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Abstract 

Background 

Pattern recognition-informed (PRI) feedback using channel current cheminformatics 
(CCC) software and LabWindows control software has been reported previously. The 
accuracy of the PRI classification was shown to inherit the high accuracy of the off-line 
classifier. For the molecular blockades studied here, the accuracy inherited is 99.9% to 
distinguish between terminal base pairs of two DNA hairpins. The pattern recognition 
software consists of Hidden Markov Model (HMM) feature extraction software, and 
Support Vector Machine (SVM) classification/clustering software that is optimized for 
data acquired on a nanopore channel detection system.  

Results 
The PRI-feedback system uses a server running a LabWindows protocol that is set up to 
control the amplifier voltage control settings to eject a molecule from the channel if not 
the desired class. The control server begins by taking signal information and broadcasting 
it via TCP/IP to a cluster of Linux computers to do the HMM and SVM computations, 
and decision-making, in a distributed setting. For general nanopore detection, the 
distributed HMM and SVM processing provides a processing speed-up that allows the 
pattern recognition process  to complete within the time-frame of the signal acquisition 
in-process – where the sampling is halted if the blockade signal is identified as not in the 
desired subset of events (or once recognized as non-diagnostic in general). Successful 
operation of the above system is shown in numerous settings. 

Conclusions 
Due to purification limitations Nanopore Detection with PRI offers significant advantage 
when seeking data acquisition for an antibody-antigen system due to the reduction in 
wasted observation time on eventually rejected “junk” (non-diagnostic) signals. The use 
of PRI feedback for nanopore channel data collection greatly improves data acquisition 
capabilities overall and may eventually provide a means for nanomanipulation of single 
biomolecules. 



Introduction 
Pattern recognition informed sampling and experimental feedback opens the door to a 
whole new realm of signal stabilization and device capabilities. In this paper we describe 
results from recent pattern recognition informed (PRI) sampling experiments on the 
nanopore detector platform [1-3]. The signal analysis involves use of Machine Learning 
algorithms such as hidden Markov models (HMMs) [2,4-6] and Support Vector Machines 
(SVMs) [7-10]. The Machine Learning (ML) algorithms are amenable to distributed 
computational solutions (for the HMMs, in particular [11]), which permits a 
computational speedup that ensures real-time operational feedback on the nanopore 
detector applications studied. Although a specific application is examined here in detail, a 
similar approach can be used in many experimental efforts. The results and application of 
the PRI method, with distributed HMM and SVM algorithms are generally applicable in 
knowledge discovery contexts involving stochastic sequential analysis and/or 
classification/clustering. Some background material on the Nanopore Detector and the 
Channel Current Cheminformatics Architecture are given in what follows. 
 

Nanopore Background  
A nanometer-scale channel can be used to associate ionic current measurements with 
single-molecule  channel blockades. The alpha-Hemolysin channel, used in the 
experiments described here, self-assembles such that a single channel of alpha-
Hemolysin can be isolated in lipid bilayer. This provides an inexpensive  and  highly 
reproducible, method to construct a nanopore-based detector that is informed by single 
molecule interactions with a nanometer scale channel. See [1,2] for further details. An 
example of a direct interaction/modulation of the channel ion current is shown in [3]. 
Indirect channel modulation, or transduction, is described in [12], and is being used for 
generalized binding analysis at the single interaction-complex level. 
 
The pattern recognition informed (PRI) sampling is done with mixtures involving the five 
DNA hairpin control molecules examined in [1,2] (see Methods for sequence details). 
These hairpin molecules have stem lengths with only eight or nine base-pairs, are blunt 
ended on one end, and have a hairpin loop consisting of 4 dT’s. When lengthy blockades 
are observed at the nanopore detector, the associated molecules are hypothesized to be 
captured at their blunt ends. Early tests, with dumb-bell shaped molecules involving 4 dT 
loops at both ends, showed no lengthy blockades, consistent with this hypothesis [1]. 
When captured at their blunt ends the molecules are hypothesized to be held at their loop 
ends near the alpha-Hemolysin channel opening by steric hindrance (with one loop state 
in standard conditions, see Methods). The stem length is selected to be sufficiently long 
to have transient binding interactions with the high charge channel residues near the 
limiting aperture [13], but not so long that any one bound state or single steric constraint 
dominates. This optimization/selection on control molecules, as regards stem length 
tuning or base-pair alterations, is then redone as necessary when these same control 
molecules are covalently linked to sensing moieties of interest (see nanopore transduction 
detection [12,14]). 
 



Channel Current Cheminformatics Architecture 
In [6] we describe preliminary work to establish real-time control of a nanopore detector. 
The work is based on live, streaming,  measurements and fast pattern recognition 
identification of blockading ("captured") analytes. Real-time sampling control of a 
nanopore detector, alone, has been proposed to boost nanopore detector sampling 
productivity by orders of magnitude, depending on the mix of desirable signal classes vs. 
undesirable in the data being analyzed. In a real-time setting the challenge is to perform 
the feature extraction sufficiently quickly (whereas the SVM is trained off-line, so 
operates very quickly on-line). In this work we show that this can be accomplished with 
fast, distributed, HMM processes. 
 
The real-time experimental linkage between the DAQ and the computational facilities is 
implemented using a LabWindows experimental-feedback coding environment that 
connects via TCP/IP to a cluster of Machine Learning nodes that run our "in-house" 
Channel Current Cheminformatics (CCC) methods (see Methods). Data acquired with 
LabWindows is passed to the network of CCC software clients on a streaming real time 
basis. The classification results are then quickly returned to the LabWindows automation 
software for experimental feedback control. As suggested in [6], the real-time 
classification inherits the 99.9% accuracy of the non real-time implementation 
(established in prior work [2]) as nothing has changed in regards to the features extracted 
and the classifier used. Thus the full power of HMM and SVM methodologies can be 
leveraged into numerous “real-time” experimental protocols that would employ PRI 
methods. 
 
Methods and discussion 
Nanopore Detector 
The experimental setup is described in detail in [1,2]. Each experiment is conducted 
using one α-hemolysin channel inserted into a diphytanoyl-
phosphatidylcholine/hexadecane bilayer across a 25-micron-diameter horizontal Teflon 
aperture, as described previously [1,2].  Seventy microliter chambers on either side of the 
bilayer contains 1.0 M KCl buffered at pH 8.0 (10 mM HEPES/KOH) except in the case 
of buffer experiments where the salt concentration, pH, or identity may be varied.  
Voltage is applied across the bilayer between Ag-AgCl electrodes.  DNA control probes 
are added to the cis chamber at 10 or 20 µM final concentration. All experiments are 
maintained at room temperature (23 ± 0.1 °C), using a Peltier device. 
 
Test Molecules 
The eight base-pair and nine base-pair hairpin molecules used in this study were 
previously studied in [1,2,13]. The full sequence for the 9CG hairpin is 5' 
GCGCGCGCGTTTTTCGCGCGCGC 3', where the base-pairing region is underlined. 
The eight base-pair DNA hairpin is identical to the core nine base-pair subsequence, 
except the terminal base-pair is 5'-G•C-3'.  In the middle of the loop, a dT residue was 
conjugated with biotin (through a six carbon linker). The prediction that each hairpin 
would adopt one base-paired structure was tested and confirmed using the DNA mfold 
server [15].   
 



Channel Current Cheminformatics 
A capture signal generated with the nanopore apparatus is filtered and amplified before it 
is sent through the DAQ. The data acquisition device converts the analog signal to digital 
format for use in the display and recording of data in binary Axon (Molecular Devices) 
format. In the pattern recognition feedback loop, the first 200 ms detected after drop from 
baseline are sent via TCP-IP protocol to the HMM software, which generates a profile for 
each signal sent. The HMM-generated profile is processed with the SVM classifier to 
compare the real-time signal with previous training data in order to determine whether 
the signal is acceptable (see Fig. 1). If the signal is acceptable, the message to continue 
recording is sent to the LabWindows software to continue recording, and the molecule is 
not ejected from the channel by the amplifier. If not, a message is sent to LabWindows to 
eject the molecule, and the amplifier briefly reverses the polarity to eject the molecule 
from the channel (see Fig. 2).  
 
For the successful real-time feedback experiments described in the Results, only two 
computers, a client and a server were needed. In general, the server consist of a cluster of 
computers to distribute the HMM, and possibly SVM, processes. The Client runs 
Microsoft Windows XP to visualize and record the entire experiment by using 
LabWindows. Our in-house implementation of LabWindows acquisition software is able 
to detect blockades using a tFSA, while also recording and visualizing the experiment. 
Our implementation for channel current analysis also has the critical functionality to 
change the polarity of current, so as to eject any molecules pore when necessary. The 
Server computer runs Pardus Linux 2007.3. The hardware for both the Client and Server 
consists of PCs with 2.4GHz AMD CPUs, with 2GB memory. 
 
Client side signal processing 
1. Run LabWindows to start visualizing and recording the signals from the DAQ, which 
is connected to the experiment environment (see Fig. 2). 
 
2. Connect and ask Feedback Server for the existing SVM models, select the appropriate 
SVM model according to the type of the molecules in the experiment and select the 
desired molecule class (e.g. if we have an SVM model for 9GC/9TA, we may keep 9GC 
molecules or 9TA's). In the Results in one experiment we used the "9GC/9TA" model in 
the "Keep 9GC" PRI mode. Then we also examine the "6GC/7CG/8GC/9GC/9TA" 
model in "Keep 9GC" PRI mode.  
 
3. Acquire data from the experiment environment at 50KHz sample rate. 
 
4. Perform tFSA on every 1 second worth of data to find out if there is any molecular 
blockade. 
 
5. In case of a blockade, connect to Feedback Server over TCP/IP and send 300ms worth 
of sample data with the desired SVM classification model. 
 
6. According to servers response take action: if server advises rejection of the molecule -
and if that molecule still in the nanopore - eject the molecule from the nanopore by 



changing the polarity in three steps (change polarity negatively, go to 0, go back to 
normal current). Go back to 3 and loop this process until the experiment is halted. 
 
Server side signal processing 
1. Handle incoming connections 
 
* There are couple of possible requests from server according to our communication 
protocol, a client might be asking for SVM models, might be asking to classify a sample 
data according to any particular SVM model. 
 
* The Server handles the overwritten requests; molecule might leave the nanopore before 
feedback servers response and if client sends another request in the middle of another. 
 
* The Server is multi-threaded and can have hundreds of SVM models for different type 
of experiments. Client can query server for different models, dynamically. This also 
enables server to handle multiple clients with different needs for different type of 
experiments seamlessly. Response time is around 1.8 seconds in our local network with a 
one-computer (test) cluster for the Client, where a speedup of approx 100 for a 25 quad-
nodes (each running 4 threads of computation) is possible without difficulty. 
 
 2. If there is a feedback request, start a thread to read the sample data from socket and 
stream it to the HMM processing to extract features. 
 
 3. Feed SVM with the resulting HMM feature vector from (2) and apply the desired 
SVM model for classification. 
 
 4. Compare the predicted class with the expected class of clients request. If classes 
match, return KEEP, otherwise return REJECT feedback to the client. 
 
Distributed HMM feature extraction 
The HMM implements 50 states as determined by making 50 bins of the blockade current 
data. The quantized data goes through one round of Expectation-Maximization to obtain 
transition probabilities after running the Viterbi algorithm to obtain the most probable 
path of states that created the signal (more de-noising). The 150-component feature 
vectors are determined for the signal, consisting of three groups of 50: the first 50 
features comprise the Viterbi path level occupations, the second 50 are the emission 
variances, and the last 50 are a compression of the level transition information (see [2] for 
details).  
 
Distributed SVM classification 
Support Vector Machines are a variational calculus based method constrained with 
structural risk minimization. The SVM determines a hyperplane to optimally separate one 
class from another, as determined by training. The kernel choice provides a “distance” 
from points to the hyperplane, which defines separation. The choice of kernel determines 
the performance in classification. The distance of points from the hyperplane, determine 
the confidence levels in how well sample data has been classified. A confidence level 



greater than 60% is used here as the cut-off to determine whether to accept or reject a live 
signal. 
 
Currently there are two approaches to implementing multiclass SVMs. One arranges 
several binary classifiers as a decision tree such that they perform a multi-class decision- 
making function (SVM-external classification – this is the classifier architecture used 
here, see [2] for further details). The second approach involves solving a single 
optimization problem corresponding to the entire data set (with multiple hyperplanes), 
with multi-class discriminator optimization performed internally. The SVM-internal 
approach, when it is stable and properly generalizable (an active area of research), is 
preferred, since a tuning over Decision tree topologies and weightings is avoided [9]. The 
on-line discriminatory speed of a trained SVM is simply that of evaluating an inner 
product, so it's operational constraint on the PRI feedback endeavor is negligible 
compared to that of the HMM feature extraction stage. For this reason, there is little 
discussion of SVMs in this paper, even though SVMs comprise much of the complexity 
of the HMM/SVM PRI feedback system. 
 
Results 
Binary PRI Sampling 
The nanopore experiments with PRI sampling are first done with a 1:70 mixture of 
9GC:9TA. Figures 3 and 4 show how molecules appear in terms of their blockade 
attributes in the on-line setting (with event-observation time on the vertical axis in Fig. 
4). In Figure 5 the PRI sampling acquisition results are shown, with the rarer 9GC 
molecules properly identified, and sampled for a full 5 second duration, while others 
molecules are rejected, typically in a fraction of a second (with the prototype network 
setup used here). 
 
Multi-class PRI Sampling 
The robustness of the results are then explored when there are numerous other classes 
present (see Fig. 6). In Figures 7 and 8 an approximately 1:70 mixture of 
9GC:{6GC,7GC,8GC,9TA} is examined, with 9GC sample time again boosted correctly 
as indicated. 
 
State resolution during binding analysis 
The applicability of the nanopore transduction method to binding analysis is then tested 
by examining a biotinylated DNA hairpin and its interactions with streptavidin (see [12] 
for complete details). The biotinylated DNA hairpin (Bt-8GC) is constructed from the 
8GC control molecule, where a modified thymine is introduced at the midpoint of the 4 
dT loop. The modified thymine has a 6 carbon spacer arm that connects to a sterically 
unhindered biotin molecule. 
 
In [12] it is shown how bound and unbound states resolve via use of a transduction 
molecule (here the biotinylated 8GC DNA hairpin). It is found, however, that the bound-
state has two blockade states. These two states are not thought to be due to two binding 
conformations, but are hypothesized to be due to two conformations on the hairpin loop. 
The hypothesis of two loop states is tested in Figure 9, where it is shown that two DNA 
hairpin states can be induced by introduction of sufficient chaotropic agent (3.5 M Urea). 



 
Discussion 
Sample Boosting and Nanomanipulation via PRI Selection 
PRI sampling is done with mixtures involving the five DNA hairpin control molecules 
examined in [1,2,13]. In the nanopore transduction detection context [3,14], it is 
hypothesized that auxiliary molecules consisting of these same control molecules can be 
covalently linked to sensing moieties of interest to provide the beginnings of a 
generalized detection platform. Once covalently linked, however, further 
optimization/selection on the control molecule portion, as regards stem length tuning or 
base-pair alterations, is usually needed to reacquire a highly structured modulatory signal 
(with stationary statistics) [12]. Once a bifunctional molecule has been engineered to 
desired channel modulation and target-analyte interaction, the nanopore detector can be 
operated with the transduction molecule and signal analysis software to classify the 
different blockade signals. As far as the signal processing software is concerned, 
however, pattern recognition that resolves different hairpin blockades, or the same 
hairpin blockader with/without complexation at its binding moiety, is practically the 
same. Thus, the five DNA hairpin PRI-sampling study examined here demonstrates a 
capability for nanomanipulation when observing reactants, via the mechanism of 
recognition and appropriate selection. 
 
PRI Digital Stabilization 
The ramifications of real-time pattern recognition on a digitized stream of experimental 
output (or any device output) are profound. One capability is introduction of a carrier 
reference (CR) molecules for device stabilization. The CR bifunctional molecules are 
selected/designed for their sensitivity to different buffer parameters, such as pH or salt 
content. These nanopore transduction molecules are included during nanopore detection 
of the analytes of interest. With PRI feedback, any pH or concentration drift indicated by 
the CR’s can be countered by appropriate microfluidics controls, to provide an 
exceptionally stable experimental environment. Without PRI, corrected signal, analogous 
to the signal seem when the buffer is held fixed experimentally, can be reconstructed 
using changes indicated by the CR signals (embedded in the data stream). This can only 
work if buffer variations are kept very small, however, so for practical usage the PRI 
capability is essential. 
 
Strong pattern recognition capabilities with the classes to be discerned also affords the 
opportunity to directly encode the CR indication of instrument state in an associative 
memory context with the observed (non-control) blockade signal. This is simply done by 
altering the non-control feature vector to be itself concatenated with the last seen control-
signal feature vector. 
 
Exploring the Ergodic Hypothesis at the single-molecule level 
The nanopore system gives us a single molecule view of individual molecular 
interactions. The lifetimes of sub-blockade levels reveal information about the interaction 
kinetics of the captured molecule -- resulting from interactions with another molecule 
(the binding studies), from interactions with the channel, or from (internal) 
conformational changes. We get precise kinetic data, in other words, from careful 



observation of sub-blockade lifetimes. Inherent to this hypothesis is application of the 
classic ergodic hypothesis (roughly speaking, that ensemble statistical averages equal 
time-averages of individual histories). Thus, as single molecule studies are carried out, a 
new level of exploration of the ergodic hypothesis will be inherent to that effort. 
 
Conclusions 
The primary purpose of this experiment was to develop an implementation of the pattern 
recognition informed (PRI) experimental protocol for more specific and efficient 
collection of signals in nanopore cheminformatics experiments. In the Results, PRI-
sampling is shown to boost the acquisition rates on molecules of interest by orders of 
magnitude, greatly extending the applicability of the Nanopore's inherent serial-event 
detection capability.  
 
A secondary purpose was to explore the resolving/tracking power of the PRI system 
when applied to binding experiments. The clear binding behavior shown (“tracked”) in 
the Results indicates that population-based binding studies using the nanopore detector 
can be done, and suggests that sufficient sensitivity to state might be possible for tracking 
an individual binding history in future efforts along these lines. 
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Figure Legends 
 
Figure 1. Labwindows/Feedback Server Architecture with Distributed CCC 
processing. The HMM learning (on-line) and SVM learning (off-line), denoted in 
orange, are network distributed processes for N-fold speed-up, where N is the number of 
computational threads in your cluster network. 
 
Figure 2. Operational view of Nanopore Detector sampling control. 
 
Figure 3. Standard deviation vs. Mean on a {9GC,9TA} mixture in a 1:70 ratio. 
Clusters of 9GC and 9TA signal groups identifiable, nearly full blockade signal group 
also present. 
 
Figure 4. Standard deviation  vs. Mean vs event-observation time (vertical axis). 
Drift in the {9GC,9TA} signal is seen as the experiment proceeds due to evaporative 



concentration of the background salt. This results in altered environment for the DNA 
hairpins, one where the increasing magnitude of the blockade std. dev.s is thought to be 
due to stronger (and noisier) DNA hairpin channel blockades. 
 
Figure 5. Standard deviation  vs. Mean vs event-observation time vs PRI-informed 
sample observation time (4th dimension represented as the radius of the data 
point). This figure shows a successful real-time operation on the PRI-sampling method 
on the ND platform. 9GC signal is selected for observation and it is at a 1:70 lower 
concentration than the decoy 9TA DNA hairpins. As can be seen, only 9GC signals are 
held for the lengthier observation time, all other molecules being rejected promptly upon 
identification (the smaller diameter events points correspond to short lived events), where 
the brief duration of the event is dictated by the active, PRI-control, of the device voltage. 
 
Figure 6. Standard deviation  vs. Mean on a {6GC,7GC,8GC,9GC,9TA} mixture. 
Clusters of the different species of blockade signal are clearly identifiable (and the nearly 
full blockade signal class is also present). 
 
Figure 7. Standard deviation  vs. Mean vs event-observation time (vertical axis) vs 
PRI-informed sample observation time (4th dimension represented as the radius 
of the data point). Drift in the signal is seen as the experiment proceeds, as before. 
Similar strong classification performance is demonstrated for this five-class test as with 
the prior two-class test.  
 
Figure 8. Shows a rotated view of the results shown in Fig. 7. The successful 99.9% 
accurate separation of the 9GC from the  {6GC,7GC,8GC,9TA} signals can be seen more 
clearly from this perspective. Note: the actual discriminating features used by the SVM 
classifier are not based on the mean and standard deviation statistical features plotted, but 
on a 150-component feature extraction based on HMM emission and transition 
probabilities, and Viterbi-path statistics (see [2] for further details). 
 
Figure 9. Sufficiently strong Urea concentration (5 M) again results in racemization 
of the two loop capture-variants, while weaker urea (notably at 2 M) does not. The 
results shown here are consistent with the two-state loop hypothesis, and suggest that the 
observation of such (see [12]) is NOT due to weak urea content (since it is present not at 
all, or in 2 M concentration, in that experiment). 
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