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Abstract 
 
Signal acquisition and simple, time-domain, feature-extraction, can be done using a Finite State Automaton (FSA) 
that is based on tuning a variety of threshold parameters, as will be described. When FSA-based methods fail, 
however, HMM-Viterbi methods are used with possible pMM/SVM enhancements, as described in the stochastic 
sequential analysis (SSA) Protocol that follows, where generalized HMMs and generalized SVMs are used. 
 
The signal processing “front-end” is the most ad hoc signal processing stage by its nature, as the signal can derive 
from anything imaginable. So initially, just getting a handle on the signal, or simply recognizing that a signal is 
present, is often the most difficult step in the signal analysis. We describe how signal acquisition can be done 
according to a stochastic sequential analysis (SSA) Protocol, in channel blockade type signal analysis, and in 
computational genomic examples, and thereby provide a template for analysis of other signal types. User-friendly 
web interfaces are being developed to guide users on tuning/selection for their front-end signal processing tasks. 
 
The generalized HMM methods for stochastic sequential analysis, summarized here, provide  a synergistic union 
that is used to arrive at a new form of carrier-based communication, as will be discussed, where the carrier is not 
periodic but is stochastic, typically with stationary statistics. HMM with binned duration, holographic HMMs, and 
meta-HMM algorithmic methods, are shown to enable practical stochastic carrier wave encoding/decoding, where 
stochastic carrier wave signal processing is encountered in a number of settings in science and nanotechnology. 
Results and applications are shown involving nanopore transduction detector signal analysis (for the nanopore 
transduction detector ‘Nanoscope’), gene structure identification, the SSA Protocol, distributed HMMs and SVMs 
(to enable speedup of the SSA Protocol), and SVM-based clustering. 

 
  



1 Introduction 
 
Our objective is to establish a robust method for signal acquisition, and describe a new method 
for stochastic carrier wave (SCW) signal processing, where both methods are made possible with 
generalized HMMs that are described in the Methods. 
 
Signal acquisition is typically the most ad hoc part of the signal processing problem. Ad hoc 
signal acquisition methods must be broadly applicable, and, thus, typically involve identification 
of statistical anomalies, including: (1) anomalous threshold detection; (2) anomalous “spike” 
detection; (3) anomalous Mutual Information detection; (4) anomalous void topologies (open 
reading frames); (5) emergent grammar detection; (6) emergent phenomeneology detection; and 
(7) holistic tuning based on observation of phase transitions, where all of these methods will be 
briefly described in what follows. 
 
The general protocol for stochastic sequence analsysis (SSA) described here, the SSA Protocol 
[1], has a signal acquisition “front-end” based on a variety of methods involving identification of 
statistical anaomalies, as mentioned, but in addition has a weakness recovery prototcol that 
leverages all of the strengths of the generalized methods comprising the SSA Protocol [1]. In 
particular, if the ‘local’ statistical anomaly approaches fail, such as can occur in the fintite state 
automaton (FSA) based methods in what follows, more sophisticated, non-local structure 
identification statistical models might be needed, e.g., Hidden Markov model (HMM) based 
methods. In the SSA Protocol, if the FSA front-end method that is designed to pick up on 
localizable statistical anomolies fails, then the ‘fall-through’ method is to use a HMM-Viterbi 
computation to recognize the start-of-signal or full-signal feature. The HMM-Viterbi can be 
further enhanced via position-dependent Markov model (pMM) enhancements, possibly with 
SVM boosting (pMM/SVM) with SVM tuning metaheuristics. In the Background section that 
follows descriptions will be given of the SSA Protocol (with further details in Results), and of 
the FSAs, HMMs, SVMs, and Metaheuristics comprising its operation (with further details in 
Methods and Results).  
 
 
2 Background 
 

2.1 Finite State Automoton based acquisition via anomaly: emission, MI, void topology 
 
Time-domina FSA signal acquisition based on emission thresholding 
The time-domain FSA is shown in Fig. 1, Right, where an eight-state automaton is shown with a 
six base-pair DNA hairpin channel blockade signal (from [2]). The Web interface to the 
acquisition interface for the automaton involves parameters commonly encounted in channel 
current blockade experiements, such as the blockade signal’s drop in current value at onset of 
blockade, e.g., the “start drop value”. This is an excellent acquisition parameter in the case of 
molecules that are engineered for channel capture and modulation in the NTD experiments). 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. The Time-domain FSA. The web-interface comes pre-loaded with standard values for those not expert. 
Descriptions involving prior application of the methods [3], however, make their use by non-experts straightforward.  
 
Acquisition based on MI and Void-topology anomalies are shown in Fig.s 2 Left and 2 Right. 
Mutual Information, MI(X;Y) is: μ=ΣxΣyp(xy)log(p(xy)/p(x)p(y)). If X and Y are independent 
r.v’s then MI=0. If we have a DNA sequence x1….xixi+1 xi+2……..xn (where xk ={a,c,g, or t}) 
then we can get counts on pairs xixi+1 for i=1..n, and assuming stationarity on the data, and large 
enough n, we can speak of the joint probability p(X,Y). Calculation of MI(X,Y) then gives an 
indication of the linkage between base probabilities in dinucleotide probabilities. This can be 
extended to linkages when the two bases aren’t sequential (have a base gap between them greater 
than zero), such as pairs based on xixi+2 (gap=1), etc. This type of statistical framework can then 
be iterated to higher order MI calculations in a variety of ways to explore a number of statistical 
linkages and build towards a motif identifier based on such linkages (gIMM). Such an analysis 
on the V. Cholerae Chr. 1 genome is shown in Fig. 2, and clearly indicates a three-component 
encoding of data, i.e., the codon structure is revealed.  
 
 
 
 
 
 
 
 
 
 
Fig. 2 Left. The y-axis shows the mutual information on base-pairs in he V. cholerae gemone, the x-axis is the gap 
size between bases used to construct the base pairs. A three-component encoding of data, i.e., the codon structure is 

0.0001

0.001

0.01

0 3 6 9 12 15 18 21
1

10

100

1000

10000

0 200 400 600 800



revealed. From the strong linkages for gaps 1 through 5, it is also clear that hexamer Markov model statistics will be 
strong in many regions of the genome.Right. An examination of the void sizes encountered for various codons 
(some more ORFs, or smORFs, see [4]), or groupings of codons, reveals the stop codons very clearly as codons with 
anomalously lengthy stop-codon void regions. Shown in green are the standard ORFs (voids in the codon subset 
{(taa),(tag),(tga)}), which are clearly behaving differently from other codon voids (blue) when length is greater than 
500 bases. The voids shown in blue are voids in the codon subset {(aaa),(gaa),(gat)}. 
 
2.2 Generic grayscale HMM 
An HMM that is designed to generate a particular signal need only have a few states and 
transitions. In reverse, this HMM ‘template’ can be used to detect signal with matching statistics. 
An HMM that is meant to generate a large family of signals, on the other hand, needs to have 
more states and associated transitions. The ‘Generic’ HMM or ‘grayscale’ template HMM is an 
example of this in the case of the channel current analysis applications in [2] and in many of the 
examples in this paper. A general HMM [2] can be used to characterize current blockades by 
identifying a sequence of sub-blockades as a sequence of state emissions. The parameters of the 
HMM are estimated using Expectation/Maximization to effect de-noising. The HMM Viterbi 
path features (state histogram and two-component merged transition histogram [2]) can be 
extracted as a stationary statistics ‘fingerprint’, bundled as a feature vector and used in SVM 
classification [2]. The generic HMM is described further in some of the Methods subsections 
where it is used. 
 
2.3 pMM/SVM application 
Markov-based statistical profiles, in a log likelihood discriminator framework, can be used to 
create a fixed-length feature vector for SVM based classification [5]. Part of the idea of the 
method is that whenever a log likelihood discriminator can be constructed for classification on 
stochastic sequential data, an alternative discriminator can be constructed by ‘lifting’ the  log 
likelihood components into a feature vector description for classification by SVM. Thus, the 
feature vector uses the individual log likelihood components obtained in the standard log 
likelihood classification effort, the individual-observation log odds ratios, and ‘vectorizes’ them 
rather than sums them. The individual-observation log odds ratios are themselves constructed 
from positionally defined Markov Models (pMM’s), so what results is a pMM/SVM sensor 
method [5]. This method has utility in a number of areas of stochastic sequential analysis, 
including splice-site recognition [5] and other types of gene-structure identification, file recovery 
in computer forensics (‘file carving’), and speech recognition, among others.  

 

2.4 SSA Protocol and SCW Signal Analysis 
The SSA Protocol and implementations allows an efficient basis for robust stochastic carrier 
wave signal processing, where the stochastic signal obeys stationary statstics or some other 
reproducible measure. The SSP Protocol strengthens the critical first step in the signal 
processing, the signal acquisition step, via use of its weakness recovery protocol. In channel 
current cheminformatics (CCC) applications, the FSA method for acquisition alone suffices, but 
in more challenging SCW applications full use of the SSA Protocal may be required for good 
signal recognition. Stochastic Carrier Wave (SCW) signal processing occurs in both natural and 
engineered situations [1]. Whenever Nature is observed with a sequence of observations that 
have stationary statistics (associated with equilibrium and near-equilibrium flow situations, for 
example), then the basis for SCW signal processing arises. SCW also parallels all electrical 



engineering carrier-wave methodologies where periodic wave methods are used in some 
modulation scheme, thus the number of engineering applications is enormous. AM heterodyning, 
for example, can be replaced with stochastic carrier wave with pattern recognition informed 
(PRI) heterodyning . Also have phase modulation equivalence: the standard periodic carrier 
wave approach has a coherent phase reference, while SCW introduces a stochastic carrier wave 
with stationary statistics ‘phase’. Have similar capabilities as with phased-locked loop (PLL), for 
example, where the phase tracking is done on SCW encoded information. 
 
The biophysics and ‘information flows’ associated with the nanopore transduction detector are 
analyzed using a generalized set of hidden Markov model (HMM) and Support Vector Machine 
(SVM) based tools, as well as ad hoc finite state automata (FSA) based methods, and a collection 
of distributed (swarm) intelligence and genetic algorithm methods for tuning and selection. Used 
with a nanopore detector, the channel current cheminformatics use with stationary statics channel 
blockades provides a method for a highly sensitive nanopore detector for single molecule 
biophysical analysis, among other things [1,2]. 

 
2.5 Support Vector Machines 
A classifier is typically a simple rule whereby a class determination can be made, such as a 
decision boundary (see Fig. 3). Learning the decision rule, or a sufficiently good decision rule, 
especially if simple and elegant, is the implementation aspect of a classifier, and can be difficult 
and time consuming. Even so, this is usually manageable because at least there is data to ‘learn 
from’, e.g., supervised learning, with instances and their classifications (or ‘labels’). Learning for 
classification can be done very effectively using generalized SVMs, as will be described in what 
follows. With clustering efforts, or unsupervised learning, on the other hand, we don’t have the 
label information during training.  
 
Support Vector Machine methods are described for classification, clustering, as well as aiding 
with signal analysis and pattern recognition on stochastic sequential data. Analysis tools for 
stochastic sequential data, Markovian (or causal) data for example, have broad-ranging 
application in that almost any device producing a sequence of measurements can be made more 
sensitive, or “smarter,” by efficient learning of measured signal/pattern characteristics via SVM-
enhanced SSA Protocol methods.  

 

Using the SSA Protocol, the biophysics and ‘information flows’ associated with the nanopore 
transduction detector are analyzed using a generalized set of hidden Markov model (HMM) and 
Support Vector Machine (SVM) based tools, as well as ad hoc finite state automata (FSA) based 
methods, and a collection of distributed (swarm) intelligence and genetic algorithm methods for 
tuning and selection. Used with a nanopore detector, the channel blockades with stationary 
statistics provide a method for a highly sensitive nanopore detector for single molecule 
biophysical analysis, among other things. 

 
It is conceivable to have a properly coded SVM but to initiate training with model parameters, 
such as the kernel or kernel parameter, that are so far out of the operational regime that no 
convergence is obtained in training. So training must be repeated, with tuning on SVM 
parameters, to optimize. For some feature vectors, such as probability vectors, this can partly be 



done automatically with choice of kernel. Overall, in many situations the SVM tuning can be 
done quickly, manually, and to some extent automatically, with simple range testing, where only 
small, separated, subsets of the training data are used in the tuning tests, before performing SVM 
training on the full dataset minus the tuning data. Sometimes more elaborate tuning procedures 
are needed, however, and thus necessary for performance guarantees, and also for the SVM 
applications in clustering that will be described in the Methods. Tuning is a form of optimization, 
and excellent metaheuristics are known for identifying optimal solutions when a scoring function 
(a fitness function) can be identified (such as for the SVM sensitivity and specificity score). 
Metaheuristics optimization includes genetic algorithms, simulated annealing, swarm 
intelligence, ACO, steepest ascent hill-climbing, among others. Applications of many of these 
methods are shown in the results involving SVM-external clustering. 
 
Also shown will be implementation details for distributed SVM training, and other speedup 
optimizations, for practical deployment of the powerful SVM classification and clustering 
methods in real-time operational situations (as demonstrated in analysis in nanopore detector 
experiments). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. SVM method for classification. Based on establishing a separating hyperplane with a structural risk 
minimization contribution to the optimization via incorporation of a maximum margin constraint. Training instances 
that are mis-labeled (in the “wrong place”) are minimized via introduction of a penalty factor in the optimization. 
 
3 Methods 
 
3.1 HMM Feature Extraction and EVA 
 
3.1.1 Viterbi Path 
In the Viterbi algorithm, a recursive variable is defined: vkn = vk(n) = vk(bn) = “the most 
probable path ending in state λn=k with observation bn”. The recursive definition of vk(n) is 
then: vl(n+1) = el(bn+1) maxk [vk(n) akl]. From which the optimal path information is recovered 
according to the (recursive) trace-back: 
 
Λ* = argmax Λ P(B, Λ) = (λ*0, …, λ*L-1); λ*n|λ*n+1=l

 = argmaxk [vk(n) akl], and where λ*L-1 = 

argmaxk [vk(L-1)], for length L sequence. 



 
The recursive algorithm for the most likely state path given an observed sequence (the Viterbi 
algorithm) is expressed in terms of vki (the probability of the most probable path that ends with 
observation bn = i, and state λn=k). The recursive relation is lifted directly from the underlying 
probability definition: vki = maxn{ekiankvn(i-1)}, where the maxn{…} operation returns the 
maximum value of the argument over different values of index n, and the boundary condition on 
the recursion is vk0 = ek0pk. The emission probabilities are the main place where the data is 
brought into the HMM-EM algorithm. An inversion on the emission probability is possible when 
the states and emissions share the same alphabet of states/quantized-emissions (details in Sec. 
2.3.6). The Viterbi path labelings are, thus, recursively defined by p(λi|λ(i+1)=n) = 
argmaxk{vkiakn}. The evaluation of sequence probability (and its Viterbi labeling) take the 
emission and transition probabilities as a given. Estimates on those emission and transition 
probabilities themselves can be obtained by an Expectation/Maximization (EM) algorithm that is 
known as the Baum-Welch algorithm in this context. A 50-state generic HMM is used 
extensively in [2], and will be described further in the EVA and other methods that follow. 
 

3.1.2 pMM/SVM 
For start-of-coding recognition, for example, one can create a profile Markov model (pMM) 
based log-likelihood ratio (LLR) classifier given by log[Pstart/Pnon-start] = Σi log[Pstart(xi=bi)/Pnon-

start(xi=bi)]. Rather than a classification built on the sum of the independent log odds ratios, 
however, the sum of components could be replaced with a vectorization of components: 

Σi log[Pstart(xi=bi)/Pnon-start(xi=bi)] --> {…., log[Pstart(xi=bi)/Pnon-start(xi=bi)], ….} 

These can be viewed as feature vectors (f.v.’s), and can be classified by use of an SVM. The 
SVM partially recovers linkages lost with whatever order of Markov model dependency that is 
imposed. For the 0th order MM in the example, the positional probabilities are approximated as 
entirely independent -- which is far from accurate. The SVM approach can recover statistical 
linkages between components in the f.v.’s in the SVM training process. 

 

There are generalizations for the MM sensor and its SVM f.v. implementation, and all are 
compatible with the SVM f.v. classification profiling. Markov Profiling with component-sum to 
component feature-vector mapping for SVM/MM profiling, thus, encompasses use of MMs, 
IMMs, gIMMs, hIMMs, and ghIMMs [4,5], and SVM usage via “vectorization” to  SVM/MM, 
SVM/IMM, SVM/gIMM classification profiling (with use of the SVM’s confidence parameter). 

 

3.1.3 Feature Extraction via EVA projection (for use with power signal analysis) 
Emission variance amplification (EVA) projection is used in the SSA Protocol to go from a 
power signal (or anything sampled from a continuum domain of possibilities) to a sparser, 
projected ‘EVA state’, representation of the data. Quantization on the sparser representation can 
then provide a discrete representation. Once all states are discrete, higher order structure (or 
encoding) can be extracted by use of the meta-HMM generalization described in Sec. 3.2, and 
other methods. 

 



In the CCC analysis in [2], we have an HMM with emissions probabilities parameterized by 
Gaussian distributions: emission_probabilities[i][k] = exp(-(k-i)*(k-i)/(2*variance)), where “i” 
and “k” are each a state where 0 <= i,k <= 49 in a 50 state system.  To perform EVA in this 
setting, the variance is simply multiplied by a factor that essentially widens the gaussian 
distribution parameterized to best fit the emissions, and the equation simply becomes exp(-(k-
i)*(k-i)/(2*variance*eva_factor)).  For a sizable range of this parameter, HMM with EVA will 
remove the noise from the power signal while strictly maintaining the timing of the state 
transitions.  

After EVA-projection, a simple FSA can easily extract level duration information.  Each level is 
identified by a simple threshold of blockade readings, typically one or two percent of baseline. 
When EVA boosts the variance of the distribution, for states near a dominant level in the 
blockade signal, the transitions are highly favored to points nearer that dominant level. This is a 
simple statistical effect having to do with the fact that far more points of departure are seen in the 
direction of the nearby dominant level than in the opposite direction. When in the local gaussian 
tail of sample distribution around the dominant level, the effect of transitions towards the 
dominant level over those away from the dominant level can be very strong.  In short, a given 
point is much more likely to transition towards the dominant level than away from it, thereby 
arriving at a “focusing” on the levels, while preserving level transitions. In this respect, other 
distributional parameterizations could be used than Gaussian, but Gaussian is a good starting 
point (a mixture of a sufficient number of distributions will arrive at a Gaussian distribution 
overall, an expression of the law of large numbers). 
 
3.1.4 Feature Extraction via Data Absorption (a.k.a. Emission Inversion) 
A new form of “inverted” data injection is possible during HMM training when the states and 
quantized emission values share the same alphabet.  This is typically the case in the CCC power 
signal analysis examples given here. Results from channel current signal classification 
consistently show approximately 5% improvement in accuracy (sensitivity + specificity) with the 
aforementioned data inversion upon SVM classification (and this holds true over wide ranges of 
SVM kernel parameters and collections of feature sets). Transition & “absorption” statistical 
profiles are thought to work better than standard transition & emission profiles, in generalized 
classification performance, due to regularization with an effective SRM (structural risk 
minimization [6]) constraint, via optimization with an added term that depends on the relative 
entropy between state prior probabilities and emission posterior probabilities. 

 

By swapping eb(k) for ek(b) we introduce a multiplicative factor, the ratio of the priors on states 
to the frequencies on emissions: ek(b) = eb(k) [P(b)/P(k)]. This factor weights the computations 
in a manner that seems to track, and minimize, on the Kullback-Leibler divergence between the 
state prior distribution and the emission frequency distribution. This approximate notion follows 
from the evaluation of the extra terms that will occur on the maximum log-prob calculation for 
the Viterbi path. On the Viterbi solution, using the swapped emission probabilities, the sum (on 
log probabilities) at the end will differ by a sum of log ratios:  log [P(ki)/P(bi)] =  - log[P(bi) / 
P(ki)] Normalized by length ‘L’ over different k and b, this term is approximated by Diff Term = 
– D(P(Z)||P(S)), maximizing on this term is, thus, minimizing on the divergence, D(P(Z)||P(S)), 
between the priors and the emissions. 
 



3.1.5 Modified AdaBoost for Feature selection and Data fusion 
AdaBoost [7] can learn a sequence of weak classifiers and then boosts them by a linear 
combination into a single strong classifier. As a classification method, one of the main 
disadvantages of AdaBoost is that it is prone to overtraining.  However, AdaBoost is a natural fit 
for feature selection.  Here, overtraining is not a problem, as AdaBoost is only used to finds 
diagnostic features and those features are then passed on to a classifier that does not suffer from 
overtraining (such as an SVM). HMM features, and other features (from neural net, wavelet, or 
spike profiling, etc.), can be fused and selected via use of the Modified Adaboost selection 
algorithm [3]. 

 

In Modified AdaBoost [3] weights are given to the weak learners as well as the training data.  
The key modifications here are to give each column of features in a training set a weak learner 
and to update each weak learner every iteration, not just update the weights on the data.  In an 
example where there is a set of 150-component feature vectors, 150 weak learners would be 
created. As previously mentioned, each weak learner corresponds to a single component and 
classifies a given feature vector based solely on that one component. Then, weights for these 
weak learners are introduced. In each iteration of this modified AdaBoost process, weights for 
both the input data and the weak learners are updated. The weights for the input data are updated 
as in the standard AdaBoost implementation, while weights on the individual weak learners are 
updated as if each were a complete hypothesis in the standard AdaBoost implementation. At the 
end of the iterative process, the weak learners with the highest weights, that is, the weak learners 
that represent the most diagnostic features, are selected and those features are passed to an SVM 
for classification (see [3] for more details).  Thus, the benefits of both AdaBoost and SVMs are 
obtained.  

 

3.2 Channel Current Cheminformatics 
The SSA Protocol has been developed for the discovery, characterization, and classification of 
localizable, approximately-stationary, statistical signal structures in stochastic sequential data, 
such as in channel current cheminformatics (CCC), as shown in Fig. 4.  

 

The general components for a stochastic signal analysis protocol and a stochastic carrier wave 
communications protocol are described in the next section. NTD, with the channel current 
cheminformatics implementation of the SSA protocol, provides proof-of-concept examples of 
the SSA methods utilization, and can be used as an example of finite state communication. From 
the CCC/NTD starting point, it is easier to convey the unique signal boosting capabilities when 
working with real-time capable HMMBD signal processing [8] and other SSA methods. In the 
larger sense, recognition of stationary statistics transitions allows one to generalize to full-scale 
encoding/decoding in terms of stationary statistics ‘phases’, i.e., stochastic phase modulation, a 
form of stochastic carrier-wave communications. Many of the Proof-of-concept experiments 
described in what follows involve SSA applications in a CCC implementation or a context for 
the NTD platform. The SSA Protocol, however, is a general signal processing paradigm for 
characterizing stochastic sequential data, as will be detailed next. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Nanopore 
cheminformatics & data-
flow control architecture. 
Aside from the modular 
design with the different 
machine learning methods 
shown (HMMs, SVMs, etc.), 
recent augmentations to this 
architecture for real-time 
processing include use of a 
networked server to link to 
the patch-clamp amplifier, 
and the ‘real-time’ pattern 
recognition informed signal 
processing architecture (the 
latter shown in Fig. 7).  
 
 
 
 
3.3 Generalized HMMs (Gene-structure identification) 
Hidden Markov models are an amazing tool at the nexus where Bayesian probability and Markov 
models meet dynamic programming. To properly define/choose the HMM model in a machine 
learning context, however, further generalization is usually required. This is because the ‘bare-
bones’ HMM description has critical weaknesses in most applications, which are summarized 
below. Fortunately, these weaknesses can be addressed, and in computationally efficient ways, 
see Fig. 5, with further details in the Methods.  
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Comparison of standard HMM and the clique-generalized HMM. The upper graphical model is for the 
standard HMM and shows the ‘emission’ observation sequence xi, and the associated hidden label sequence λi, and 
the arrows denote the conditional probability approximations used in the model (for the transition and emission 
probabilities). Focusing at the level of the core joint-probability construct at instant ‘i’ in the middle graph, the 
standard HMM is a subset of the joint probability construct P(λi, λi+1, xi+1). The generalized-clique HMM is shown 
in the graphical model at the bottom for one particular clique generalization. The model can be exact on emission 
positionally, then extend via zone dependence and use of gIMM interpolation. The model can be exact to higher 
order in state (referred to as footprint states’, see [9]), and also extends modeling to have HMM with duration 
modeling. When doing the latter, zone-dependent and position dependent modeling can be incorporated via 
reference to the duration in the model, and can be directly incorporated into a generalized Viterbi algorithm (and 
other generalized HMM algorithms), as well as any other side-information of interest [10]. 
 
A brief list of the typical weaknesses encountered with the standard HMM: 
 

(1) Standard HMMs are at low Markov order in transitions (first) and in emissions 
(zeroth), and transitions are decoupled from emissions, which can miss critical structure 
in the model (e.g., state transition probabilities that are strongly sequence dependent). 
This weakness is eliminated if we generalize to the largest state-emission clique possible, 
fully interpolated on the data set, with use of a minimal state-length constraint to obtain 
an efficient implementation (see Fig. 5). 
 
The generalized clique HMM (Fig. 5) begins by enlarging the primitive hidden states 
associated with the individual base labels (as exon, intron, or junk) to substrings of 
primitive hidden states or footprint states.  There is a key constraint, however, to keep the 
scaling of footprint states linear with footprint size: the footprint states are constrained to 
have self-transitions with a minimal length such that a footprint, and the mostly 
overlapping ‘next’ footprint, together can only have one transition between states of 
different type. The emissions are likewise expanded to higher order in the fundamental 
joint probability that is the basis of the generalized-clique, or ‘meta-State’, HMM. 
Further details on the meta-state HMM [9] are in the Methods that follow 
 



(2) Need Method for directly incorporating side-information into the dynamic 
programming table based optimizations (used in the Viterbi and Baum-Welch algorithms, 
etc.). This is solved in [10], where an HMM is ‘bootstrapped’ into a HMM-with-duration, 
see Methods that follow for brief description. 
 
(3) Standard HMMs don’t properly model self-transition durations, imposing a ‘best-fit’ 
geometric distribution on self-transition duration distributions instead. This weakness is 
eliminated if we generalize to a HMM-with-duration (HMMD) formalism, where direct 
modeling on self-transition duration distributions is incorporated (see Fig. 5). Standard 
HMMD methods are computationally expensive, however, when compared to Standard 
HMM. This weakeness can be addressed, without loss of generality, via use of HMM 
with binned duration (HMMBD) representations. Further details on HMMBD [8] are in 
the Methods that follow. 
 
(4) Standard HMM and HMMD have latency bottleneck if full table computation is used 
on a lengthy data sequence, so need method for distributed processing‘chunking’ with 
overlaps sufficient for recovery. This is demonstrated in the Results. 
 
(5) Need Method for HMM Feature Extraction Selection, Compression, and Fusion. A 
modified form of Adaboost is used for this purpose, see methods in preceding sections. 
 
(6) Need Multitrack (Holographic) Generalization. In particular, need to show that hidden 
constraints can significantly limit model complexity, as seen in the clique generalization 
with application in gene-finding in [9], allowing significant scaling in multiple hidden-
track (holographic) model complexity. In the Results we show the preliminary statistical 
support to justify the Two-track HMM alternative-splice gene-finder model. 
 
(7) Need Method for Standardized HMM application to power signal data, and this is 
described in the Results. 
 
(8) Need Method for Standardized HMM usage: the SSA Protocol is described in the 
Results, and outlined in what follows next. 

 
 
 
3.4 Overview of the SSA Protocol 
The SSA protocol is shown in Fig. 6 in a common signal-processing flow topology. The SSA 
Protocol is for the discovery, characterization, and classification of localizable, approximately-
stationary, statistical signal structures in channel current data, or genomic data, or sequential data 
in general, and changes between such structures. The core signal processing stage in Fig. 6 is 
usually the feature extraction stage, where central to the signal processing protocol is the Hidden 
Markov model. The SSA Protocol has a built-in weakness recovery protocol, outlined next, 
where the strengths of the HMM are further leveraged to full advantage. 
 
 
 



Fig. 6. The most common stochastic sequential 
analysis flow topology. The main signal processing 
flow is typically Input  tFSA Meta-HMMBD  
SVM  Output. Notable differences occur in 
channel current cheminformatics  where there is use 
of EVA-projection, or similar method, to achieve a 
quantization on states, then have Input  tFSA  
HMM/EVA  meta-HMMBD-side  SVM  
Output. While, in gene-finding just have: Input  
meta-HMMBD-side  Output. In gene-finding, 
however, the HMM internal ‘sensors’ are sometimes 
replaced, locally, with profile-HMMs [2] or SVM-
based profiling [5], so topology can differ not only in 
the connections between the boxes shown, but in 
their ability to embed in other boxes as part of an 
internal refinement. 

 

 

 

 

 

 

 

3.4.1 Weakness Recovery Protocol (Acquisition strengths boosted by the entire SSA Protocol) 
The sequence of algorithmic methods used in the SSA Protocol comprise a weakness recovery 
protocol: (i) the weakness in the Fintie State Automoton (FSA) methods will be shown to be its 
difficulty in strong structure identification (especially non-local structure), for which HMM 
methods (and tuning metaheuristics) are the solution. (ii) for the HMM, in turn, the main 
weakness is in local sensing ‘classification’, and as a classification problem, the problem can be 
solved via incorporation of generalized SVM methods. If facing a classification task independent 
of a prior signal processing need, the SVM will also be the method of choice in what follows. 
(iii) The weakness of the SVM, whether used for classification or clustering, but especially for 
the latter, is the need to optimize over algorithmic, model (kernel), chunking, and other process 
parameters during learning. This is solved via use of metaheuristics for optimization such as 
simulated annealing, genetic algorithm optimization, particle swarm optimization, etc. (iv) The 
main weaknesses in the metaheuristic effort is partly resolved via use of the “front-end” 
methods, like the FSA, and partly resolved by a knowledge discovery process (that can be done 
using the SVM clustering methods). The SSA Protocol weakness recovery method, thus, comes 
full circle, thereby establishing a robust signal processing platform. To have a specific example, 
consider the situation where the ‘front-end’ FSA acquisition methods fail, the weakeness 
recovery is to fall through to a HMM-Viterbi based feature extraxction, with feature set 
classification via HMM ‘templates’ or via a generic HMM feature-extractor with SVM-based 
classifier (the latter is done in the CCC implementation and is recommended for robustness). 

The HMM methods are the central methodology/stage in the channel current cheminformatics 
(CCC) protocol in that the other stages can be dropped or merged with the HMM stage in many 



incarnations. For example, in some data analysis situations the time-domain Finite State 
Automoton (tFSA) methods could be totally eliminated in favor of the more accurate HMM-
based approach to the problem, with signal states defined/explored in much the same setting, but 
with the optimized Viterbi path solution taken as the basis for the signal acquisition.  

The HMM features, and other features (from neural net, wavelet, or spike profiling, etc.) can be 
fused and selected via use of various data fusion methods, such as a modified Adaboost selection 
(from [3,11]).  The HMM-based feature extraction provides a well-focused set of ‘eyes’ on the 
data, no matter what its nature, according to the underpinnings of its Bayesian statistical 
representation. The key is that the HMM not be too limiting in its state definition, while there is 
the typical engineering trade-off on the choice of number of states, N, which impacts the order of 
computation via a quadratic factor of N in the various dynamic programming calculations used 
(comprising the Viterbi and Baum-Welch algorithms among others).  

The HMM ‘sensor’ capabilities can be significantly improved via switching from profile-MM 
sensors to pMM/SVM-based sensors, as indicated in [5], where the superior performance and 
generalization capability of this approach was demonstrated. A martingale feature vector is 
described in this context in [1]. 

 

3.4.2 Stochastic Carrier-Wave Signal Processing 
We establish a new type of communication process where the carrier wave is a stochastic 
observation sequence that obeys stationary statistics. In standard periodic carrier wave signal 
processing convolving with the carrier frequency allows the signal modulations of that carrier to 
be obtained. Here we have something analogous, but we have a carrier with stationary statistics, 
not fixed frequency, and can recognize different phases of stationary statistics via HMM methods 
for class-independent feature extraction, with Support Vector Machines (SVMs) for sparse data 
classification, or via HMM methods for class-dependent HMM generative projection. 
 
In standard bandlimited signal analysis with periodic waveforms, sampling is done at the Nyquist 
rate for full reproducible capability. If the sample information is needed elsewhere, it is then 
compressed (possibly lossy) and transmitted (a ‘smart encoder’). The received data is then 
decompressed and reconstructed (by simply summing wave components, e.g., a ‘simple’ 
decoder). If the signal is sparse or compressible, then compressive sensing [12] can be used, 
where sampling and compression are combined into one efficient step to obtain compressive 
measurements (refered to as ‘dumb’ encoding in [12] since a set of random projections are 
employed), which are then transmitted. On the receiving end, the decompression and 
reconstruction steps are, likewise, combined using an asymmetric ‘smart’ decoding step. This 
progression towards asymmetric compressive signal processing can be taken a step further if we 
consider signal sequences to be equivalent if they have the same stationary statistics. What is 
obtained is a method similar to compressive sensing, but involving stationary-statistics 
generative-projection sensing, where the signal processing is non-lossy at the level of stationary 
statistics equivalence. In the SCW signal analysis the signal source is generative in that it is 
describable via use of a hidden Markov model, and the HMM’s Viterbi-derived generative 
projections are used to describe the sparse components contributing to the signal source. In SCW 
encoding the modulation of stationary statistics can be man-made or natural, with the latter in 
many experimental situations that involve flow phenomologies that have stationary statistics. If 
the signal is man-made, usually the underlying stochastic process is still a natural source, where 



it is the changes in the stationary statistics that is under the control of the man-made encoding 
scheme. Transmission and reception are then followed by generative projection via Viterbi-
HMM template matching or via Viterbi-HMM feature extraction followed by separate 
classification (using SVM). So in the SCW approach the encoding is even ‘dumber’ in that it can 
be any noise source with stationary statistics (the case for many experimental observations), with 
stationary statistics phase modulation for encoding. The decoding must be even ‘smarter’, on the 
other hand, in that generalized Viterbi algorithms are used to perform a generative projection 
(and possibly other machine learning methods as well, SVMs in particular). An example of the 
stationary statistics sensing with a machine learning based decoder is described in application to 
channel current cheminformatics studies in what follows. 
 
3.5 Generalized HMM Algorithms 
 
3.5.1 The Meta-HMM – a clique-generalized HMM 
The traditional HMM assumes that a 1st order Markov property holds among the states and that 
each observable depends only on the corresponding state and not any other observable.  The 
meta-HMM entails a maximally-interpolated departure from that convention (limited according 
to the size of the training dataset) in an attempt to leverage anomalous statistical information in 
the neighborhood of non-self state transitions. The regions of anomalous statistics are often 
highly structured, having consensus sequences that strongly depart from the strong independence 
assumptions of the 1st order HMM. The existence of such consensus sequences suggests that we 
adopt an observation model that has a higher order Markov property with respect to the 
observations. Furthermore, since the consensus sequences vary by the type of transition, this 
observational Markov order should be allowed to vary depending on the state. 

The gap and hash interpolating Markov Models (gIMM and hIMM) [4] can be directly 
incorporated into meta-HMMBD gene-finding models as a further enhancement to the 
underlying Markov models, since they are already known to extract additional information that 
may prove useful, particularly in the zone-dependent emission regions (denoted ‘zde’s as in [4]) 
where promoters and other gapped motifs might exist. Promoters and transcription factor binding 
sites often have lengthy overall gapped motif structure, and with the hash-interpolated Markov 
models it is also possible to capture the conserved higher order sequence information in the zde 
sample space. The hIMM and gIMM methods, thus, will not only strengthen the gene structure 
recognition, but can also provide the initial indications of anomalous motif structure in the 
regions identified by a gene-finder (in a post-genomic phase of the analysis) [4]. 

By viewing state transitions, such as e0e1 or e0i0, as transition “dimer states”, or as two-
element “footprint” states, we begin to shift to a meta-HMM footing where we can model 
emissions more accurately.  For the footprint states introduced in what follows, a critical 
assumption is made – at most, one non-self transition is allowed per footprint transition. This 
assumption is a equivalent to a minimum length constraint on regions of self-transitions to be 
footprint size or greater. For genomic applications this is not a problematic constraint, and when 
a concern, different ‘gene-scans’ can always be performed with different footprint sizes.  

When encountered sequentially in the Viterbi algorithm, the sequence of (single) non-self state 
transition ‘dominated’ footprint states would conceivably score highly when computed for the 
footprint-width number of footprint-states that overlap the non-self transition. In other words, we 
can expect a natural boosting effect for the correct prediction at such non-self transitions 



(compared to the standard HMM). To describe bases in the irreducible joint probability we have: 
wn = bn-L+1, …, bn, …, bn+R, and 𝑤�n = bn-L+1, …, bn, …, bn+R-1 describes the base observations, 
while sn = λnλn+1 (dimer states, length in λ’s =2), and fn = sn-l+1, …, sn+r ≅ λn-l+1, …, λn, …, λn+r+1 
(footprint state, length in s’s= l+r), describes the associated labels. Given the above, the clique-
factorized HMM is as follows:  

P(B, Λ) = P(w-R, f-R) { Πn=-R+1 N+L-2 [P(wn, fn-1, fn) / P(𝑤�  n, fn-1)] }, 

with appropriate boundary terms (see [9]). A generalization to the Viterbi algorithm can be 
directly implemented, using the above clique-factorized HMM form [9], to establish an efficient 
dynamic programming table construction. Generalized expressions for the Baum-Welch 
algorithm are also possible. Some of the generalizations are straightforward extensions of the 
algorithms from 1st order theory with its minimal clique. Sequence-dependent transition 
properties in the generalized-clique formalism, however, have no counterpart in the standard 1st 
Order HMM formalism.  

The core term in the clique-factorization can also be written by introducing a Bayesian 
parameter, one that happens to provide a matching joint probability construct (to the extent 
possible) with the term in the numerator: 

𝜌 = 𝑃(𝑤𝑛,𝑓𝑛−1,𝑓𝑛)
𝑃(𝑤�𝑛,𝑓𝑛−1)

= 𝑃(𝑤𝑛,𝑓𝑛−1,𝑓𝑛)
∑ 𝑃(𝑤�𝑛,𝑓𝑛−1,𝑓′𝑛)𝑓′𝑛(𝑎𝑙𝑙𝑜𝑤𝑒𝑑)

 =  𝑃(𝑤𝑛|𝑓𝑛−1,𝑓𝑛) 𝑃(𝑓𝑛|𝑓𝑛−1) 𝑃(𝑓𝑛−1)
∑ 𝑃(𝑤�𝑛|𝑓𝑛−1,𝑓′𝑛) 𝑃(𝑓′𝑛|𝑓𝑛−1) 𝑃(𝑓𝑛−1)𝑓′𝑛

 

 
In the above expression we clearly have sequence dependent transitions. For 𝑓𝑛−1 =  𝑖𝑖, 
𝑎𝑛𝑑 𝑓𝑛 =  𝑖𝑒 for example, we have: 
��𝜌|𝐺𝐶𝐻𝑀𝑀 = 𝑃(𝑤𝑛,𝑓𝑛−1,𝑓𝑛)

𝑃(𝑤�𝑛,𝑓𝑛−1) �𝑓𝑛−1= 𝑖𝑖,
𝑓𝑛= 𝑖𝑒

 = 𝑃(𝑤𝑛|𝑖𝑒) 𝑃(𝑖𝑒|𝑖𝑖)
𝑃(𝑤�𝑛|𝑖𝑒)𝑃(𝑖𝑒|𝑖𝑖)+𝑃(𝑤�𝑛|𝑖𝑖)𝑃(𝑖𝑖|𝑖𝑖)

=  𝑃(𝑏𝑛+𝑅|𝑤�𝑛,𝑖𝑒)𝑃(𝑖𝑒|𝑖𝑖)

𝑃(𝑖𝑒|𝑖𝑖)+𝑃(𝑖𝑖|𝑖𝑖)�𝑃(𝑤�𝑛|𝑖𝑖)
𝑃(𝑤�𝑛|𝑖𝑒)�

  

 
Use of the meta-HMM formalism resolves complications due to heavy-tail duration distributions 
and weak contrast. This is a new HMM modeling capability. The form of the clique factorization 
in [9] also has LLR terms such as 𝑃(𝑤�𝑛|𝑖𝑒)/𝑃(𝑤�𝑛|𝑖𝑖) that allow for a simple switch from 
internal scalar-based state discriminant to a vector-based feature, allowing for a similar 
substitution of a discriminant based on an SVM as demonstrated for splice sites in [5] and 
described in the pMM/SVM sub-section.  These alternate representations do not introduce any 
significant increase in computational time complexity. 
 
3.5.2 Hidden Semi-Markov model and HMM-with-duration  
In the standard HMM, when a state i is entered, that state is occupied for a period of time, via 
self-transitions, until transiting to another state j. If the state interval is given as d, the standard 
HMM description of the probability distribution on state intervals is implicitly given by:   
 

𝑝𝑖(𝑑) =  𝑎𝑖𝑖𝑑−1(1 − 𝑎𝑖𝑖) 
 
where aii is self-transition probability of state i. As mentioned previously, this geometric 
distribution is inappropriate in many cases. The standard HMMD replaces the equation above 
with a pi(d) that models the real duration distribution of state i. In this way explicit knowledge 
about the duration of states is incorporated into the HMM. When entered, state i will have a 
duration of d according to its duration density pi(d); it then transits to another state j according to 



the state transition probability aij (self-transitions, aii, are not permitted in this formalism). It is 
easy to see that the HMMD will turn into a HMM if pi(d) is set to the geometric distribution 
shown above. The first HMMD formulation was studied by Ferguson [13]. A detailed HMMD 
description was later given by [14]. There have been many efforts to improve the computational 
efficiency of the HMMD formulation given its fundamental utility in many endeavors in science 
and engineering. Notable amongst these are the variable transition HMM methods for 
implementing the Viterbi algorithm introduced in [15], and the hidden semi-Markov model 
(HSMM) implementations of the forward-backward algorithm [16]. 
 
In [10] it is shown how to ‘lift’ side information that is associated with a region, or transition 
between regions, by ‘piggybacking’ that side information along with the duration side 
information. We use, as example, HMM incorporation of duration itself as the guide in what 
follows. In doing so, we arrive at a hidden semi-Markov model formalism for a HMMD. An 
equivalent formulation of the HSMM was introduced in [15] for the Viterbi algorithm and in 
[16] for Baum-Welch. In these derivations, however, the maximum-interval constraint is still 
present (comparisons of these methods were subsequently detailed in [17]). Other HMM 
generalizations include Factorial HMMs [18] and hierarchical HMMs [19]. For the latter, 
inference computations scaled as O(T3) in the original description, and havesince been improved 
to O(T) by [20].  

The HSMM formalism introduced here, however, is directly amenable to incorporation of side-
information and to adaptive speedup (as described in [8,10] and in Sec. 3.3). For the state 
duration density pi(x = d), 1 ≤ x ≤ D, we have: 
 

 𝑝𝑖(𝑥 = 𝑑) = 𝑝𝑖(𝑥 ≥ 1) ∙ 𝑝𝑖(𝑥≥2)
𝑝𝑖(𝑥≥1)

∙ 𝑝𝑖(𝑥≥3)
𝑝𝑖(𝑥≥2)

∙∙∙ 𝑝𝑖(𝑥≥𝑑)
𝑝𝑖(𝑥≥𝑑−1)

∙ 𝑝𝑖(𝑥=𝑑)
𝑝𝑖(𝑥≥𝑑)

 
 
where pi(x = d) is abbreviated as pi(d) if no ambiguity. Define “self-transition” variable si(d) = 
probability that next state is still λt = i, given that i has consecutively occurred d times up to now. 

 𝑝𝑖(𝑥 = 𝑑) = �∏ 𝑠𝑖(𝑗)𝑑−1
𝑗=1 ��1− 𝑠𝑖(𝑑)�,𝑤ℎ𝑒𝑟𝑒 𝑠𝑖(𝑑) = �

𝑝𝑖(𝑥≥𝑑+1)
𝑝𝑖(𝑥≥𝑑)

 𝑖𝑓 1 ≤ 𝑑 ≤ 𝐷 − 1

0 𝑖𝑓 𝑑 = 𝐷
� 

 
We see with comparison of the equation for pi(d) above and pi(d) = (aii)d-1(1- aii), that we now 
have similar form, there are ‘d-1’ factors of ‘s’ instead of ‘a’, with a ‘cap term’ ‘(1-s)’ instead of 
‘(1-a)’, where the ‘s’ terms are not constant, but only depend on the state’s duration probability 
distribution. In this way, each ‘s’ can mesh with the HMM’s dynamic programming table 
construction for the Viterbi algorithm at the column-level in the same manner that ‘a’ does. Side-
information about the local strength of EST matches or homology matches, etc., that can be put 
in similar form, can now be ‘lifted’ into the HMM model on a proper, locally optimized Viterbi-
path. The derivations of the Baum-Welch and Viterbi HSMM algorithm is in [10].  
 
The memory complexity of this method is O(TN). No forward table needs to be saved. The 
computation complexity is O(TN2+TND). In an actual implementation, a scaling procedure may 
be needed to keep the forward-backward variables within a manageable numerical interval. One 
common method is to rescale the forward-backward variables at every time index t using the 
scaling factor ct = Σi ft(i). Here we use a dynamic scaling approach. For this we need two 



versions of θ(k, i, d). Then at every time index, we test if the numerical values is too small, if so, 
we use the scaled version to push the numerical values up; if not, we keep using the unscaled 
version. In this way, no additional computation complexity is introduced by scaling.   

As with Baum-Welch, the Viterbi algorithm for the HMMD is O(TN2+TND). Because logarithm 
scaling can be performed for Viterbi in advance, however, the Viterbi procedure consists only of 
additions to yield a very fast computation. For both the Baum-Welch and Viterbi algorithms, use 
of the HMMBD algorithm [8] can be employed (as in this work) to further reduce computational 
time complexity to O(TN2), thus obtaining the speed benefits of a simple HMM, with the 
improved modeling capabilities of the HMMD. 
 
3.5.3 HMMD with binned duration 
The intuition guiding the HMMBD approach is that the standard HMM already does the desired 
duration modeling when the distribution modeled is geometric, suggesting that, with sufficient 
effort, a self-tuning explicit HMMD might be possible to achieve HMMD modeling capabilities 
at HMM computational complexity in an adaptive context.  

The duration distribution of state i consists of rapidly changing probability regions (with small 
change in duration) and slowly changing probability regions. In the standard HMMD all regions 
share an equal computation resource (represented as D substates of a given state) -- this can be 
very inefficient in practice. In this section, we describe a way to recover computational 
resources, during the training process, from the slowly changing probability regions. As a result, 
the computation complexity can be reduced to O(TN2+TND*), where D* is the number of “bins” 
used to represent the final, coarse-grained, probability distribution. A “bin” of a state is a group 
of substates with consecutive duration. For example, f(i, d), f(i, d+1), ...f (i, d+δd) can be 
grouped into one bin. The bin size is a measure of the granularity of the evolving length 
distribution approximation. A fine-granularity is retained in the active regions, perhaps with only 
one length state per bin, while a coarse-granularity is adopted in weakly changing regions, with 
possibly hundreds of length states per bin. An important generalization to the exact, standard, 
length-truncated, HMMD is suggested for handling long duration state intervals – a “tail bin”. 
Such a bin is strongly indicated for good modeling on certain important distributions, such as the 
long-tailed distributions often found in nature, the exon and intron interval distributions found in 
gene-structure modeling in particular. In practice, the idea is to run the exact HMMD on a small 
portion, δT, of the training data, at O(δTNN + δTND) cost, to get an initial estimate of the state 
interval distributions. Some preliminary course-graining is then performed, where strongly 
indicated, and the number of bins representing the length distribution is reduced from D to D′. 
The exact HMMD is then performed on the D′ substate model for another small portion of the 
training data, at computational expense O(δTNN + δTND′). This is repeated until the number of 
bin states, D*, reduces no further, and the bulk of the training then commences with the D* bin-
states length distribution model at expense O(TN2+TND*). The key to this process is the 
retention of training information during the ‘freezing out’ of length distribution states, and such 
that the D* bin state training process can be done at expense O(TN2+TND*) ≈ O(TN2), which is 
the same complexity class as the standard HMM itself. Starting from the above binning idea, for 
substates in the same bin, a reasonable approximation is applied: 

∑ 𝑓𝑡(𝑖,𝑑′)𝜃(𝑏𝑡, 𝑖, 𝑑′)
𝑑+δ𝑑
𝑑′=𝑑   =  𝜃�𝑏𝑡, 𝑖, �̅��∑ 𝑓𝑡(𝑖, 𝑑′)

𝑑+δ𝑑
𝑑′=𝑑 , 

where �̅� is the duration representative for all substates in this bin. 



3.5.4 Adaptive null-state binning for O(TN) computation 
During the HMM Viterbi table construction for each of T sequence data values, there is a column 
entry, and for each of N states there is a row. At each column the HMM Viterbi algorithm must 
look to the past column entries as it populates the table from left to right, thus leading to an 
O(TN2) computation. If we establish an adaptive binning capability, reminiscent of what was 
done with the HMMBD method, then we can keep track of lists with respect to each state that 
correspond to prior column transitions to that state. If we, in particular, track those Viterbi most-
probable-paths that arrive at our state cell with probability below some cutoff (with respect to the 
other probabilities arriving at that cell), we can ignore transitions from such cells in later column 
computations. What results is an initial O(tN2) (t<<T) computation to learn the state lists for 
above cut-off transitions (suppose K on average), followed by the main body of the O(TNK) 
computation (with K<<N).  

A method is also possible comprising use of a “fastViterbi” process where O(TN2)  O(TmN) 
via learned, local, max-path ordering in a given column of the Viterbi computation for the 
highest ‘m’ values. Subsequent columns first only examine the top ‘m’ max-paths and if their 
ordering is retained, and their total probability advanced sufficiently, then the other states remain 
‘frozen-out’ with a large grouping (binning) on the probabilities on those states used to maintain 
their probability information (and correct normalization summing) when going forward column-
by column, with reset to full column evaluation on the individual state level when the m values 
fall out of their initially identified ordering.  

A method is possible comprising use of a fastViterbi with null-binning process where O(TN2)  
O(Tmn)  O(T) via learned global and local aspects of the data as indicated above. This 
approach offers significant utility as a purely HMM-based alignment algorithm that may 
outperform BLAST (Basic local alignment search tool. Altschul SF et al. 1990) with comparable time 
complexity.  

 
3.6 NTD ‘Binary’ event communication is a form of stochastic ‘phase’ modulation (SPM) 
In the nanopore transduction detector (NTD) experiments [1,21], the molecular dynamics of a 
(single) captured transducer molecule provide a unique stochastic reference signal with stable 
statistics on the observed, single-molecule blockaded, channel current, somewhat analogous to a 
carrier signal in standard electrical engineering signal analysis. Discernible changes in blockade 
statistics, coupled to SSA signal processing protocols, enable the means for a highly detailed 
characterization of the interactions of the transducer molecule with binding targets (cognates) in 
the surrounding (extra-channel) environment.  
The transducer molecule is specifically engineered to generate distinct signals depending on its 
interaction with the target molecule. Statistical models are trained for each binding mode, bound 
and unbound, for example, by exposing the transducer molecule to zero or high (excess) 
concentrations of the target molecule. The transducer molecule is engineered so that these 
different binding states generate distinct signals with high resolution. Once the signals are 
characterized, the information can be used in a real-time setting to determine if trace amounts of 
the target are present in a sample through a serial, high-frequency sampling, and pattern 
recognition, process.  
Thus, in NTD applications of the SSA Protocol, due to the molecular dynamics of the captured 
transducer molecule, a unique reference signal with stationary (or approximately stationary) 



statistics is engineered to be generated during transducer blockade, analogous to a carrier signal 
in standard electrical engineering signal analysis. The adaptive SSA machine learning algorithms 
for real-time analysis of the stochastic signal generated by the transducer molecule offer a “lock 
and key” level of signal discrimination. The heart of the signal processing algorithm is an 
adaptive Hidden Markov Model (AHMM) based feature extraction method, implemented on a 
distributed processing platform for real-time operation. For real-time processing, the AHMM is 
used for feature extraction on channel blockade current data, while classification and clustering 
analysis are implemented using a Support Vector Machine. In addition, the design of the 
machine learning based algorithms allow for scaling to large datasets, real-time distributed 
processing, and are adaptable to analysis on any channel-based dataset, including resolving 
signals for different nanopore substrates (e.g.  solid state configurations) or for systems based on 
translocation technology. The machine learning software has also been integrated into the 
nanopore detector for “real-time” pattern-recognition informed (PRI) feedback [22,23] (see Fig. 
7). The methods used to implement the PRI feedback include distributed HMM and SVM 
implementations, which enable the processing speedup that is needed.  
 
 
 
Figure 7. PRI Sampling Control (see 
[23] for specific details). Labwindows 
Feedback Server Architecture with 
Distributed CCC processing. The HMM 
learning (on-line) and SVM learning 
(off-line), denoted in orange, are 
network distributed for N-fold speed-
up, where N is the number of 
computational threads in the cluster 
network.  

 
A mixture of two DNA hairpin species (denoted {9TA, 9GC} in [2]) is examined in an 
experimental test of the PRI system [23]. In separate experiments, data is gathered for the 9TA 
and 9GC blockades in order to have known examples to train the SVM pattern recognition 
software. A nanopore experiment is then run with a 1:70 mix of 9GC:9TA, with the goal to eject 
9TA signals as soon as they are identified, while keeping the 9GC’s for a full 5 seconds (when 
possible, sometimes a channel-dissociation or melting event can occur in less than that time). 
The results showing the successful operation of the PRI system is shown in Fig. 8 as a 4D plot, 
where the radius of the event ‘points’ corresponds to the duration of the signal blockade (the 4th 
dimension). The result in Fig. 8 demonstrates an approximately 50-fold speedup on data 
acquisition of the desired minority species. 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. PRI Mixture Clustering Test with 4D plot [23]. The vertical axis is the event observation time, and the 
plotted points correspond to the standard deviation and mean values for the event observed at the indicated event 
time. The radius of the points correspond to the duration of the corresponding signal blockade (the 4th dimension). 
Three blockade clusters appear as the three vertical trajectories. The abundant 9TA events appear as the thick band 
of small-diameter (short duration, ~100ms) blockade events. The 1:70 rarer 9GC events appear as the band of large-
diameter (long duration, ~ 5s) blockade events. The third, very small, blockade class corresponds to blockades that 
partially thread and almost entirely blockade the channel.  
 

3.7 Generalized SVM with novel kernels 
The SVM implementations described involve SVM algorithmic variants, kernel variants, and 
chunking variants; SVM classification tuning metaheuristics; and SVM clustering 
metaheuristics. The SVM training metaheuristics enable use of the SVM’s confidence parameter 
to bootstrap from a strong classification engine to a strong clustering engine via use of label 
changes, and repeated SVM training processes with the new label information obtained. 

SVM Methods and Systems are given for classification, clustering, stochastic sequential analysis 
and nanopore transduction detection, with a broad range of applications: sequential-structure 
identification, pattern recognition, knowledge discovery, Bioinformatics, Nanopore Detector 
Cheminformatics, the nanopore transduction detection Nanoscope, and computational 
engineering with information flows using stochastic sequential analysis tools. 

 
In the Results we show a number of SVM classification algorithms and new SVM/metaheuristics 
bootstrap algorithms for clustering. SVMs are fast, easily trained, discriminators, for which 
strong discrimination is possible without over-fitting complications. SVMs are firmly grounded 
as variational-calculus based optimization methods that are constrained to have structural risk 
minimization (SRM), unlike neural net classifiers, such that they provide noise tolerant solutions 
for pattern recognition. An SVM determines a hyperplane that optimally separates one class from 
another, while the structural risk minimization (SRM) criterion manifests as the hyperplane 
having a thickness, or “margin,” that is made as large as possible in the process of seeking a 
separating hyperplane. The SVM approach thereby encapsulates model fitting and discriminatory 
information in the choice of kernel in the SVM, and a number of novel kernels are shown in Fig. 
9. SVMs are good at both classifying data and evaluating a confidence in the classifications 
given, which leaves an opening for use of metaheuristics to bootstrap into a clustering capability, 



as explored in a number of algorithmic variations in this paper. SVM use in clustering appears to 
be a very robust platform and, from initial results shown here, promises to be one of the best 
clustering approaches.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Comparative results are shown on performance of Kernels and algorithmic variants. The classification is 
between two DNA hairpins (in terms of features from the blockade signals they produce when occluding ion flow 
through a nanometer-scale channel). Implementations: WH SMO (W); Platt SMO (P); Keerthi1 (1); and Keerthi2 
(2). Kernels: Absdiff (a); Entropic (e); and Gaussian (g). The best algorithm/kernel on this and other channel 
blockade data studied has consistently been the WH SMO variant and the Absdiff and Entropic Kernels. Another 
benefit of the WH SMO variant is its significant speedup over the other methods (about half the time of Platt SMO 
and one fourth the time of Keerthi 1 or 2). 
 
3.8 SVM Tuning 
Our objective is to establish an automated tuning solution for SVM classification over a variety 
of novel kernel and algorithmic parameters. In Proof-of-Concept work, this has been done by 
implementing a genetic algorithm tuning procedure, where SVM performance on training data is 
used to define a fitness function. In initial efforts with genetic algorithm tuning (in analysis of 
channel current data), the genetic algorithm tuning results were as good as or better than those 
obtained by an expert manually. Alternative, easily distributed, tuning approaches will probably 
work well also, and are considered as needed in ongoing efforts, and include ACO, and other 
multi-agent distributed intelligence approaches (see descriptions in the next section). 
 
3.8.1 Simple heuristics for SVM Tuning 
Tuning is needed to optimize the choice of kernel & kernel-parameter used by the SVM. This is 
often handled simply by ranging over a collection of roughly 10 kernel types and each at roughly 
10 kernel parameter setting (where each is single-parameter kernel), and to do this only on 
smaller test sets in the training data, where the time complexity of the SVM training is directly 
tied to the training-kernel computation, which is quadratic in the number of training instances. 
Although caching can modify the assumptions on time-complexity, there is generally an 
approximately quadratic time-complexity in the size of the training instances regardless. 
Chunking must be used to break past this, or more extensive use of GPU capabilities (still need 
to eventually do chunking). Chunking algorithms will be shown to be effective, but susceptible 
to training-failure pathologies if certain safeguards aren’t observed, as will be discussed.  



 
Once the small test set is done on the initial kernel screening indicated above, a sub-set of kernel 
will emerge as best, and these are considered again with larger training sets, eventually allowing 
selection of a good choice of kernel and kernel parameter. More directed tuning paradigms 
typically involve simulated annealing in this setting (to be shown later). Algorithmic and 
implementation parameters can also be considered in the tuning, which means we now have a 
collage of different parameter types in a coupled optimization task. For this type of 
generalization, genetic algorithms have been applied with amazing success (but not shown in 
what follows). These more sophisticated tuning methods may not always be necessary in the 
SVM classification applications, but will allow for successful classifications in some situations 
where simple methods do not. In the SVM-based clustering methods to be described in what 
follows, these tuning methods generally play an important role.  
 
 
3.8.2 Metaheuristics – Parameter Search and Tuning 
 
Simulated Annealing 
Our ability to assess a score, or assign a fitness, allows for a collection of metaheuristics that 
basically reduce to ‘look around and take the best way forward’ via a series of tweaks. This isn’t 
possible for some problems, however, because the ‘looking around’ part isn’t that informative, 
e.g., the fitness landscape has sections that are at a fixed level (with noise variations about that 
level, for example). This is the larger problem of the simple globalization algorithm, via random 
restart: if the fitness landscape or configuration space is too large random restart won’t offer a 
solution, even if it can, in a reasonable amount of time. This is where more clever metaheuristics 
are involved, to extend to a global optimization algorithm. 
 
Global Optimization 
One of the weaknesses of the brute force random restart approach mentioned so far is that the 
tweak involved is with a bounded perturbative change, which may already exclude the 
possibility of reaching the solution sought (given the computational resources and a reasonable 
amount of time). So one generalization is to allow for tweaks that are unbounded, but in some 
perturbatively stable way, such as with a Boltzmann factor for regularization, and in doing so we 
arrive at the Simulated Annealing approach: 
 
Population-based metaheuristics 
In seeking global optimization metaheuristics we are starting to see more sophisticated 
configuration selection at the component level, on the one hand, and at the population level, on 
the other hand, especially as we work with the probabilistic simulated annealing approach and 
the history-based taboo approach, especially with the component-based versions of the latter. 
This is because the population and history aspects point to a general metaheuristics that operates 
on populations of configurations (or populations of ‘agents’ that interact as intermediaries to 
determining a configuration selection). The notion of ‘history’ also must address the conveyance 
of this information or ‘artefact’. In the case of ACO, described in what follows, this will be via 
stygmergy. 
 
 



Population with evolution 
A fixed-size (or size otherwise constrained) population of configurations can have a birth/death 
cycle or be static. If it has a birth/death cycle, one popular method is the evolutionary 
computation approach (Darwinian evolution; asexual reproduction): 
 
Metaheuristic: Evolutionary Optimization (Darwinian Evolution; asexual reproduction) 
Starting population of parent configurations (“parents”) undergoes initial selection according to 
cut-off (truncation selection) that is chosen. Those surviving produce offspring, typically via a 
simple configuration tweak mutation, and those child configurations (“children”) are then added 
to the pool of the current population. Repeat. 
  
Depending on algorithm, the parents may be selected against generationally also (such as for 
salmon). The reproduction step can be done by the population all at once (generationally), as 
described here, or individually, out-of-phase, as commonly done with the GA’s given next. 
 
Metaheuristic: Genetic Algorithm (Darwinian Evolution; sexual reproduction) 
Starting population of parent configurations (“parents”) undergoes initial selection according to 
cut-off (truncation selection) that is chosen.  
Those surviving produce offspring, typically via both simple configuration tweak mutation and 
non-local configuration component-level swapping, and those child configurations (“children”) 
are then added to the pool of the current population. 
Repeat. 
 
Both of the evolutionary algorithms have tuning parameters in their manner of iteration that shift 
between less reliance on what has been learned (random search) and strong use of existing 
information (highly directed gradient ascent). These parameters can be summarized as follows: 
 
Populations with interactions (and sub-populations, e.g., speciation) 
Once we consider that the configurations in a population may interact with one another, we have 
a situation where different sub-populations may be given (and now not trivially de-couple), i.e., 
speciation is possible in the evolutionary population. From there whole ecologies of evolutionary 
complexity can be developed. 
 
Population with swarm intelligence 
With population-based interactions have possible direct coordination between agents (sexual 
reproduction providing cross-over mutation in GA’s, as mentioned above, and swarm activity 
that provides global information to all agents with action defined accordingly to desired local and 
global swarm behavior, as defined in what follows: 
Metaheuristic: Particle swarm optimization (PSO) (Lamarckian Evolution) 
Particle swarm optimization (PSO) also takes its cue from Biology, but not from evolutionary 
model, but from a swarm model. Here the population is static (the other case than the birth/death 
cycle case), and there is no selection of any kind. Now the configurations in the population are 
themselves directly tweaked in response to new information obtained. This is a form of directed 
mutation and is part of a Lamarckian evolutionary paradigm. The configurations are often 
viewed as describing particles in a space and the configurations undergo directed mutation, 
‘motion’, in the configuration space, with motion towards the best known configuration, where 



three levels of knowledge are weighed in the balance: (i) the fittest configuration ascertained by 
a particular during its history; (ii) the fittest configuration ascertained by the informants of a 
particular particle (often just a randomly chosen set of particles); and (iii) the fittest configuration 
discovered by any particle.  
 
3.9 SVM Clustering 
The SVM-based clustering method (Fig. 10) makes use of the SVM-classifier convergence 
process. Single-convergence initialized clustering methods, involving label-flipping between 
SVM convergence training runs, have been studied previously and will be described in the 
Background Section. The single-convergence methods outperform other methods on the test sets 
considered, but in examining the clustering failures (albeit fewer than with parameterized 
methods), there appears to be room for improvement. Efforts to handle this with more 
sophisticated tuning have met with initial success [24]. A different approach is to initialize with 
information from multiple SVM convergences, with selection on training data based on 
algorithmic methods that leverage the clustering groupings indicated. This can be done to more 
effectively cluster, or cluster with less sophistication, and initial efforts along these lines have 
been very promising. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10. SVM-external Re-labeling procedure for clustering. 

 
 
 
 
 
 
 
 
 
4 Results 
 
4.1 Finite State Automaton Results 



 
4.1.1 Holistc Tuning 
The FSA in Fig. 1 enables acquisition of localizable channel current signals using ‘holistic’ tuning and 
‘emergent grammar’ tuning. This is an example of how a “holistic engine” of multiply connected 
variables/states/interactions can be used to acquire localizable signals. Here, the implementation of the 
engine entails a finite-state automaton (FSA), where running-time scales as O(L), where L is the length of 
the sequence data (i.e., the same time complexity as simply making a copy of the data). For acquisition 
we seek minimal feature identification comprising identification of signal beginnings and ends (and thus 
durations as well). Holistic tuning is done by testing global features, such as the signal acquisition 
numbers, as different parameters are considered over a reasonable range of values (see Fig. 11). Part of 
the trick with holistic tuning is the design of the initial tuning state, e.g., multiple parameters must be 
within their ‘lock range’ on tuning parameters analogous to the PLL lock-range constraint.  

 

 

 

 

 

 

 

 

 

 

 
Fig.11. Tuning on ‘start_drop_value for a collection of DNA hairpins with 6 base-pair stem length. 

 
4.1.2 Other tuning methods 
Emergent grammar tuning is described in [2,22], where it is used to establish the lowpass 
filtering cut-off. As the name suggests, a collection of states are defines and a sequence of those 
states is observed. As the state defintisions are broadened, such as with bin-merging on binned 
emission values, then a grammar may emerge from from the sequence of observations. Once a 
lock-range is established on an emergent grammar structure, other tuning can be performed. 
 
Emergent phenomenology tuning is akin to emergent grammar tuning, but now the tuning over 
state definitions, or groupings, is used to encompass a range of phenomenological models and 
SCW information flows (rather than grammar models). In some respects this is the underlying 
approach that has provided the ‘laws’ of physics, where the scientific method drives the tuning 
process. In the context of signal analysis, however, this is a very weakly informed situation, a 
method of last resort unless some specific phenomenomly is known to be involved and the 
tuning can be constrained appropriately. Due to the latter, practical usage limitation, the 
emergent phenomenology tuning approach is also referred to as the DarkStar Approach -- named 
after 1974 film Dark Star that ends with crew trying to teach an AI superbomb phenomenology 
in order to defuse it, the AI eventually learns a phenomenology, but not the one desired, and 



explodes. Same problem here, the approach may identify a structure, but obtaining one 
considered relevant or desirable is another problem. 
 
4.1.3 Spike detection 
The spike detector software is designed to count “anomalous” spikes, i.e., spike noise not attributable to 
the gaussian fluctuations about the mean of the dominant blockade-level. Spike count plots are generated 
to show increasing counts as cut-off thresholds are relaxed (to where eventually any downward deflection 
will be counted as a spike). The plots are automatically generated and automatically fit with 
extrapolations of their linear phases (exponential phases occur when cut-offs begin to probe the noise 
band of a blockade state – typically gaussian noise “tails”). The extrapolations provide an estimate of 
“true” anomalous spike counts. 
 
In Fig. 12 are shown the automatically generated plot of spike characteristics for blockade data when 
DNA hairpins were examined, one radiated and one not. The plots are automatically generated and 
automatically fit with extrapolations of their linear phases (exponential phases occur when cut-offs begin 
to probe the noise band of a blockade state – typically gaussian noise “tails”). The extrapolations provide 
a stable, “robust”, estimate of anomalous spike counts. By this method, the non-radiated DNA exhibited a 
full-blockade “spike” from its lower-level blockade with a frequency of  5 spikes per second (indicating a 
fraying of the blunt ended terminus of the molecule at that rate). For the radiated molecule the frequency 
of spikes was 15 spikes per second, indicating a much greater fraying rate (dissociation of the terminal 
base-pair), consistent with that molecule being weakened by radiation such that its terminal base-pair 
frays more frequently. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12. The time-domain FSA shown in Fig. 1 is used to extract fast time-domain features, such as "spike" blockade 
events. Automatically generated "spike" profiles are created in this process. One such plot is shown here for a 
radiated 9 base-pair hairpin, with a fraying rate indicated by the spike events per second (from the lower level sub-
blockade). Results: the radiated molecule has more "spikes" which are associated with more frequent "fraying" of 
the hairpin terminus--the radiated molecules were observed with 17.6 spike events per second resident in the lower 
sub-level blockade. 
 
 
 
 
 
4.2 Generalized HMM Results 
 



4.2.1 The SSA Protocol 
 
The sequence of algorithmic methods used in the SSA Protocol comprise a weakness recovery 
protocol: (i) the weakness in the FSA methods will be shown to be its difficulty in strong 
structure identification (especially non-local structure), for which HMM methods (and tuning 
metaheuristics) are the solution. (ii) for the HMM, in turn, the main weakness is in local sensing 
‘classification’, and as a classification problem, the problem can be solved via incorporation of 
generalized SVM methods. If facing a classification task independent of a prior signal processing 
need, the SVM will also be the method of choice in what follows. (iii) The weakness of the 
SVM, whether used for classification or clustering, but especially for the latter, is the need to 
optimize over algorithmic, model (kernel), chunking, and other process parameters during 
learning. This is solved via use of metaheuristics for optimization such as simulated annealing, 
genetic algorithm optimization, particle swarm optimization, etc. (iv) The main weaknesses in 
the metaheuristic effort is partly resolved via use of the “front-end” methods, like the FSA, and 
partly resolved by a knowledge discovery process (that can be done using the SVM clustering 
methods). The weakness recovery protocol, thus, comes full circle, thereby establishing a robust 
signal processing platform. 

 

The SSA Protocol tries to associate acquisition, feature extraction, classification, and clustering 
tasks with their most appropriate machine learning method, given the data, the noise properties, 
the operational time-constraints, and other constraints involved. Since data processing is often 
encountered in stages, the decomposition described in what follows is in terms of stages for 
acquisition, feature extraction, classification, and clustering, but the methods can have more 
complex seqneces of operation or embedded operation in another method, etc., as is described, to 
some extent, in what follows as well. 
 
(Stage 1) primitive feature identification: this stage is typically finite-state automaton based, 
with feature identification comprising identification of signal regions (critically, their beginnings 
and ends), and, as-needed, identification of sharply localizable ‘spike’ behavior in any parameter 
of the ‘complete’ (non-lossy, reversibly transformable) classic EE signal representation domains: 
raw time-domain, Fourier transform domain, wavelet domain, etc. (The methodology for spike 
detection is shown applied to the time-domain in [3].) Primitive feature extraction can be 
operated in two modes: off-line, typically for batch learning and tuning on signal features and 
acquisition; and on-line, typically for the overall signal acquisition (with acquisition parameters 
set – e.g., no tuning), and, if needed, ‘spike’ feature acquisition(s).  
 
The FSA method that is primarily used in the channel current cheminformatics signal discovery 
and acquisition is to identify signal-regions in terms of their having a valid ‘start’ and a valid 
‘end’, with internal information to the hypothesized signal region consisting, minimally, of the 
duration of that signal (e.g., the duration between the hypothesized valid ‘end and hypothesized 
valid ‘start’). One approach along these lines is a signal ‘fishing’ protocol “ …constraints on 
valid ‘starts’ that are weak (with prominent use of ‘OR’ conjugation) and constraints on valid 
‘ends’ that are strong (with prominent use of ‘AND’ conjugation).” We underpin our approach to 
signal analysis in a fundamentally different way, however, although the signal fishing method 
indicated above is still used as needed. The FSA signal analysis methodology used here, for 
example, involves identifying anomalously long-duration regions. Identification of anomalously-



long duration regions in the more sophisticated Hidden Markov model representation would 
require use of a HMM-with-duration to not lose the information on the anomalous durations, 
which is one of the application areas for the HMMBD method (described in the Methods). 
 
Once identification rules, often threshold-based, are established for the signal starts and signal 
ends, then those definitions can be explored/used in signal acquisition. As those definitions are 
tuned over, by exploring the different signal acquisition results obtained with different parameter 
settings, the signal acquisition counts can undergo radical phase transitions, providing the most 
rudimentary of the holistic tuning methods on the primitive feature acquisition FSA. By 
examining those phase transitions, and the stable regimes in the signal counts (and other 
attributes in more involved holistic tuning), the recognition of good parameter regimes for 
accurate acquisition of signal can be obtained. As more internal signal structure is modeled by 
the FSA, the holistic tuning can involve more sophisticated tuning recognition of emergent 
grammars on the signal sub-states. The end-result of the tuning is a signal acquisition FSA that 
can operate in an on-line setting, and very efficiently (computation on the same order as simply 
reading the sequence) in performing acquisition on the class of signals it has been ‘trained’ to 
recognize. On-line learning is possible via periodic updates on the batch learning state/tuning 
process. For typical SSA (and CCC) applications, the tFSA is used to recognize and acquire 
‘blockade’ events (which have clearly defined start and stop transitions). 
 
A computationally ‘expensive’ HMM signal acquisition at Stage 1 may be necessary for very 
weak signals, for example, if the typical Stage 1 methods fail. In this situation the HMM will 
probably have a very weak signal differential on the different signal classes if it were to attempt 
direct classification (and eliminate the need for a separate Stage 3). In this setting, the HMM 
would probably be run in the finest grayscale generic-state mode, with a number of passes with 
different window sample sizes to ‘step through’ the sequence to be analyzed. Then, there are two 
ways to proceed: (1) with a supervised learning ‘bias’, where windows on one side of a ‘cut’ are 
one class, and those on the other side the other class, can the SVM classify at high accuracy on 
train/test with the labeled data so indicated. If so, a transition is identified. In (2) the idea is to 
use an unsupervised learning SVM-based clustering method where we look for a strong knife-
edge split on clustered populations along the sequence of window samples. When this occurs, 
there is a strong identification of a transition. Since regions are identified (delineated) by their 
transition boundaries, we arrive at a minimally-informed means for state and state-transition 
discovery in stochastic sequential data involving HMM/SVM based channel current signal 
processing. 
 
(Stage 2a) feature identification and feature selection: this stage in the signal processing 
protocol is typically Hidden Markov model based, where identified signal regions are examined 
using a fixed state HMM feature extractor or a template-HMM (states not fixed during template 
learning process where they learn to ‘fit’ to arrive at the best recognition on their train-data, the 
states then become fixed when the HMM-template is used on test data). The Stage 2 HMM 
methods are the central methodology/stage in the CCC protocol in that the other stages can be 
dropped or merged with the Stage 2 HMM in many incarnations. For example, in some data 
analysis situations, the Stage 1 methods could be totally eliminated in favor of the more accurate 
HMM-based approach to the problem, with signal states defined/explored in much the same 
setting, but with the optimized Viterbi path solution taken as the basis for the signal acquisition 



structure identification. The reason this is not typically done is that the FSA methods sought in 
Stage 1 are usually only O(T) computational expense, where ‘T’ is the length of the stochastic 
sequential data that is to be examined. The typical HMM Viterbi algorithm, on the other hand, is 
O(TN2), where ‘N’ is the number of states in the HMM. Stage 1 provides a faster, and often 
more flexible, means to acquire signal, but it is more hands-on. If the core HMM/Viterbi method 
can be approximated such that it can run at O(TN) or even O(T) in certain data regimes, for 
example, then the non-HMM methods in stage 1 could be phased out. Such HMM approximation 
methods are described in the Methods, and present a data-dependent branching in the most 
efficient implementation of the protocol. If the data is sufficiently regular, direct tuning and 
regional approximation with HMM’s may allow Stage 1 FSA methods to be avoided entirely. 
For general data, however, some tuning and signal acquisition according to Stage 1 will be 
needed (possibly off-line) if only to then bootstrap (accelerate) the learning task of the HMM 
approximation methods. 
 
The HMM emission probabilities, transition probabilities, and Viterbi path sampled features, 
among other things, provide a rich set of data to draw from for feature extraction (to create 
‘feature vectors’). The choice of features is optimized according to the classification or clustering 
method that will make use of that feature information. In typical operation of the protocol, the 
feature vector information is classified using a Support Vector Machine. This is described in 
Stage 3 to follow. Once again, however, the Stage 3 classification could be totally eliminated in 
favor of the HMM’s log likelihood ratio classification capability at Stage 2, for example, when a 
number of template HMMs are employed (one for each signal class). This classification 
approach is inherently weaker and slower than the (off-line trained) SVM methodology in many 
respects, but, depending on the data, there are circumstances where it may provide the best 
performing implementation of the protocol. 
 
(Stage 2b) Stochastic carrier wave encoding/decoding 
Using HMMBD, we have an efficient means to establish a new form of carrier-based 
communications where the carrier is not periodic but is stochastic, with stationary statistics. The 
HMMBD algorithmic methodology, [8], enables practical stochastic carrier wave 
encoding/decoding with this method. 
 
Stochastic carrier wave signal processing is also encountered at the forefront of a number of 
efforts in nanotechnology, where it can result from establishing or injecting signal modulations 
so as to boost device sensitivity. The notion of modulations for effectively larger bandwidth and 
increased sensitivity is also described in [21]. Here we choose modulations that specifically 
evoke a signal type that can be modeled well with a HMMD but not with a HMM. This is a 
generally applicable approach where conventional, periodic, signal analysis methods will often 
fail. Nature at the single-molecule scale may not provide a periodic signal source, or allow for 
such, but may allow for a signal modulation that is stochastic with stationary statistics, as in the 
case of the nanopore transduction detector.  
 
(Stage 3) classification: this stage is typically SVM based. SVMs are a robust classification 
method. If there are more classes to discern than two, the SVM can either be applied in a 
Decision Tree construction with binary-SVM classifiers at each node, or the SVM can internally 
represent the multiple classes, both are done in proof-of-concept experiments that are described. 



Depending on the noise attributes of the data, one or the other approach may be optimal (or even 
achievable). Both methods are typically explored in tuning, for example, where a variety of 
kernels and kernel parameters are also chosen, as well as tuning on internal Karush-Kuhn-Tucker 
(KKT) handling protocols. Simulated annealing and genetic algorithms have been found to be 
useful in doing the tuning in an orderly, efficient, manner. If the feature vectors produced 
correspond to complete data information/profiling in some manner, which is explicitly the case 
in a probability feature vector representation on a complete set of signal event frequencies 
(where all the feature ‘components’ are positive and sum to 1), then kernels can be chosen that 
conform to evaluating a measure of distance between feature vectors in accordance with that 
notion of completeness (or internal constraint, such as with the probability vectors). Use of 
divergence kernels with probability feature vectors in proof-of-concept experiments have been 
found to work well with channel blockade analysis and is thought to convey the benefit of having 
a better pairing of kernel and feature vector, here the kernels have probability distribution 
measures (divergences), for example, and the feature vectors are (discrete) probability 
distributions. 
 
(Stage 4) clustering: this stage is often not performed in the ‘real-time’ operational signal 
processing task, as it is more for knowledge discovery, structure identification, etc., although 
there are notable exceptions, one such being the jack-knife transition detection, via clustering 
consistency with a causal boundary. This stage can involve any standard clustering method, in a 
number of applications, but the best performing in the channel current analysis setting is often 
found to be an SVM-based external clustering approach (see [24]), which is doubly convenient 
when the learning phase ends because the SVM-based clustering solution can then be fixed as 
the supervised learning set for a SVM-based classifier (that is then used at the operational level).  
 
4.2.2 Stochastic Carrier Wave Communications 
The original description of an explicit HMMD required computation of order O(TN2+TND2) 
[13] (where T is the sequence length to be examined, N is the number of states in the 
HMM/HMMD model, and D is the maximum duration length allowed in the HMMD model). 
The ‘D2’ term made the original approach prohibitively computationally expensive in practical, 
real-time, operations, and introduced a severe maximum-duration constraint on the duration-
distribution model. Improvements via hidden semi-Markov models to computations of order 
O(TN2+TND) are described in [15,16], where the maximum-interval constraint is still employed, 
and comparisons of these methods were subsequently detailed in [17]. In [8] we show that 
O(TN2+TND*) is possible with the HMMBD algorithm, where D* is the number of binned 
length states. The HMMBD implementation brings the HMMD modeling within the range of 
computational viability for many applications. In the HMMBD approach we also eliminate the 
maximum-duration constraint. We can often reduce to a bin representation with D*<10, such that 
D*<<N in many situations, in which case that the HMMBD requires computations of order 
O(TN2), the same as for the HMM alone.  

 
One important application of the HMM-with-duration method used in the CCC context [3,22] 
includes kinetic feature extraction from EVA projected channel current data (the HMM-with-
Duration is shown to offer a critical stabilizing capability). The EVA-projected/HMMD 
processing offers a hands-off (minimal tuning) method for extracting the mean dwell times for 



various blockade states (the core kinetic information on the blockading molecule’s channel 
interactions). We have synthetically generated data where we employ the HMM’s generative 
capability to generate signal profiles with the stationary statistics indicated in the model (to 
synthetically generate signals like that seen in current NTD experiments, e.g., with the same 
stationary statistics). The synthetic data allows NTD situations to be simulated where multiple 
channels, or other noise sources, might be present. In [3], experiments with synthetic data with 
two blockade levels were considered, with lifetime in each level determined by a governing 
distribution (Poisson and Gaussian distributions with a range of mean values were considered). 
The results clearly demonstrate the superior performance of the HMMD over the simpler 
standard HMM formulation on data with non-geometrically distributed same-state interval 
durations. In the stochastic carrier wave context this describes a means to discern carrier with 
HMMD (while with HMM alone we are much weaker in this regard and cannot robustly discern 
carrier). With use of the EVA-projection method, this also affords a robust means to obtain 
kinetic-type feature extraction. The HMM with duration is critical for accurate kinetic feature 
extraction when using EVA, and the results in [3] suggest that this problem can be elegantly 
solved with a pairing of the HMM-with-Duration stabilization with EVA-projection. 

 

In [3] we describe a state-decoding on synthetic data that is representative of a biological-
channel, two-state ion-current decoding problem, or an encode/decode software radio signal. For 
this problem 120 data sequences were generated that have two states with channel blockade 
levels set at 30 and 40 pA (a typical scenario in practice). Every data sequence has 10,000 
samples. Each state has emitted values in a range from 0 to 49 pA. The maximum duration of 
states is set at 500. The mean duration of the 40 pA state is given as 200 samples (typically have 
one sample every 20 microseconds in actual experiments), while the 30 pA level has mean 
duration set at 300 samples. The task is to train using 100 of the generated data sequences and 
attempt state-decoding on the remaining 20 data sequences. The performance difference is stark: 
the exact and adaptive HMMD decodings are 97.1% correct, while the HMM decoding is only 
correct 61% of the time (where random guessing would accomplish 50%, on average, in a two-
state system).  
 
4.2.3 Holographic HMMs -- multi-track HMMs with generalized clique, maximally 
interpolated, with minimum-size meta-state constraints 
The label and other counts described in what follows (Tables 1-5), show statistical support for a 
two-track HMM with generalized clique, with the meta-states indicated for the C. elegans 
Genome. Consider exon forward read labels made according to (012) frame: 0, 1, 2. Likewise, 
consider exon reverse read labels according to (CBA) frame: A, B, C. For intron in forward 
gene: use ‘i’ for the label. For intron in reverse gene: use ‘I’ for the label. For non-coding, non-
intron, ‘junk: use ‘j’ for the label. There are, thus, 9 labels: (0,1,2,A,B,C,i,I,j) in the “single-
track” label scheme. The first chromosome of C. elegans has 14,025,570 bases, and with 
annotation according to the above label scheme, the counts on different labels are shown in Table 
1: 
 
0   571,187 A  518,431 I   1,634,653 
1   571,187 B  518,431 i   1,779,392 
2   571,187 C  518,431 j   7,336,733 
Table 1. Counts on Labels.  



 

For the 9-label alphabet used in the annotation we find 25 transitions between labels (see Table 
2), or transition “states”, with the following counts showing consistency with the 25 ‘allowed 
transition’ out of 9x9=81 possible (i.e., only 25 transitions with nonzero counts): 
 
01 569,483 BA 516,874 II 1,628,572 
12 569,490 CB 516,868 ii 1,772,795 
20 566,732 AC 514,309 jj 7,334,177 
0i 1,704     i1 1,704* IA 1,557  BI 1,557 j0 1,257  2j 1,257 
1i 1,696     i2 1,696 IB 1,563  CI 1,563 Aj 1,161  jC 1,161 
2i 3,197     i0 3,197 IC 2,961  AI 2,961  
Table 2. Counts on Transitions.  

The label convention on introns is such that a sequence of transitions between to the next exon 
might look like the following: …20 0i ii ii ii ii ---- ii i1 12 20 01 …., thus it is expected that the 
number of 0i transitions will equal the number of i1 transitions, etc., as is verified above. 
 
Now suppose that there were multiple annotations regarding the labeling of a base (i.e., 
alternative splicing). As the genome is traversed in the forward direction, gene annotations not in 
conflict with annotations already seen are used to determine labels on the first label track. If a 
gene annotation is in conflict (an alternative splicing), then its label information is recorded on a 
second, adjacent, label track. The above tables are actually the label counts on track one, in Table 
3 below are the label counts on track two (where the default base label is taken to be ‘j’): 
 
0   21,599 A  64,475 I   325,471 
1   21,599 B  64,471 i   81,289 
2   21,599 C  64,467 j   13,354,661 
Table 3. Counts on Track ‘2’ Labels.  

Since the j count on track two is 13,354,661, this indicates that about 5% of the coding regions in 
the first chromosome of C. elegans have alternate splicing at the coding base level. The counts 
on Track 2 transitions are shown in Table 4. 
 
01 21,554 BA 64,296 II 324,751 
12 21,548 CB 64,275 ii 81,073 
20 21,441 AC 63,986 jj 13,354,350 
0i 45     i1 45 IA 175  BI 175 j0 38       2j 38 
1i 51     i2 51 IB 192  CI 192 Aj 136     jC 136 
2i 120   i0 120 IC 353  AI 353  
Table 4. Counts on Track ‘2’ Transitions.  

Consider the preliminary results on the alternative splice data in a new way. Now let us consider 
a label scheme that is truly multi-track insofar as integrating with the HMM hidden label 
formalism. For this, consider the ‘V-label’ -- the two-element “vertical” label comprising the 
track 1 and 2 values. So if a base has label ‘0’ on track 1 and label ‘A’ on track 2, its V-label is 
‘V0A’. 72 V-labels are found to have nonzero counts (out of 9*9=81 possible). Most of the V-
labels describe an overlap of noncoding on one track with coding on the other track. These are 
the counts on V-labels describing coding region overlaps, shown in Table 5: 

 



V00, V11, V22   17,839 VA0, VB2, VC1   0 V0A, V1C, V2B   741 VAA, VBB, VCC   16,169 
V01, V12, V20   3 VA1, VB0, VC2   0 V0B, V1A, V2C   957 VAB, VBC, VCA   0 
V02, V10, V21   58 VA2, VB1, VC0   829 V0C, V1B, V2A   5164 VAC, VBA, VCB   54 

Table 5. Counts ‘Vertical” labels (V-labels), consisting of the track 1 and track 2 labels at a 
particular emission instance being grouped as (track 1 label)(track 2 label), of which only 72 out 
of 81 possible have non-zero counts and the nontrivial coding-coding overlaps are shown here. 
Notice how the V-labels tend NOT to favor simple frame-shifts in a given read direction (i.e., the 
V01 count is very low compared to V00, etc.). 

 

Some of the 263 ‘V-transitions’ only have one count, and an analysis indicates that other, similar 
type transitions may be allowable as well. The initial model that we will adopt has the following 
two-track transition overlap rules: (1) if coding overlaps and has the same read direction it must 
have same framing; (2) transitions between coding and non-coding (‘eij-transitions’) can only 
overlap other transitions between coding and non-coding if half in agreement (the signature of a 
common splice variant); (3) transitions between coding and non-coding can overlap coding to 
coding transitions (coding ‘xx-transitions’) regardless of frame mismatch; (4) non-coding to non-
coding transitions  (coding ‘xx-transitions’) can overlap any other transition. This leads to 389 
V-transitions, with 320 eij-transitions and 69 xx-transitions. In the clique-generalized version of 
the 389-element ‘base model’ the states grow as N=69+320(F-1), where ‘F’ is the size of the 
clique ‘footprint’ state, and the order of computation for the footprint-size F meta-HMM scales 
as 320*F (not N2). The 389 V-transitions present a notable reduction from the 25x25 possible 
overlaps (625 total). This is a tractable number of states to manage in the HMM analysis, 
suggesting a simple and direct approach to alternative splice HMM analysis. The 389 V-
transitions do not require 389 independent tables -- 311 independent tables are needed, and this is 
the same even for the N-element footprint state versions, where many of the xx-transitions and 
eij-transitions have merged counts (and shared look-up tables), just as with the 25-transition 
model having 11 independent tables in the original clique-generalization analysis [9]. Although 
sufficient support for statistical modeling is already at hand, improvement to the V-transitions 
statistical model can also be pursued by incorporating information from related genomes (such as 
C. Briggsae).  

 

4.2.4 Distributed HMM processing via ‘Viterbi-overlap-chunking’ with GPU speedup 
Distributed processing has been done by use of simple chunking with overlaps ‘sufficient’ for 
recovery, where the details of the latter are described in what follows. A central Viterbi-like 
feature of the chunking methods employed is first described: the table chunking methods for the 
dynamic programming algorithms that have been developed involve only a single-pass 
computation analogous to the Viterbi algorithm (ignoring O(L) traceback) [1]. The Viterbi 
algorithm efficiently calculates the most probable state path. The Baum-Welch algorithm 
calculates the probability of having a state at a particular index, summing over all path 
probabilities that arrive at that state-instance, and is usually implemented as two passes, for the 
forward and backward parameters. In the Linear Memory HMM introduced in [25], however 
(see Methods),the Baum-Welch implementation has a distinctive trait other than a linear memory 
implementation, it’s also a ‘single-pass’ implementation for the algorithm, which is needed for 
the Viterbi single-pass referenced, overlap-stitched, reconstituted signal in a distributed 



processing setting (see Methods for details). This can used be for brute force, and massively 
scalable, computational speed-up on all the HMM-based algorithms used in the SSA Protocol. 
 
Single-Pass Table Algorithm 
The table chunking methods for the dynamic programming algorithms that are described in what 
follows make use of a single-pass computation analogous to the Viterbi algorithm (ignoring O(L) 
traceback). In the Linear Memory HMM introduced in [25], and described below, the Baum-
Welch algorithm implementation has a distinctive trait other than a linear memory 
implementation; itis also a ‘single-pass’ implementation.  
 
Following the notation used in [25], ti,j(t,m) is the weighted sum of probabilities of all possible 
state paths that emit subsequence b1,…,bt and finish in state λt = m, taking an λt=i  λt+1=j   
(ij) transition at least once (for some t) where the weight of each state path is the number of 
ij transitions that it takes. Processing of the entire ti,j(t,m) recurrence takes memory 
proportional to O(NQ) and processor time O(TNQQmax). 
 
Initially, since no transitions have been made, ti,j(1,m)=0. After initialization we have the 
following recurrence steps 
 

ti,j(t,m) = fi(t-1) aim em(bt)δ(m=j)+ ∑ ti,j�t-1,n�𝑁
𝑛=1  anm em(bt) 

 
The computation is in-step with the forward variable as a single-pass computation, where the 

delta function is defined as: δ(m=j)= � 1, 𝑖𝑓 𝑚 = 𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� . At a certain time moment t we need to 

score the evidence supporting transition between nodes i and j, which is the sum of probabilities 
of all possible state paths that emit subsequence b1,…,bt-1, and finish in state i (forward 
probability fi(t-1)), multiplied by transition aij and emission ej(bt) probabilities upon arrival to bt. 
We extend the weighted paths containing evidence of ij transitions made at previous time 
moments 1,…,t-1 further down the trellis in the second part of the equation above. Finally, by the 
end of the recurrence, we marginalize the final state m out of probability ti,j(T,m) to get a 
weighted sum of state paths taking transition ij at various time moments. Thus, we estimate 
transition utilization using 

aij = ∑ ti,j(T,m)𝑁
𝑚=1

∑ ∑ ti,j(T,m)𝑁
𝑚=1𝑗∈𝑜𝑢𝑡(𝑠𝑡𝑎𝑡𝑒 𝑖)

, 

where out(state i) of nodes connected by edges from state i. 
 
The following algorithm updates the ‘emission’ parameters for the set of discrete symbol 
probability distributions E={e1(b),…, eN(b)} in O(NED) memory and O(TNEDQmax) time. 
According to [25], ei(b,t,m) is the weighted sum of probabilities of all possible state paths that 
emit subsequence b1,…,bt and finish in state m, for which state i emits observation b at least once 
where the weight of each state path is the number of b emissions that it makes from state i. 
Initialization step: ei(b,1,m)= fmlδ(i=m)δ(b=b1). After initialization we make the recurrence 
steps, where we correct emission recurrence presented in [26]: 
 

ei(b,t,m)= fmtδ(i=m)δ(b=bt) + ∑ ei(𝑏, 𝑡 − 1,n)𝑁
𝑛=1  anm em(bt) 



 

Finally, by the end of the recurrence, we marginalize the final state m out of 
ei(b,T,m) and estimate the emission parameters through normalization 

ej(b)=  ∑ ei(b,T,m)𝑁
𝑚=1  

∑ ∑ ei(b,T,m)𝑁
𝑚=1

𝐷
γ=1

, 

The forward sweep takes O(TNQmax) time, where only the values of fi(t-1) for 1≤i≤N are needed to 
evaluate fit, thus rendering memory requirement to O(N)for the forward algorithm. Computing 
ei(b,t,m) takes O(NED) previous probabilities of ei(b,t-1,m) for 1≤m≤N, 1≤i≤E, 1≤b≤D. 
Recurrent updating of each ei(b,t,m) probability elements takes O(Qmax) summations, totaling 
O(TNEDQmax).  
 

Chunking with overlap resolution 
In HMM signal processing latency becomes very prohibitive when attempting to increase device 
bandwidth or when input datasets are large. Described in what follows are results from 
performing HMM algorithms in a distributed manner by breaking into overlapping chunks and 
leveraging the Markovian assumption underlying the HMM to help arrive at a chunk-data 
reconstruction. The pathological instances where the distributed merges can fail to exactly 
reproduce the non-distributed HMM calculation can be made as least likely as desired with 
sufficiently strict, but not computationally expensive, segment join conditions. In this way, the 
distributed HMM provides a feature extraction that is equivalent to that of the sequentially run, 
general definition HMM, and with a speedup factor approximately equal to the number of 
independent CPUs operating on the data. The Viterbi most probable path calculation and the 
Expectation/Maximization (EM) calculation can both be performed in this distributed processing 
context.  

The linear memory implementation described above (and in [26]) was optimized according to the 
observation that Viterbi traceback paths in the Viterbi procedure typically converge to the most 
likely state path and travel all together to the beginning of the decoding table – the picture being 
much like a river with minor tributaries backtracking onto that river, and maybe those 
‘tributaries’ themselves have more minor state paths converging into them, etc. But the trait that 
is most notable in the convergence-durations to the ‘main-tributary’, or what is to be the most 
likely (Viterbi) path, is that it is usually a modest number of columns for many data types. This 
backwards Markovian memory loss on a tributary with respect to its origin (said to occur when 
backtracked and mixed with the main, Viterbi, convergence path of the tributaries) is 
hypothesized to be an indicator of the span of sequence needed to have Viterbi path probabilities 
in a given column that have settled into their properly ordered relative probabilities in that 
column. Further column processing refinement to bring the relative values of the Viterbi-path 
probabilities into better estimation is then possible. In distributed processing efforts, this “Viterbi 
relaxation time” is a key parameter that can be used to design an optimally overlapping chunking 
of the data sequence in a distributed speed-up on the sequence analysis.  

 

A distributed signal processing test of some basic chunk reconstruction heuristics was performed 
on 5 computers with 300 signals. Each signal had 5000 samples. The resulting viterbi paths 
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matched between the distributed HMM and standard HMM on a 10-column segment. For the 
standard HMM, EM training (5 loops) the Viterbi algorithm took 272 seconds. For distributed 
HMM with 5 CPU’s, the computational time was reduced to 69 seconds. So using 5 computers, 
we had a speedup of 3.94.  A perfect de-segmentation was performed with an N=10 match 
window as indicated, initally, but it was found that a perfect re-stitching of segments was also 
possible simply with N=1 (see Fig. 13), due to the implicit stringency of the simultaneity 
condition (the overlap match, at the one position corresponding to N=1, must globally index to 
the same observation data index for both segments). The multi-chunk re-stitching makes use of 
the Viterbi path and the entire set of Viterbi traceback pointers in a given overlap set of columns 
[1]. 

 

Figure 13. Viterbi column-
pointer match de-segmentation 
rule. Table1 and Table2 are 
overlapped. And their blue 
columns have the same pointers. 
Then the index of this blue column 
becomes the joint. The black 
pointers form the final viterbi path. 

 
 

 

4.3 Support Vector Machine Results 
 
4.3.1 SVM Feature-Set Robustness 
In a parallel datarun to that indicated in Fig. 14, with 150 component feature vectors, feature 
vectors with the full set of 2600 components were extracted (i.e., no compression was employed 
on the transition probabilities). SVM performance on the same train/test data splits, but with 
2600 component feature vectors instead of 150 component feature vectors, offered similar 
performance after drop optimization. This demonstrates a significant robustness to what the 
SVM can “learn” in the presence of noise if a small weak-data drop is allowed (where some of 
the 2600 component have richer information, but even more are noise contributors).  
 
Classification improvement with Adaboost taking the best 50 from the Inverted-emission 150 
feature set is shown in Fig. 14 as ‘First 50’ (above cutoff). An accuracy of 95% is possible for 
discriminating 9GC from 9TA hairpins with no data dropped with use of Adaboost. This 
demonstrates a significant robustness to what the SVM can “learn” in the presence of noise 
(some of the 2600 components have richer information, but even more are noise contributors). 
This also validates the effectiveness with which the 150 parameter compression was able to 
describe the two-state dominant blockade data found for the nine base-pair hairpin and other 
types of “toggler” blockades, as well as the utility of the inverted features.  
 



 
Fig. 14.  AdaBoosting to select 100 of the full set of 2600 features improves classification over just passing all 2600 
components to the SVM. The best performance is still obtained when working with the Adaboosting from the 
manual set. (A principal component analysis (PCA) is done on the HMM projection data. 90% of the PCA 
information is contained in the first 50 principal components. The first 50 principal components are also listed as a 
feature set.) 
 
4.3.2 SVM Clustering 
Single-convergence initialized SVM-clustering: cluster refinement using simulated annealing 
The data set is chosen to be an equal positives vs negatives sample of 200 8GC blockade signals and 200 
9GC blockade signals (see [27] for details about these molecules). Each feature vector is 150 dimensional 
and normalized to satisfy the L1 (norm = 1) constraint. Features from the 8 and 9 base-pair blockade 
signals were extracted using Hidden Markov Models (for details, see [2]). Although convergence was 
easily achieved with the SVM Relabeler algorithm (see [27]), convergence to a global optimum was not 
guaranteed. Fig. 15 illustrates the characteristic behavior of different possible solutions with the data sets 
indicated. At the end of a successful run of this algorithm it is hypothesized that the generalization error 
will be very small.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 15a. Training history on SSE for three types of clustering result: successful, unsuccessful; and locally 
successful. 
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Fig. 15b. Training history on cluster purity for three types of clustering result: successful, unsuccessful; 
and locally successful. 
 
 
 
In Fig. 16 a small value of Kernel-SSE (herein referred to as SSE) is shown to provide us with a reliable 
cluster validation measure.  
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(Bottom) 
 
 
Fig. 16 TOP. SVM clustering training run. BOTTOM. SVM clustering training parameters during the training 
process shown in TOP. 
 
The SVM-Relabeler algorithm does not use an objective function and the hope is that by running 
the algorithm in its purest form the resulting clusters are reliable solutions. However, running 
this algorithm in this basic fashion does not consistently provide us with a satisfying clustering 
solution. In fact, the solution space can be divided into three sets: successful, local-optimum, and 
unsuccessful (see Fig. 15). Unsuccessful solutions and local optima solutions are undesirable and 
the objective is to find a method to eliminate their usage by simply re-clustering for objectively 
improved clustering (via SSE scoring, for example). Since, the solutions in the unsuccessful set 
are expected to be easily identified in any experiment that calculates the SSE of a randomly 
labeled data set, they can be simply eliminated by post-processing. In a control experiment we 
have randomly labeled the dataset 5000 times and calculated the SSE distribution for the 
experiment. The resulting distribution has a good fit to Johnson’s SB distribution and is 
illustrated in the histogram of Fig. 17. Using a fitted distribution one can calculate the p-value of 
a given SSE. For a SSE threshold of 170.5 (accidentally very unlikely) we can directly eliminate 
the unsuccessful set. 
 
To substantially reduce the local optimum solutions, however, thresholding does not scale well. 
One solution is a to use a simple hill climbing algorithm which is to run the algorithm for a 
sufficiently long number of iterations to find the solution with the lowest SSE value. To do this 
the clustering algorithm is run repeatedly and randomly initialized every time. A solution is 
accepted as the best solution if it has a lower SSE than the previously recorded value. This can 
be a very slow learning process, and is a familiar scenario in statistical learning, and one of the 
popular solutions in those situations works well here as well – simulated annealing. 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 17. Plot of randomly generated SSE profiles for the type of feature vectors considered in the DNA molecule 
analysis. 
 
It is observed that random perturbation by flipping each label at some probability, ppert, is often 
sufficient to switch to another subspace where a better solution could be found. (Note that ppert = 
0.50 has the effect of random reinitialization and ppert = 1 flips the entire labels.) The hope is that 
perturbation with ppert ≤ 0.50 results in a faster convergence. Reliability can be achieved by 
searching through the solution space. To do this efficiently, Monte Carlo Methods could be used 
by taking advantage of perturbation to evaluate the neighboring configuration. The procedure 
described next uses a modified version of Simulated Annealing to achieve this desired reliability. 
 
As shown in Fig. 18 left, top panel, constant perturbation with ppert = 0.10 results in a local-
optimum solution that could be otherwise avoided by using a perturbation function depending on 
the number of iterations of unchanged SSE (Fig. 18 right, top panel). These results were 
produced using an exponential cooling function, Tk+1 = βkTk, with β = 0.96 and T0 = 10. The 
initial temperature, T0 should be large enough to be comparable with the change of SSE, ∆SSE, 
and therefore increase the randomness by making the Boltzman factor e − ∆SSE / T ≈ e0, while β (< 
1) should be large enough to speed up the cooling effect. 
 

 

 

 

 

 

 

 

 

 
Fig. 18. (left) Simulated annealing with constant perturbation, (right) Simulated annealing with variable 
perturbation. As shown in left, top panel, simulated annealing with a 10% initial label-flipping results in a local-



optimum solution. In the right panel this is avoided by boosting the perturbation function depending on the number 
of iterations of unchanged SSE (right, top panel). These results were produced using an exponential cooling 
function, Tk+1 = βkTk, with β = 0.96 and T0 = 10. 

 

In the effort shown in [27] it was found that random perturbation and hybridized methods (with 
more traditional clustering methods) could help stabilize the clustering method, but often at 
significant cost to its performance edge over other clustering methods (apparently due to getting 
stuck in local minima traps to which the other parametric clustering methods are susceptible). 
The ‘pure’ SVM-external clustering method appears to offer very strong solutions about half the 
time – which allows for optimization simply by repeated clustering attempts and looking for the 
most tightly clustered (smallest SSE) solution, which suggested a simulated annealing approach 
for greater computational efficiency, as shown in Fig. 18 (more recent Proof of Concept work 
with Genetic Algorithms not shown, but were found to exhibiting even stronger stability). 
Results of this effort (Fig. 18) significantly improve and stabilize the SVM clustering process.  

Given the wide variety of dissimilar tuning parameters in the SVM classification process alone, 
tests on SVM classification with genetic algorithm (GA) based tuning seems optimal. The very 
robust and rapid auto-tuning with the GA approach on SVM classification in initial tests strongly 
suggests that this, or any swarm intelligence search/tuning paradigms, offer important refinement 
to the SVM-classification efforts and critical refinement to the single-convergence initialization 
SVM-clustering efforts. As mentioned previously, however, we also have a more informed 
version of the process, as discussed in the next section. 

 

5 Discussion 
 
5.1 SCW in nanotechnology 
Recently developed HMM implementations, summarized in the Methods, allow a new form of 
carrier-based communications, where the carrier is not periodic but is stochastic with stationary 
statistics. The “stochastic carrier wave” approach is not only a means to understand the messages 
Nature provides (in near-equilibrium flow phenomenologies with stationary statistics), but also 
provides a hidden carrier method, enabling secure communications, making signal jamming 
much more difficult, and making signal location much more difficult. An algorithmic 
methodology that allows for 100-fold, or faster, implementation of a Hidden Markov model with 
duration (the HMMBD algorithm [8]), is critical to this encoding/decoding method.SCW 
communications are found at the forefront of a number of efforts in nanotechnology. This is 
because nature at the single-molecule scale has a signal modulation that is stochastic, sometimes 
with stationary statistics. Such is the case with the signal analysis in a nanopore transduction 
detector.  

 

If states have self-transitions with a notably non-geometric distribution on their self-transition 
‘durations’, then a fit to a geometric distribution in this capacity, as will be forced by the 
standard HMM, will be weak, and HMMD modeling will serve better. In engineered 
communications protocols, or in engineered, modulated, nanopore transduction detector signals, 
highly non-geometric distributions can be sought. One encoding scheme that is strongly non-
geometric in same-state duration distribution is Nature’s familiar long open-reading-frame 



(ORF) encoding found in genomic data. This suggests a similar ORF-like encoding scheme to 
establish a carrier duration peak in the self-transition distribution’s tail region, e.g., a second 
peak in the duration distribution (perhaps one even more skewed from the geometric distribution 
than the heavy-tail distributions found for ORFs).  

 

The NTD signal analysis demonstrates the simplest stochastic carrier wave utilization in a 
biophysics experimental setting – a stochastic phase modulation (with just two phases of 
stationary statistics). A minor elaboration on the signal analysis, to go from a simple two-state 
(bound/unbound) signal recognition to a two-phase SCW telegraph signal, then yields the 
rudimentary implementation for stochastic carrier communications purposes.  

 

5.2 NTD with multiple channels (or high noise) 
The nanopore transduction detection platform involves functionalizing a standard nanopore 
detector platform in a new way that is cognizant of signal processing and machine learning 
capabilities and advantages, such that a highly sensitive biosensing capability is achieved. In the 
NTD functionalization of the standard nanopore detector, we design a molecule that can be 
drawn into the channel (by an applied potential) but be too big to translocate, instead becoming 
stuck in a bistable ‘capture’ such that it modulates the ion-flow in the single nanopore channel 
established  in a distinctive way. An approximately two-state ‘telegraph signal’ is engineered for 
this purpose. If the channel modulator is bifunctional, in that one end is meant to be captured and 
modulate while the other end is linked to an aptamer or antibody for specific binding, then we 
have the basis for a remarkably sensitive and specific biosensing capability. The biosensing task 
is reduced to the channel-based recognition of bound or unbound NTD modulators. Preliminary 
results demonstrate successful application of this method in a streptavidin (toxin) detection 
scenario using a biotinylated DNA hairpin. In typical NTD biosensing there is only one 
(nanometer-scale) channel established in the detector apparatus, however, where other channels 
bridging the same membrane (bilayer) would do so in parallel with the first (single) channel. In a 
naïve setting, additional channel noise sources degrade sensitivity and offset gains from having 
multiple channel ‘receptors’. In the stochastic carrier wave encoding/decoding with HMMD, it 
may be possible to have multiple channels but avoid signal degradation such that the full 
benefits of a multiple receptor gain can be realized. 
In the NTD platform, sensitivity increases with observation time in contrast to translocation 
technologies where the observation window is fixed to the time it takes for a molecule to move 
through the channel. The key to the sensitivity and versatility of the NTD platform is the unique 
ability to couple real-time adaptive signal processing algorithms to the complex blockade current 
signals generated by the captured transducer molecule. The NTD approach can provide exquisite 
sensitivity and can be deployed in many applications where trace level detection is required.   

Consider the case where 100 parallel channels are in operation, a scenario that has the potential 
to increase the sensitivity of the NTD 100-fold, but the signal analysis typically becomes more 
challenging, and sensitivity gains limited,  since there are 100 parallel noise sources. The 
HMMD recognition of a transducer signal’s stationary statistics, however, is analogous to ‘time 
integration’ heterodyning a radio signal with a periodic carrier in classic electrical engineering, 
in that there is improved carrier-signal recognition with longer observation time.  In order to 
introduce a ‘time integration’ benefit in the recognition of a transducer signal, periodic (or 



stochastic) modulations may be introduced to the transducer environment. In a high noise 
background, modulations may allow some of the transducer states to have heavy-tailed, or 
multimodal, self-transition duration distributions. With these modifications to the signal 
processing software, a single transducer molecule signal is recognizable in the presence of 100s 
of channels. Increasing the number of channels by 100 and retaining the capability of 
recognizing a single transducer blockading one of those channels provides a direct gain in 
sensitivity according to the number of channels (e.g., 100 channels would provide a sensitivity 
boost of 100).  It is important to note that the increase in sensitivity is mostly implemented 
computationally and does not add complexity or cost to the NTD device itself. 

 

5.3 pMM/SVM sensor boosting in HMMs 
Markov-based statistical profiles, in a log likelihood discriminator framework, can also be used 
to create a fixed-length feature vector for SVM based classification [5]. Part of the idea of the 
method is that whenever a log likelihood discriminator can be constructed for classification on 
stochastic sequential data, an alternative discriminator can be constructed by ‘lifting’ the  log 
likelihood components into a feature vector description for classification by SVM. Thus, the 
feature vector uses the individual log likelihood components obtained in the standard log 
likelihood classification effort, the individual-observation log odds ratios, and ‘vectorizes’ them 
rather than sums them. The individual-observation log odds ratios are themselves constructed 
from positionally defined Markov Models (pMM’s), so what results is a pMM/SVM sensor 
method. This method may have utility in a number of areas of stochastic sequential analysis, 
including splice-site recognition and other types of gene-structure identification [1], file recovery 
in computer forensics (‘file carving’) , and speech recognition.  

 

6 Conclusions 
Hidden Markov models are a pervasive and fundamental tool in sequential data analysis and 
signal communications. Critical HMM tools have recently been improved via a number of 
computationally efficient generalizations. Generalized HMMDs that are clique-generalized and 
with side-information provide an efficient means to establish a new form of carrier-based 
communications, where the carrier is not periodic but is stochastic, with stationary statistics. The 
generalized HMMD algorithmic methodology enables practical stochastic carrier wave 
encoding/decoding. SCW type signal processing is encountered at the forefront of a number of 
efforts in science and nanotechnology, since Nature offers up stationary statistics in many near-
equilibrium situations and flow situations, and since engineered stationary statistics systems are 
common (such as with the  nanopore transduction detection examples).  

 

The recently improved signal processing and clique-scaling functionality with HMMs enables 
robust stochastic carrier wave signal processing, especially when implemented within the 
weakness recovery protocol outlined for the SSA Protocol described in the Results. The new 
stochastic carrier wave functionality described here offers a significant and new dimension to 
signal processing, with numerous applications. 
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