonian constraint and the supermo-
mentum constraint are given, respectively, by

H5yH PR1yFLR2l̂SR8

L D 8G J 2LRF12SR8

L D 2G
1SR8

L D 8HR21l̂F12SR8

L D 2G J , ~2.5a!

Hr5R8PR2LPL8 . ~2.5b!

The quantityy is determined in terms of the canonical vari-
ables by the cubic equation

05 1
3 l̂y31yHR21l̂F12SR8

L D 2G J 1PL. ~2.6!

Note that the form of the supermomentum, Eq.~2.5b!, is
completely determined by the fact that it must generate spa-
tial diffeomorphisms in all the canonical variables, together
with the observation thatR and PL are spatial scalars
whereasL andPR are spatial densities@20#.

Depending on the values ofL, R, andPL , the cubic~2.6!
can have up to three real solutions fory. The super-
Hamiltonian is therefore a potentially multivalued function
of the canonical variables. Such multivaluedness arises ge-
nerically in Lovelock theories, owing to the presence of ki-
netic terms higher than quadratic in the velocities in the La-
grangian density@7,8#; in our case, the highest kinetic terms
in Eq. ~2.3! are quartic in the velocities. We shall address
this phenomenon in more detail below. The geometrical
meaning ofy is revealed by observing that the equation of
motion obtained by varyingSS , Eq. ~2.4!, with respect to
PR reads

Ṙ5Ny1NrR8. ~2.7!

In a classical solution,y is therefore uniquely determined by
the embedding of the spacelike hypersurface in the space-
time. Conversely, when multiple real solutions to Eq.~2.6!
exist, it can be verified that they generically lead to different
spacetimes.

Let us turn to the boundary conditions. From the Love-
lock generalization of Birkhoff’s theorem@5# it follows that
the local properties of the classical solutions are completely
characterized by a discrete binary parameter and a continu-
ous, masslike parameter. The general solution is shown in
curvature coordinates in Appendix A. We wish to concen-
trate on the black hole solutions, whose global structure is
similar to that of Kruskal manifold@11#. We further wish to
attach the left end of our spacelike hypersurfaces to the bi-
furcation three-sphere and to prescribe there the rate at which
the hypersurfaces are boosted with respect to our coordinate
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time. The right end of the hypersurfaces will then be in the
right-hand-side exterior region, and we wish to prescribe the
metric on the timelike hypersurface that this end traces. We
must now specify boundary conditions and boundary terms
that achieve this.

Consider first the left end of the hypersurfaces. Following
the analogous treatment in Refs.@21,23,24,26#, we adopt at
r→0 the falloff

L~ t,r !5L0~ t !1O~r 2!, ~2.8a!

R~ t,r !5R0~ t !1R2~ t !r
21O~r 4!, ~2.8b!

PL~ t,r !5O~r 3!, ~2.8c!

PR~ t,r !5O~r !, ~2.8d!

N~ t,r !5N1~ t !r1O~r 3!, ~2.8e!

Nr~ t,r !5N1
r ~ t !r1O~r 3!, ~2.8f!

whereL0 andR0 are positive andN1>0. HereO(r n) stands
for a term that is bounded atr→0 by a constant timesr n,
and whose derivatives fall off accordingly. As in Refs.
@21,23,24,26#, these conditions guarantee that the classical
solutions have a bifurcate horizon, they put the left end of
the spacelike hypersurfaces at the bifurcation three-sphere,
and they are consistent with the constraints and preserved by
the Hamiltonian evolution. They also ensure that the cubic
~2.6! has a unique real solution fory nearr50. In a classical
solution, the future unit normal vectorna(t) to the spacelike
hypersurfaces atr50 then evolves according to

na~ t1!na~ t2!52coshS E
t1

t2
L0

21~ t !N1~ t !dtD . ~2.9!

Next, consider the boundary conditions in the variational
principle. At r50, we follow Refs.@21,23,24,26# and make
N1 /L0 a prescribed function oft. By Eq. ~2.9!, this means
fixing the rate at which the constantt hypersurfaces are
boosted at r50. At r51, we make R and
2gtt5N22(LNr)2 prescribed positive-valued functions of
t. This means fixing the intrinsic metric on the three-surface
r51 and, in particular, fixing this metric to be timelike.

Finally, we need the boundary terms to be added to the
bulk action~2.4!. As in Ref. @21#, it can be verified that the
appropriate term atr50 is

E dtR0~
1
3R0

21l̂ !~N1 /L0!, ~2.10!

and the appropriate term atr51 is the integral overt of

NL21R2R82NrLPL2 1
2 Ṙ~R21l̂ !lnU N1LNr

N2LNr U
1l̂NSR8

L
D F12

1

3
SR8

L
D 22 Ṙ~Ṙ2NrR8!

N2 G
2

l̂NrL

3N
F Ṙ3

N22~LNr !2
1
Nr~R8!3

L2 G . ~2.11!

We have therefore arrived at a variational principle with
the desired boundary conditions. The Lovelock generaliza-
tion of Birkhoff’s theorem guarantees that classical solutions
exist, and makes possible a complete description of the so-
lutions. One should note, however, that our Hamiltonian ac-
tion does not directly reflect the split of the variables at
r51 into the dynamical degrees of freedom versus the
boundary data. With the data on the timelike boundary, the
evolution no longer forms a hyperbolic system.

III. CANONICAL TRANSFORMATION
AND HAMILTONIAN REDUCTION

In this section we simplify the constraints by a canonical
transformation and reduce the theory to unconstrained
Hamiltonian variables. The treatment will closely follow
Refs.@20,21,24,26#.

To begin, suppose that we are given the canonical data
(L,R,PL ,PR) on a spacelike hypersurface embedded in a
classical solution. We wish to reconstruct from this data both
the spacetime and the location of the hypersurface in the
spacetime.

As we have noted above, the embedding of the hypersur-
face in the classical solution defines a unambiguous value of
y: From the equation of motion~2.7!, one finds that this
value is ytrue:5N21(Ṙ2NrR8). To reconstructytrue from
the canonical data, one needs to solve the cubic~2.6!, which
may have up to three real solutions. Nearr50, the falloff
~2.8! guarantees that the cubic has a unique real solution, and
this solution must therefore be equal toytrue. As r increases,
two spurious real solutions may appear, but it is straightfor-
ward to verify that neither of the spurious real solutions can
ever be equal toytrue. Therefore,ytrue is recovered from Eq.
~2.6! by choosing the unique real root nearr50 and follow-
ing this root by continuity to allr . We note that, generically,
neither of the spurious roots fory satisfies the constraint
H50.

After y5ytrue has been recovered, the reconstruction pro-
ceeds in full analogy with that in Ref.@20#. The functionF
appearing in the metric~A1! is given by

F5SR8

L D 22y2, ~3.1!

and from Eq.~A2! one finds for the mass the expression

M5 1
2R

2~12F !1 1
4 l̂~12F !2. ~3.2!

Finally, one finds

T85
Ly

F
, ~3.3!

which specifies the location of the hypersurface up to trans-
lations in the Killing time. This completes the reconstruction.

Next, we wish to promote the reconstruction equations
into a canonical transformation, valid even when the equa-
tions of motion do not hold. Provided we stay within a suf-
ficiently narrow neighborhood of the classical solutions,y is
again uniquely recovered as a function of the canonical data
by taking the unique real root of Eq.~2.6! near r50 and
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continuously following this root asr increases. Computing
the Poisson bracket betweenM and T8 suggests that2T8
could serve as the momentum conjugate toM ; if this holds,
the new momentum conjugate toR:5R is fixed by the fact
that the supermomentum constraint generates spatial diffeo-
morphisms in all the variables and must thus read
PMM 81PRR8. These considerations suggest the transforma-
tion

M :5 1
2R

2~12F !1 1
4 l̂~12F !2, ~3.4a!

PM :52
Ly

F
, ~3.4b!

R:5R, ~3.4c!

PR :5F21~L22R8Hr2yH!, ~3.4d!

with F given by Eq.~3.1!. We now need to examine whether
this transformation is indeed canonical.

To proceed, we arrange the difference of the integrands in
the Liouville forms as

PLdL1PRdR2PMdM2PRdR

5dFLPL2l̂yL21~R8!21 1
2R8~R21l̂ !lnU R81yL

R82yLUG
1H F l̂yL21R82 1

2 ~R21l̂ !lnU R81yL

R82yLUGdRJ 8
. ~3.5!

Both terms on the right-hand side of Eq.~3.5! are well de-
fined. Upon integration fromr50 to r51, the second term
only produces contributions from the two ends. The contri-
bution from r50 vanishes because of the falloff~2.8!. The
contribution fromr51 vanishes ifdR vanishes there. Asd
should in the context of the Liouville form be understood as
a time derivative, this happens when the boundary conditions
fix R to be independent oft at r51. If this is the case, we
see that the difference of the Liouville forms is an exact form

E
0

1

dr~PLdL1PRdR!2E
0

1

dr~PMdM1PRdR!

5dH E
0

1

drFLPL2l̂yL21~R8!2

1 1
2R8~R21l̂ !lnU R81yL

R82yLUG J , ~3.6!

and the transformation is canonical.
If, on the other hand, the boundary conditions fixR to be

explicitly t dependent atr51, one cannot similarly argue
that dR would vanish2 at r51. As mentioned at the end of
Sec. II, the canonical variables atr51 do not cleanly split
into ‘‘independent’’ degrees of freedom versus boundary
data, and it us unclear to us what the proper attitude here
should be. We shall, nevertheless, proceed to regard the

transformation as canonical even whenR is explicitly t de-
pendent atr51: As in Refs.@21,23,26#, it will be seen that
no apparent inconsistency will result. From the viewpoint of
thermodynamics, the case of principal interest will in any
case be the one whereR is independent oft at r51.

By construction, our transformation is well defined in a
sufficiently narrow neighborhood of the classical solutions. It
also has a unique inverse. Equations~3.4a! and ~3.4c!, to-
gether with the falloff implied by Eq.~2.8!, determineF
uniquely in terms ofM andR. Equations~3.1! and ~3.4b!,
together with the fact thatL is by assumption positive, then
determineL and y. PL is obtained from Eq.~2.6!, andPR
finally from Eq. ~3.4d!.

To obtain the action in the new variables, we note that the
constraint terms can be written as

NH1NrHr5NMM 81NRPR, ~3.7!

where

NM52NF21L21R82NrF21Ly, ~3.8a!

NR5Ny1NrR8. ~3.8b!

This suggests that one could takeNM andNR as the new
independent Lagrange multipliers in the action. Examining
the falloff at r50 reveals, however, that fixingNM at r50
to a value that is independent of the canonical variables is
not equivalent to fixingN1L0

21 to a value that is independent
of the canonical variables. This difficulty can be remedied by
redefining the Lagrange multipliers nearr50 as in Ref.@24#,
and the appropriate boundary terms atr50 and r51 can
then be constructed as in Refs.@21,24,26#. After these steps,
the constraints can be eliminated by a Hamiltonian reduction
as in Refs.@20,21,26#, and one recovers a reduced theory in
a true Hamiltonian form. The steps follow the cited refer-
ences so closely that we shall here omit the detail and pro-
ceed directly to the reduced action.

The reduced action reads

Sred5E dt~pṁ2h!. ~3.9!

The coordinatem arises from the unreduced theory as the
r -independent value thatM takes when the constraint
M 850 holds. The momentump is related to the unreduced
variables by

p:5E
0

1

drPM. ~3.10!

The Hamiltonianh is given by

h52N0Rh~
1
3Rh

21l̂ !

2~B21l̂ !FAQ2F1Ḃ21 1
2 ḂlnS AQ2F1Ḃ22Ḃ

AQ2F1Ḃ21Ḃ
D G

1 1
3 l̂Q22~Q2F1Ḃ2!3/2, ~3.11!

where2This appears to have gone unmentioned in Refs.@21,23,26#.
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N0 :5N1 /L0, ~3.12!

Rh :5A2m2 1
2 l̂, ~3.13!

F:511
B2

l̂
S 12A11

4ml̂

B4 D , ~3.14!

andB andQ2 are, respectively, the values ofR and2gtt at
r51. HereB, Q2, andN0 are considered prescribed func-
tions of t, satisfyingB.0,Q2.0, andN0>0. The range of
m is 1

4l̂,m, 1
2B

21 1
4l̂, corresponding to 0,Rh,B, and the

range ofp is the full real axis.Rh is equal toR0, and in a
classical solution it equals the horizon radius.

The equation of motion form implies thatm is indepen-
dent oft: The value ofm is simply the mass parameter of the
classical solution. The equation of motion forp reflects the
fact that, by Eqs.~3.3!, ~3.4b!, and ~3.10!, p is equal to the
difference in the Killing times at the two ends of the space-
like hypersurface.

IV. QUANTIZATION AND THE PARTITION FUNCTION

In this section we quantize the reduced Hamiltonian
theory and obtain a partition function as the trace of the
analytically continued time evolution operator.

From now on, we take the boundary radius independent of
time, Ḃ50. We also subtract from the Hamiltonian~3.11!
the value that the terms arising fromr51 would take on flat
spacetime. This subtraction does not affect the equations of
motion, but it does renormalize the value of the action: It is
analogous to subtracting theK0 term in Einstein’s theory
@39,40#. Writing Q:5AQ2.0, the new Hamiltonian is given
by

h5Q~12AF!@B21 1
3 l̂~12AF!~21AF!#

2N0Rh~
1
3Rh

21l̂ !. ~4.1!

The first of the two terms in Eq.~4.1! is the Lovelock ana-
logue of the quasilocal energy of Brown and York@41–43#.
The second term arises from the bifurcation three-sphere,
and it will give rise to the black hole entropy.

Quantization proceeds exactly as in Refs.@21,24,26#. We
take the wave functionsc to be functions of the configura-
tion variablem, with 1

4l̂,m, 1
2B

21 1
4l̂, and we introduce an

inner product with some smooth and slowly varying weight
factor. The Hamiltonian operator is taken to act by multipli-
cation by the functionh in Eq. ~4.1!, c(m)°h(m)c(m),
and the unitary time evolution operator is easily found. We
then analytically continue the arguments of the time evolu-
tion operator to imaginary values: We set*Qdt52 ib, in-
terpretingb.0 as the inverse temperature at the boundary,
and*N0dt522p i , motivated by the regularity of the clas-
sical Euclidean solutions. The trace of the analytically con-
tinued time evolution operator is divergent, but we can argue
as in Refs.@21,24,26# that an acceptable renormalization is
achieved by introducing a suitable regularization, dividing
by the trace of the regularized identity operator, and finally
eliminating the regulator. In this fashion, we obtain for the
renormalized trace the manifestly well-defined expression

Z~b;B;l̂ !5S E
0

1

m̃dxD 21F E
0

1

m̃dxexp~2I * !G , ~4.2!

where the effective actionI * is given by3

I *5bB2~12AF!F11
l̂

3B2 ~12AF!~21AF!G
22pB3xS 1

3x
21

l̂

B2D , ~4.3!

with

F511
B2

l̂
S 12A11

2x2l̂

B2 1
l̂2

B4D . ~4.4!

We have introduced the integration variablex5Rh /B, and
the smooth and slowly varying positive functionm̃(x) arose
from the choice of the inner product.

We now interpret the objectZ(b;B;l̂), Eq. ~4.2!, as the
partition function of a thermodynamical canonical ensemble
describing black holes in a spherical box with curvature ra-
dius B and and inverse boundary temperatureb. The ther-
modynamical properties of this ensemble will be analyzed in
the next section.

V. THERMODYNAMICS IN THE CANONICAL
ENSEMBLE

As noted above, the partition functionZ(b;B;l̂), Eq.
~4.2!, is manifestly well defined. Further, the form of the
integral in Eq.~4.2! guarantees that the~constant volume!
heat capacity,C5b2

„]2(lnZ)/]b2
…, is always positive~see,

for example, Sec. IV of Ref.@26#!, and that the ensemble has
a well-defined density of states@36–38,45#. These properties
support the interpretation of the partition function in terms of
a genuine thermodynamical equilibrium ensemble, in spite of
the fact that we arrived at the partition function via an ana-
lytic continuation and not via direct statistical mechanics ar-
guments.

To proceed, we shall estimate the integral in Eq.~4.2! by
the saddle point approximation. We shall throughout assume
m̃(x) to be so slowly varying that its precise form will not
affect the saddle point analysis. We shall also assume that
the action is sufficiently rapidly varying to make the saddle
point approximation is justified, without attempting to ex-
plicitly state the necessary conditions; typically, it will be
throughout assumed that the system is ‘‘macroscopic,’’
B@1.

The critical points ofI * are at the roots of the equation

bx

2pB
5S x21 l̂

B2DAF. ~5.1!

The critical points give precisely the Lorentzian black hole
solutions whose Hawking temperature at the boundary, cal-

3This effective action has been obtained previously@44# by the
Euclidean Hamiltonian reduction method of Ref.@37#.
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culated in the usual way from the surface gravity@11# and
the blueshift factor, is equal tob. The mass of the hole is
m5 1

2B
2x21 1

4l̂, and the value ofI * at a critical point equals
the Euclidean action of the corresponding Euclideanized
black hole solution. Whenever the partition function is domi-
nated by a critical point, we recover for the thermal energy
expectation value and the entropy the results

^E&52
]~ lnZ!

]b
'B2~12AF!F11

l̂

3B2 ~12AF!~21AF!G ,
~5.2a!

S5S 12b
]

]b
D ~ lnZ!'2pB3xS 1

3x
21

l̂

B2D
52pRh~

1
3Rh

21l̂ !, ~5.2b!

wherex andF are evaluated at the critical point. Expression
~5.2b! for the entropy agrees with the result first obtained by
Euclidean methods@11#.

We can now extract physical information by analyzing the
critical point structure ofI * in various limits of interest in
the three parametersl̂, B, andb.

As a preliminary, consider the casel̂50, in which our
Lovelock theory reduces to Einstein’s theory. Although we
have for presentational simplicity assumedl̂.0, it is easy to
see that the partition function for Einstein’s theory is cor-
rectly recovered by taking the limitl̂→0 in Eqs. ~4.2!–
~4.4!. In particular, Eq.~4.4! reduces toF512x2, and the
critical point equation~5.1! reduces to

b

2pB
5xA12x2. ~5.3!

The condition for critical points to exist isb<pB, and the
critical points are then at x5x6 :5221/2(1
6A12p22B22b2)1/2. When the critical points are distinct,
x1 is a local minimum andx2 a local maximum. When
b2, 3

4p
2B2, the partition function gets its dominant contri-

bution from the global minimum atx5x1 . When b2. 3
4

p2B2, on the other hand, the partition function gets its domi-
nant contribution from the vicinity of the global minimum at
x50. The limiting caseb25 3

4p
2B2 represents a phase tran-

sition where the dominant contribution shifts fromx5x1 to
x50 asb increases. When the saddle point dominates, the
thermal energy and entropy~5.2! take the form

^E&'B2~12A12x1
2 !, ~5.4a!

S' 2
3pB3x1

3 5 2
3pRh

3, ~5.4b!

and the relation between the thermal energy and the mass can
be written as

m'^E&2
^E&2

2B2 . ~5.5!

Equation~5.5! displays explicitly how the mass gets a con-
tribution both from the thermal energy and from the gravita-
tional binding energy associated with the thermal energy.

Expectedly, the situation is closely similar to that in four-
dimensional Einstein theory@36,37,45#.

We now turn to the casel̂.0, in which I * always has at
least one critical point.

Consider first the limit of smalll̂ with fixedB andb. The
situation differs from that in the casel̂50 only in that there
is now one new critical point, a local minimum, at
x52pl̂B21b211O(l̂2). At the new critical point, I *
5 1

4l̂b1O(l̂2). Therefore, asl̂→0, the partition function
smoothly approaches that of Einstein’s theory. In particular,
when b2, 3

4p
2B2, it would be straightforward to compute

the first order correction inl̂ to the thermal energy and the
entropy ~5.4!, assuming that the corrections to the saddle
point approximation are small.

Consider next the smallb limit with fixed B andl̂. There
is only one critical point, atx512 1

8p
22(B21l̂)21b2

1O(b4), and this critical point is the global minimum of
I * . One can think of this critical point as the counterpart of
the larger of the two critical points of the casel̂50: The
black hole fills almost all of the box. The disappearance of
the smaller critical point of the casel̂50 is related to the
fact that, for fixedl̂, the Hawking temperature of the Love-
lock hole in asymptotically flat space is bounded below by
1
4 p21l̂21/2 @11#. If the saddle point approximation to the
partition function remains good, the thermal energy and the
entropy are given by

^E&'B21 2
3 l̂2 1

2p21Bb1O~b2!, ~5.6a!

S'2pB3S 1
3

1
l̂

B2 2
b2

8p2B2D 1O~b4!. ~5.6b!

Consider next the largeb limit with fixed B andl̂. There
is again only one critical point, atx52pl̂B21b21F0

1/2

1O(b23), where F0 :511B2l̂21(12A11l̂2B24).
This critical point is the global minimum, and it has no coun-
terpart in Einstein’s theory: It corresponds to a small,
‘‘purely Lovelock,’’ black hole. If the saddle point approxi-
mation to the partition function remains good, the thermal
energy and the entropy are easily read off from Eq.~5.2! as

^E&'B2~12F0
1/2!F11

l̂

3B2 ~12F0
1/2!~21F0

1/2!G1O~b22!,

~5.7a!

S'
4p2l̂2F0

1/2

b
1O~b23!. ~5.7b!

Consider then the largel̂ limit with fixed B andb. There
is again only one critical point, atx512 1

8p
22b2l̂21

1O(l̂22), and this critical point is the global minimum. The
hole is again ‘‘purely Lovelock,’’ but it now fills almost all
of the box.

Finally, consider the largeB limit with fixed l̂ and b.
One critical point is atx512 1

8p
22B22b21O(B24). This

critical point is the global minimum, and it can be regarded
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as the counterpart of the larger of the two critical points of
the casel̂50. If b.4pl̂1/2, there are in addition two other

critical points, at x5 1
4p

21B21b(16A1216p2l̂b22)
1O(B23). The fact that the two small critical points exist
only for b.4pl̂1/2 is related to the above-mentioned phe-
nomenon that the Hawking temperature of our Lovelock hole
in asymptotically flat space is bounded below by14
p21l̂21/2 @11#. If the saddle point approximation is good, the
thermal energy and the entropy are obtained by replacing
bothO terms in Eq.~5.6! by O(B21).

We therefore see that forl̂.0 the partition function is
always dominated by a black hole solution in the limits that
we have considered. In the high temperature limit and in the
large box limit, the situation is very similar to that for
l̂50, in that the dominating black hole solution fills most of
the box. In the low temperature limit, on the other hand, the
Lovelock theory does exhibit a dominating black hole solu-
tion where none existed in the casel̂50. For a macroscopic
box andl̂!B2, however, the presence of the new dominat-
ing solution does not appear to make the thermodynamical
behavior qualitatively different from that in the casel̂50.
One can read these results as evidence for stability of the
qualitative thermodynamical behavior of Einstein’s theory
upon the addition of the Lovelock parameter.

For l̂.0, the critical point structure ofI * is entirely de-
termined by two parameters, which can be conveniently
taken to bel̂B22 and bB21. Numerical experimentation
suggests that there are never more than three critical points.
When l̂B22 is fixed and sufficiently large, there is only one
critical point for anybB21: This critical point is the global
minimum, and it migrates smoothly from the large Lovelock
hole to the small Lovelock hole asbB21 increases. When
l̂B22 is fixed and sufficiently small, on the other hand, the
transition between the unique minima for small and large
bB21 takes place via a phase in whichI * has three critical
points, a maximum surrounded by two minima: AsbB21

tends to zero~infinity!, only the larger~smaller! of the two
minima prevails. When three critical points exist, one can
find regions of the parameter space where the global mini-
mum is at either of the two local minima. We have, however,
not attempted to corroborate these numerical experiments
analytically.

It should be emphasized that the partition function has no
well-defined limit asB→` with fixed b and l̂, neither for
l̂50 nor for l̂.0. As with Einstein’s theory in four dimen-
sions@36,37#, this reflects the fact that the thermodynamical
canonical ensemble is not well defined in asymptotically flat
space. We shall give a more detailed comparison of the
boxed Lovelock theory to Lovelock theory in asymptotically
flat space in Appendix B.

VI. SUMMARY AND DISCUSSION

In this paper we have investigated the Hamiltonian dy-
namics and thermodynamics of five-dimensional spherically
symmetric Lovelock theories in which the only contributions
to the Lagrangian density are the Einstein-Hilbert term and
the four-dimensional Euler density. We adopted boundary

conditions that enforce every classical solution to be part of
the exterior region of a black hole, with the spacelike hyper-
surfaces extending from the horizon bifurcation three-sphere
to a timelike boundary with fixed intrinsic metric. We sim-
plified the constraints by a canonical transformation that gen-
eralizes the one introduced by Kucharˇ in four-dimensional
spherically symmetric Einstein theory, and we reduced the
theory classically to its true dynamical degrees of freedom.

After Hamiltonian quantization, we interpreted the trace
of the analytically continued time evolution operator as the
partition function of a thermodynamical canonical ensemble,
describing black holes in a spherical box whose size and
boundary temperature are fixed. In the special case where the
Lovelock parameterl vanishes and the theory reduces to
Einstein’s theory, we found that the thermodynamics is
highly similar to that of the corresponding system in four-
dimensional Einstein theory: In particular, for high boundary
temperatures the partition function is dominated by a classi-
cal black hole solution that fills most of the box. When
l.0, the situation was more versatile. In the high tempera-
ture limit, with l and the box size fixed, the partition func-
tion is again dominated by a black hole that fills most of the
box. In the low temperature limit, on the other hand, the
partition function is nowalso dominated by a black hole
solution; this black hole is small, and it has has no analogue
in Einstein theory. Nevertheless, ifl is small compared with
the size of the box, the new dominating solution has little
qualitative effect on the thermodynamical properties. In this
sense, the qualitative thermodynamical behavior of the Ein-
stein system is stable upon the addition of the Lovelock pa-
rameter.

When the box size is taken to infinity, we found that the
partition function has no well-defined limit, neither for
l50 nor forl.0. While this is not surprising for Einstein’s
theory, in view of the similar phenomenon in four dimen-
sions@36,37#, one might have hoped the theory withl.0 to
fare better on the grounds that this theory admits asymptoti-
cally flat black hole solutions that are stable against Hawking
evaporation@11#. However, even though a classical solution
that dominates a well-defined partition function must be
stable against Hawking evaporation@38#, our Lovelock
theory in asymptotically flat space provides an example
where the mere existence of such a locally stable classical
solution does not imply the existence of well-defined canoni-
cal ensemble. Another such example occurs in four-
dimensional Einstein-Maxwell theory in asymptotically flat
space@24#.

In the classical theory withl.0, we saw that the super-
Hamiltonian emerges as a multivalued function of the ca-
nonical variables, as is generically the case in Lovelock theo-
ries @7,8#. Nevertheless, our thermodynamically motivated
boundary conditions were sufficient to uniquely specify the
super-Hamiltonian near the horizon, and the uniqueness
could be extended to the full spacelike hypersurfaces by con-
tinuity. Another boundary condition that would uniquely
specify the super-Hamiltonian in this fashion is the asymp-
totically flat falloff ~B1! discussed in Appendix B. However,
one expects there to exist boundary conditions of interest for
which such uniqueness does not occur, and in such cases one
would need to seek other criteria for specifying the super-
Hamiltonian. If one regards the Lovelock theory as a pertur-
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bation to Einstein’s theory or as a toy model for semiclassi-
cal gravity with a back reaction, one possible criterion of this
kind is perturbative expandability of the solutions inl @46#.

In conclusion, our results provide evidence for the robust-
ness of the classical Hamiltonian structure and the qualitative
thermodynamical structure of spherically symmetric Einstein
gravity in five dimensions upon the addition of the four-
dimensional Euler density in the action. To put this conclu-
sion in proper perspective, one should remember that both
our particular Lovelock theory and our boundary conditions
were handpicked so that the global aspects of the problem
remained virtually identical to those in pure Einstein gravity.
It is tempting to think that this may exemplify a more general
connection between the global properties of the~space of!
classical solutions and the qualitative behavior of thermody-
namical equilibrium ensembles: One might conjecture that
whenever the global properties of a Lovelock theory are suf-
ficiently similar to those of Einstein’s theory, then also the
equilibrium thermodynamics, with finite or infinite boundary
conditions, will be qualitatively similar to that in Einstein’s
theory. Another example supporting such a conjecture is pro-
vided by the asymptotically anti–de Sitter Lovelock theories
of Ref. @47#, which include as a special case Einstein gravity
in three and four dimensions with a negative cosmological
constant. However, to give the conjecture a more substantial
meaning, one would need a more systematic understanding
of the possible global structures that the various Lovelock
theories may have.
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APPENDIX A: LOVELOCK BLACK HOLE

In this appendix we briefly review the classical solutions
to our Lovelock theory.

By the Lovelock generalization of Birkhoff’s theorem@5#,
the general solution to the theory~1.1! for lÞ0 can be writ-
ten in the local curvature coordinates (T,R) as

ds252FdT21F21dR21R2dV3
2, ~A1!

where

F511
R2

l̂
S 16A11

2vl̂

R4 D , ~A2!

with l5 1
2l̂. The coordinatesT andR are, respectively, the

Killing time, whose constant-value hypersurfaces are space-

like or timelike depending on the sign ofF, and the curva-
ture radius of the three-sphere. Forl50, the general solu-
tion is the five-dimensional Schwarzschild solution, obtained
from Eq. ~A2! with the lower sign as the limitl̂→0. In
addition tol, the only local parameter in the solution is the
masslike quantityv.

For the reasons discussed in Sec. I, we takel̂>0. The
solution then describes a black hole in asymptotically flat
space provided we takev. 1

2l̂ and, for l̂.0, choose the
lower sign in Eq.~A2! @11#. The curvature coordinates are
good individually in each region not containing horizons:
The horizons are nondegenerate, and the Penrose diagram of
the conventional maximal analytic extension is similar to
that of Kruskal manifold. The horizon radius is

Rh5Av2 1
2 l̂. In our units, the ADM mass isM5 1

2v.

APPENDIX B: ASYMPTOTICALLY FLAT INFINITY

In this appendix we adapt the analysis of the main text to
boundary conditions that replace the timelike boundary by an
asymptotically flat infinity. We shall see that quantization
along the lines of Sec. IV will not lead to a well-defined
canonical ensemble.

In the metric theory of Sec. II, we letr take the range
0<r,`. At r→`, we introduce the falloff

L~ t,r !511M1~ t !r221O`~r222e!, ~B1a!

R~ t,r !5r1O`~r212e!, ~B1b!

PL~ t,r !5O`~r 12e!, ~B1c!

PR~ t,r !5O`~r2e!, ~B1d!

N~ t,r !5N1~ t !1O`~r2e!, ~B1e!

Nr~ t,r !5O`~r212e!, ~B1f!

whereN1(t).0, ande is a parameter that can be chosen
arbitrarily in the range 0,e<2. HereO`(r s) denotes a term
that is bounded atr→` by a constant timesr s, and whose
derivatives fall off accordingly. It is straightforward to verify
that this falloff makes the coordinates asymptotic to hyper-
spherical coordinates in Minkowski space, it is consistent
with the constraints, and it is preserved by the time evolu-
tion. N1(t) gives the rate at which the asymptotic
Minkowski time advances with respect to the coordinate
time t. When the equations of motion hold,M1(t) is inde-
pendent oft, and its value is the ADM mass.

The total action takes the formS5SS1S]S , where

S]S5E dtR0~
1
3R0

21l̂ !~N1 /L0!2E dtN1M1, ~B2!

andSS is as in Eq.~2.4! except that the upper limit of the
r integral is replaced by infinity. The canonical transforma-
tion and Hamiltonian reduction proceed as in Sec. III. The
action of the reduced theory is as in Eq.~3.9!, but with the
Hamiltonian now given by

h5N1m2N0Rh~
1
3Rh

21l̂ !. ~B3!
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The configuration variablem has the rangem. 1
4l̂, while the

range ofp is the full real axis. Although in the main text we
assumed for presentational simplicityl̂.0, it is easily veri-
fied that the above derivation extends to the casel̂50, and
the reduced Hamiltonian~B3! is valid for all l̂>0.

Quantization can now proceed as in the main text. We
analytically continue the time evolution operator by
*N0dt522p i and*N1dt52 ib, interpretingb as the in-
verse temperature at the infinity. For the renormalized trace
of the analytically continued time evolution operator, we ob-
tain formally

Z~b;l̂ !5NE
0

`

m̃dRhexp~2I
*
` !, ~B4!

where the effective actionI
*
` is given by

I
*
` 5 1

2b~Rh
21 1

2 l̂ !22pRh~
1
3Rh

21l̂ !. ~B5!

The smooth and slowly varying positive functionm̃(Rh)
arose from the choice of the inner product, andN is a nor-
malization constant, possibly dependent onl̂ but presumably
not on b. However, the integral in Eq.~B4! is divergent
becauseI

*
` tends to2` at largeRh . Thus, the canonical

ensemble does not exist under the asymptotically flat bound-
ary conditions, neither forl̂50 nor l̂.0. In this sense, the
asymptotically flat Lovelock theory is thermodynamically no
better behaved than asymptotically flat Einstein theory.

The critical points ofI
*
` give the ~Lorentzian! classical

solutions that have the inverse Hawking temperatureb at
infinity. For l̂50 there exists exactly one critical point,
which is a local maximum: This is similar to what happens
with Einstein’s theory in four dimensions@36#. For l̂.0, the
situation is more versatile. Critical points exist when
b2>16p2l̂, and when the inequality is genuine, there are
two critical points. The critical point with the smaller~larger!
value ofRh is a local minimum~maximum, respectively!.
The local minimum gives the classical solution that was
found to be stable against Hawking evaporation in Ref.@11#.
While the stability of this solution against Hawking evapo-
ration reflects its being a local minimum ofI

*
` @38#, the

divergence of the integral in~B4! demonstrates that this local
stability is not sufficient to guarantee the existence of the
canonical ensemble. The effects of the Lovelock parameter
on the asymptotically flat thermodynamics are thus qualita-
tively very similar to those of a fixed charge in asymptoti-
cally flat four-dimensional Einstein-Maxwell theory
@24,50,51#.
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