
Hidden Markov models for stochastic sequential
analysis and stochastic carrier-wave signal processing

Stephen Winters-Hilt1,2,*

1 Dept. of Computer Science, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA
2 Meta Logos Incorporated, 6218 Waldo Dr., New Orleans, LA 70122, USA

*email: winters@cs.uno.edu; winters@meta-logos.com

Abstract
Hidden Markov model methods for stochastic sequential analysis are described and a synergistic union is
presented to arrive at a new form of carrier-based communication, where the carrier is not periodic but is
stochastic, typically with stationary statistics. HMM with binned duration, and meta-HMM algorithmic
methods, are shown to enable practical stochastic carrier wave encoding/decoding, where stochastic carrier
wave signal processing is encountered in a number of settings in science and nanotechnology. Proof-of-
Concept applications in nanopore transduction detector signal analysis (for the nanopore transduction
detector ‘Nanoscope’) are described, as well as application in gene structure identification.

mailto:winters@cs.uno.edu�
mailto:winters@meta-logos.com�

1 Introduction
Previously developed methods for stochastic sequential analysis (SSA) are briefly
described in the Methods. The synergistic union of these methods is then used to
demonstrate a new approach to signal analysis with hidden Markov model (HMM)
methods, including a new form of stochastic-carrier wave (SCW) communication [1].
The Results include the description of the SSA Protocol and SCW communications,
where stochastic phase modulation (SPM), a simple form of SCW communication, is
encountered in engineered nanopore transduction detector experiments [1]. The Results
also describe holographic HMM and distributed HMM generalizations and
implementations. The Results, thus, show applications to both an inherently discrete state
models, such as with gene structure identification, and to a continuum range of
possibilities (general signal analysis), where a discrete state model is obtained via
quantization methods. It will be shown how the HMM with binned duration and meta-
HMM algorithmic methodologies (see Methods) enable practical SCW
encoding/decoding, where SCW signal processing is encountered in a number of settings
in science and nanotechnology.

Hidden Markov models are an amazing tool at the nexus where Bayesian probability and
Markov models meet dynamic programming. To properly define/choose the HMM model
in a machine learning context, however, further generalization is usually required. This is
because the ‘bare-bones’ HMM description has critical weaknesses in most applications,
which are summarized below. Fortunately, these weaknesses can be addressed, and in
computationally efficient ways, see Fig. 1, with further details in the Methods.

Fig. 1. Comparison of standard HMM and the clique-generalized HMM. The upper
graphical model is for the standard HMM and shows the ‘emission’ observation sequence
xi, and the associated hidden label sequence λi, and the arrows denote the conditional
probability approximations used in the model (for the transition and emission
probabilities). Focusing at the level of the core joint-probability construct at instant ‘i’ in
the middle graph, the standard HMM is a subset of the joint probability construct P(λi,

λi+1, xi+1). The generalized-clique HMM is shown in the graphical model at the bottom
for one particular clique generalization. The model can be exact on emission positionally,
then extend via zone dependence and use of gIMM interpolation. The model can be exact
to higher order in state (referred to as footprint states’, see [2]), and also extends
modeling to have HMM with duration modeling. When doing the latter, zone-dependent
and position dependent modeling can be incorporated via reference to the duration in the
model, and can be directly incorporated into a generalized Viterbi algorithm (and other
generalized HMM algorithms), as well as any other side-information of interest [3].

A brief list of the typical weaknesses encountered with the standard HMM:

(1) Standard HMMs are at low Markov order in transitions (first)
and in emissions (zeroth), and transitions are decoupled from
emissions, which can miss critical structure in the model (e.g.,
state transition probabilities that are strongly sequence
dependent). This weakness is eliminated if we generalize to the
largest state-emission clique possible, fully interpolated on the
data set, with use of a minimal state-length constraint to obtain
an efficient implementation (see Fig. 1).

The generalized clique HMM (Fig. 1) begins by enlarging the
primitive hidden states associated with the individual base labels
(as exon, intron, or junk) to substrings of primitive hidden states
or footprint states. There is a key constraint, however, to keep
the scaling of footprint states linear with footprint size: the
footprint states are constrained to have self-transitions with a
minimal length such that a footprint, and the mostly overlapping
‘next’ footprint, together can only have one transition between
states of different type. The emissions are likewise expanded to
higher order in the fundamental joint probability that is the basis
of the generalized-clique, or ‘meta-State’, HMM. Further details
on the meta-state HMM [2] are in the Methods.

(2) Need Method for directly incorporating side-information into
the dynamic programming table based optimizations (used in the
Viterbi and Baum-Welch algorithms, etc.). This is solved in [3],
where an HMM is ‘bootstrapped’ into a HMM-with-duration, see
Methods for brief description.

(3) Standard HMMs don’t properly model self-transition
durations, imposing a ‘best-fit’ geometric distribution on self-
transition duration distributions instead. This weakness is
eliminated if we generalize to a HMM-with-duration (HMMD)
formalism, where direct modeling on self-transition duration
distributions is incorporated (see Fig. 1). Standard HMMD
methods are computationally expensive, however, when

compared to Standard HMM. This weakeness can be addressed,
without loss of generality, via use of HMM with binned duration
(HMMBD) representations. Further details on HMMBD [4] are
in the Methods.

(4) Standard HMM and HMMD have latency bottleneck if full
table computation is used on a lengthy data sequence, so need
method for distributed processing‘chunking’ with overlaps
sufficient for recovery. This is demonstrated in the Results (Sec.
4.5).

(5) Need Method for HMM Feature Extraction Selection,
Compression, and Fusion. A modified form of Adaboost is used
for this purpose, see Methods.

(6) Need Multitrack (Holographic) Generalization. In particular,
need to show that hidden constraints can significantly limit
model complexity, as seen in the clique generalization with
application in gene-finding in [2], allowing significant scaling in
multiple hidden-track (holographic) model complexity. In the
Results we show the preliminary statistical support to justify the
Two-track HMM alternative-splice gene-finder model.

(7) Need Method for Standardized HMM application to power
signal data, and this is described in the Results.

(8) Need Method for Standardized HMM usage: the SSA
Protocol is described in the Results.

In the applications of the SSA Protocol and SCW Communications method to signal
analysis, such as for Nanopore Transuction Detector (NTD) operation, the HMMD
recognition of a transducer signal’s stationary statistics has benefits analogous to ‘time
integration’ heterodyning a radio signal with a periodic carrier in classic electrical
engineering, where longer observation time is leveraged into higher signal resolution. In
order to enhance such a ‘time integration’, or longer observation, benefit in the transducer
signal, periodic (or stochastic) modulations may be introduced to the transducer
environment. In a high noise background, for example, modulations may be introduced
such that some of the transducer level lifetimes have heavy-tailed, or multimodal,
distributions. With these modifications, a single transducer molecule signal could be
recognizable in the presence of noise from many more channels than otherwise,
providing an application for the SCW approach in nanopore transduction detection,
where NTD/SCW may offer a 1000-fold boost in sensitivity that is mostly obtained by
leveraging existing signal processing capabilities with modern computers. The SSA
Protocol and SCW methods have similar significant enhancement to signal processing
capabilities in other areas as will be detailed in what follows. Background on the SSA
Protocol and its general-use is given next.

2 Background
All of the HMM generalizations and feature extraction methods discussed in what
follows can be optimized for speed with binned durations and through dynamic (“null”)
binning, distributed table-chunking, and GPU-usage. This allows the limiting speed
constraint on the core HMMBD component in the SSA protocol (Fig. 2) to be eliminated.

The SSA protocol 009to be described in detail in the Results) is shown in Fig. 2 in a
common signal-processing flow topology. The SSA Protocol is for the discovery,
characterization, and classification of localizable, approximately-stationary, statistical
signal structures in channel current data, or genomic data, or sequential data in general,
and changes between such structures. The core signal processing stage in Fig. 2 is usually
the feature extraction stage, where central to the signal processing protocol is the Hidden
Markov model. The SSA Protocol also has a built-in weakness recovery protocol,
outlined next, where the strengths of the HMM are further leveraged to full advantage.

The sequence of algorithmic methods used in the SSA Protocol, for the information-
processing flow topology shown in Fig. 2, comprise a weakness recovery protocol: (i) the
weakness in the Fintie State Automoton (FSA) methods will be shown to be its difficulty
in strong structure identification (especially non-local structure), for which HMM
methods (and tuning metaheuristics) are the solution. (ii) for the HMM, in turn, the main
weakness is in local sensing ‘classification’, and as a classification problem, the problem
can be solved via incorporation of generalized SVM methods. If facing a classification
task independent of a prior signal processing need, the SVM will also be the method of
choice in what follows. (iii) The weakness of the SVM, whether used for classification or
clustering, but especially for the latter, is the need to optimize over algorithmic, model
(kernel), chunking, and other process parameters during learning. This is solved via use
of metaheuristics for optimization such as simulated annealing, genetic algorithm
optimization, particle swarm optimization, etc. (iv) The main weaknesses in the
metaheuristic effort is partly resolved via use of the “front-end” methods, like the FSA,
and partly resolved by a knowledge discovery process (that can be done using the SVM
clustering methods). The SSA Protocol weakness recovery method, thus, comes full
circle, thereby establishing a robust signal processing platform. To have a specific
example, consider the situation where the ‘front-end’ FSA acquisition methods fail, the
weakeness recovery is to fall through to a HMM-Viterbi based feature extraxction, with
feature set classification via HMM ‘templates’ or via a generic HMM feature-extractor
with SVM-based classifier (the latter is done in the CCC implementation and is
recommended for robustness).

The HMM methods are the central methodology/stage in the SSA Protocol, and channel
current cheminformatics (CCC) protocol/implementation, in that the other stages can be
dropped or merged with the HMM stage in many incarnations. For example, in some data
analysis situations the time-domain Finite State Automoton (tFSA) methods could be
totally eliminated in favor of the more accurate HMM-based approach to the problem,
with signal states defined/explored in much the same setting, but with the optimized
Viterbi path solution taken as the basis for the signal acquisition.

Fig. 2. The most common stochastic sequential analysis flow topology. The main signal
processing flow is typically Input  tFSA Meta-HMMBD  SVM  Output.
Notable differences occur in channel current cheminformatics, particularly for EVA-
projection (emission variance amplification projection), or a similar method, to achieve a
quantization on states, then have Input  tFSA  HMM/EVA  meta-HMMBD-side
 SVM  Output. While, in gene-finding just have: Input  meta-HMMBD-side 
Output. In gene-finding, however, the HMM internal ‘sensors’ are sometimes replaced,
locally, with profile-HMMs [2] (equivalent to position-dependent Markov Models, or
pMM’s, see Methods), or SVM-based profiling [5], so the topology can differ not only in
the connections between the boxes shown, but in their ability to embed in other boxes as
part of an internal refinement.

The HMM features, and other features (from neural net, wavelet, or spike profiling, etc.)
can be fused and selected via use of various data fusion methods, such as a modified
Adaboost selection (from [6,7]). The HMM-based feature extraction provides a well-
focused set of ‘eyes’ on the data, no matter what its nature, according to the
underpinnings of its Bayesian statistical representation. The key is that the HMM not be
too limiting in its state definition, while there is the typical engineering trade-off on the
choice of number of states, N, which impacts the order of computation via a quadratic
factor of N in the various dynamic programming calculations used (comprising the
Viterbi and Baum-Welch algorithms among others).

The HMM ‘sensor’ capabilities can be significantly improved via switching from profile-
MM sensors to pMM/SVM-based sensors, as indicated in [5], where the superior
performance and generalization capability of this approach was demonstrated. A
martingale feature vector is described in this context in [1].

General methods will be shown in the Results for (i) stochastic sequential analysis; (ii)
stochastic carrier-wave communications; (iii) holographic HMM extensions; and, (iv)
distributed HMM implementations. In method (ii), in particular, we establish a new type
of communication process where the carrier wave is a stochastic observation sequence
that obeys stationary statistics. In standard periodic carrier wave signal processing
convolving with the carrier frequency allows the signal modulations of that carrier to be
obtained. Here we have something analogous, but we have a carrier with stationary
statistics, not fixed frequency, and can recognize different phases of stationary statistics
via HMM methods for class-independent feature extraction, with Support Vector
Machines (SVMs) for sparse data classification, or via HMM methods for class-
dependent HMM generative projection.

In standard bandlimited signal analysis with periodic waveforms, sampling is done at the
Nyquist rate for full reproducible capability. If the sample information is needed
elsewhere, it is then compressed (possibly lossy) and transmitted (a ‘smart encoder’). The
received data is then decompressed and reconstructed (by simply summing wave
components, e.g., a ‘simple’ decoder). If the signal is sparse or compressible, then
compressive sensing [8] can be used, where sampling and compression are combined into
one efficient step to obtain compressive measurements (refered to as ‘dumb’ encoding in
[8] since a set of random projections are employed), which are then transmitted. On the
receiving end, the decompression and reconstruction steps are, likewise, combined using
an asymmetric ‘smart’ decoding step. This progression towards asymmetric compressive
signal processing can be taken a step further if we consider signal sequences to be
equivalent if they have the same stationary statistics. What is obtained is a method similar
to compressive sensing, but involving stationary-statistics generative-projection sensing,
where the signal processing is non-lossy at the level of stationary statistics equivalence.
In the SCW signal analysis the signal source is generative in that it is describable via use
of a hidden Markov model, and the HMM’s Viterbi-derived generative projections are
used to describe the sparse components contributing to the signal source. In SCW
encoding the modulation of stationary statistics can be man-made or natural, with the
latter in many experimental situations that involve flow phenomologies that have
stationary statistics. If the signal is man-made, usually the underlying stochastic process
is still a natural source, where it is the changes in the stationary statistics that is under the
control of the man-made encoding scheme. Transmission and reception are then followed
by generative projection via Viterbi-HMM template matching or via Viterbi-HMM
feature extraction followed by separate classification (using SVM). So in the SCW
approach the encoding is even ‘dumber’ in that it can be any noise source with stationary
statistics (the case for many experimental observations), with stationary statistics phase
modulation for encoding. The decoding must be even ‘smarter’, on the other hand, in that
generalized Viterbi algorithms are used to perform a generative projection (and possibly
other machine learning methods as well, SVMs in particular). An example of the
stationary statistics sensing with a machine learning based decoder is described in
application to channel current cheminformatics studies in what follows.

3 Methods

Breif details of implementations possible with the Generic HMM, see [9] for extensive
CCC applications/results, are in Sec. 3.1. The clique-generalized HMM is briefly
described in Sec. 3.2 (see [2] for extensive results); HMMD is briefly outlined in Sec. 3.3
(see [3] for extensive results); HMMBD in Sec. 3.4 (see [4] for extensive results);
adaptive binning [1] in Sec. 3.5; and stochastic phase modulation [1], with an NTD
pattern recognition informed sampling application [21], is described in Sec. 3.6.

3.1 The Generic HMM
An HMM that is designed to generate a particular signal need only have a few states and
transitions. In reverse, this HMM ‘template’ can be used to detect signal with matching
statistics. An HMM that is meant to generate a large family of signals, on the other hand,
needs to have more states and associated transitions. The ‘Generic’ HMM or ‘grayscale’
template HMM is an example of this in the case of the channel current analysis
applications in [9] and in many of the examples in this paper.

3.1.1 Viterbi Path
In the Viterbi algorithm, a recursive variable is defined: vkn = vk(n) = vk(bn) = “the most
probable path ending in state λn=k with observation bn”. The recursive definition of
vk(n) is then: vl(n+1) = el(bn+1) maxk [vk(n) akl]. From which the optimal path information
is recovered according to the (recursive) trace-back:

Λ* = argmax Λ P(B, Λ) = (λ*0, …, λ*L-1); λ*n|λ*n+1=l

 = argmaxk [vk(n) akl], and where

λ*L-1 = argmaxk [vk(L-1)], for length L sequence.

The recursive algorithm for the most likely state path given an observed sequence (the
Viterbi algorithm) is expressed in terms of vki (the probability of the most probable path
that ends with observation bn = i, and state λn=k). The recursive relation is lifted directly
from the underlying probability definition: vki = maxn{ekiankvn(i-1)}, where the maxn{…}
operation returns the maximum value of the argument over different values of index n,
and the boundary condition on the recursion is vk0 = ek0pk. The emission probabilities are
the main place where the data is brought into the HMM-EM algorithm. An inversion on
the emission probability is possible when the states and emissions share the same
alphabet of states/quantized-emissions (details in Sec. 2.3.6). The Viterbi path labelings
are, thus, recursively defined by p(λi|λ(i+1)=n) = argmaxk{vkiakn}. The evaluation of
sequence probability (and its Viterbi labeling) take the emission and transition
probabilities as a given. Estimates on those emission and transition probabilities
themselves can be obtained by an Expectation/Maximization (EM) algorithm that is
known as the Baum-Welch algorithm in this context. A 50-state generic HMM is used
extensively in [9], and will be described further in the EVA and other methods that
follow.

3.1.2 pMM/SVM
For start-of-coding recognition, for example, one can create a profile Markov model
(pMM) based log-likelihood ratio (LLR) classifier given by log[Pstart/Pnon-start] = Σi
log[Pstart(xi=bi)/Pnon-start(xi=bi)]. Rather than a classification built on the sum of the
independent log odds ratios, however, the sum of components could be replaced with a
vectorization of components:

Σi log[Pstart(xi=bi)/Pnon-start(xi=bi)] --> {…., log[Pstart(xi=bi)/Pnon-start(xi=bi)], ….}

These can be viewed as feature vectors (f.v.’s), and can be classified by use of an SVM.
The SVM partially recovers linkages lost with whatever order of Markov model
dependency that is imposed. For the 0th order MM in the example, the positional
probabilities are approximated as entirely independent -- which is far from accurate. The
SVM approach can recover statistical linkages between components in the f.v.’s in the
SVM training process.

There are generalizations for the MM sensor and its SVM f.v. implementation, and all are
compatible with the SVM f.v. classification profiling. Markov Profiling with component-
sum to component feature-vector mapping for SVM/MM profiling, thus, encompasses
use of MMs, IMMs, gIMMs, hIMMs, and ghIMMs [10,11], and SVM usage via
“vectorization” to SVM/MM, SVM/IMM, SVM/gIMM classification profiling (with use
of the SVM’s confidence parameter).

3.1.3 Feature Extraction via EVA projection (for use with power signal analysis)
Emission variance amplification (EVA) projection is used in the SSA Protocol to go from
a power signal (or anything sampled from a continuum domain of possibilities) to a
sparser, projected ‘EVA state’, representation of the data. Quantization on the sparser
representation can then provide a discrete representation. Once all states are discrete,
higher order structure (or encoding) can be extracted by use of the meta-HMM
generalization described in Sec. 3.2, and other methods.

In the CCC analysis in [9], we have an HMM with emissions probabilities parameterized
by Gaussian distributions: emission_probabilities[i][k] = exp(-(k-i)*(k-i)/(2*variance)),
where “i” and “k” are each a state where 0 <= i,k <= 49 in a 50 state system. To perform
EVA in this setting, the variance is simply multiplied by a factor that essentially widens
the gaussian distribution parameterized to best fit the emissions, and the equation simply
becomes exp(-(k-i)*(k-i)/(2*variance*eva_factor)). For a sizable range of this parameter,
HMM with EVA will remove the noise from the power signal while strictly maintaining
the timing of the state transitions.

After EVA-projection, a simple FSA can easily extract level duration information. Each
level is identified by a simple threshold of blockade readings, typically one or two
percent of baseline. When EVA boosts the variance of the distribution, for states near a
dominant level in the blockade signal, the transitions are highly favored to points nearer
that dominant level. This is a simple statistical effect having to do with the fact that far

more points of departure are seen in the direction of the nearby dominant level than in the
opposite direction. When in the local gaussian tail of sample distribution around the
dominant level, the effect of transitions towards the dominant level over those away from
the dominant level can be very strong. In short, a given point is much more likely to
transition towards the dominant level than away from it, thereby arriving at a “focusing”
on the levels, while preserving level transitions. In this respect, other distributional
parameterizations could be used than Gaussian, but Gaussian is a good starting point (a
mixture of a sufficient number of distributions will arrive at a Gaussian distribution
overall, an expression of the law of large numbers).

3.1.4 Feature Extraction via Data Absorption (a.k.a. Emission Inversion)
A new form of “inverted” data injection is possible during HMM training when the states
and quantized emission values share the same alphabet. This is typically the case in the
CCC power signal analysis examples given here. Results from channel current signal
classification consistently show approximately 5% improvement in accuracy (sensitivity
+ specificity) with the aforementioned data inversion upon SVM classification (and this
holds true over wide ranges of SVM kernel parameters and collections of feature sets).
Transition & “absorption” statistical profiles are thought to work better than standard
transition & emission profiles, in generalized classification performance, due to
regularization with an effective SRM (structural risk minimization [11]) constraint, via
optimization with an added term that depends on the relative entropy between state prior
probabilities and emission posterior probabilities.

By swapping eb(k) for ek(b) we introduce a multiplicative factor, the ratio of the priors on
states to the frequencies on emissions: ek(b) = eb(k) [P(b)/P(k)]. This factor weights the
computations in a manner that seems to track, and minimize, on the Kullback-Leibler
divergence between the state prior distribution and the emission frequency distribution.
This approximate notion follows from the evaluation of the extra terms that will occur on
the maximum log-prob calculation for the Viterbi path. On the Viterbi solution, using the
swapped emission probabilities, the sum (on log probabilities) at the end will differ by a
sum of log ratios: log [P(ki)/P(bi)] = - log[P(bi) / P(ki)] Normalized by length ‘L’ over
different k and b, this term is approximated by Diff Term = – D(P(Z)||P(S)), maximizing
on this term is, thus, minimizing on the divergence, D(P(Z)||P(S)), between the priors and
the emissions.

3.1.5 Modified AdaBoost for Feature selection and Data fusion
AdaBoost [7] can learn a sequence of weak classifiers and then boosts them by a linear
combination into a single strong classifier. As a classification method, one of the main
disadvantages of AdaBoost is that it is prone to overtraining. However, AdaBoost is a
natural fit for feature selection. Here, overtraining is not a problem, as AdaBoost is only
used to finds diagnostic features and those features are then passed on to a classifier that
does not suffer from overtraining (such as an SVM). HMM features, and other features
(from neural net, wavelet, or spike profiling, etc.), can be fused and selected via use of
the Modified Adaboost selection algorithm [7].

In Modified AdaBoost [7] weights are given to the weak learners as well as the training
data. The key modifications here are to give each column of features in a training set a
weak learner and to update each weak learner every iteration, not just update the weights
on the data. In an example where there is a set of 150-component feature vectors, 150
weak learners would be created. As previously mentioned, each weak learner corresponds
to a single component and classifies a given feature vector based solely on that one
component. Then, weights for these weak learners are introduced. In each iteration of this
modified AdaBoost process, weights for both the input data and the weak learners are
updated. The weights for the input data are updated as in the standard AdaBoost
implementation, while weights on the individual weak learners are updated as if each
were a complete hypothesis in the standard AdaBoost implementation. At the end of the
iterative process, the weak learners with the highest weights, that is, the weak learners
that represent the most diagnostic features, are selected and those features are passed to
an SVM for classification (see [7] for more details). Thus, the benefits of both AdaBoost
and SVMs are obtained.

3.2 The Meta-HMM – a clique-generalized HMM
The traditional HMM assumes that a 1st order Markov property holds among the states
and that each observable depends only on the corresponding state and not any other
observable. The meta-HMM entails a maximally-interpolated departure from that
convention (limited according to the size of the training dataset) in an attempt to leverage
anomalous statistical information in the neighborhood of non-self state transitions. The
regions of anomalous statistics are often highly structured, having consensus sequences
that strongly depart from the strong independence assumptions of the 1st order HMM.
The existence of such consensus sequences suggests that we adopt an observation model
that has a higher order Markov property with respect to the observations. Furthermore,
since the consensus sequences vary by the type of transition, this observational Markov
order should be allowed to vary depending on the state.

The gap and hash interpolating Markov Models (gIMM and hIMM) [10] can be directly
incorporated into meta-HMMBD gene-finding models as a further enhancement to the
underlying Markov models, since they are already known to extract additional
information that may prove useful, particularly in the zone-dependent emission regions
(denoted ‘zde’s as in [10]) where promoters and other gapped motifs might exist.
Promoters and transcription factor binding sites often have lengthy overall gapped motif
structure, and with the hash-interpolated Markov models it is also possible to capture the
conserved higher order sequence information in the zde sample space. The hIMM and
gIMM methods, thus, will not only strengthen the gene structure recognition, but can also
provide the initial indications of anomalous motif structure in the regions identified by a
gene-finder (in a post-genomic phase of the analysis) [10].

By viewing state transitions, such as e0e1 or e0i0, as transition “dimer states”, or as two-
element “footprint” states, we begin to shift to a meta-HMM footing where we can model
emissions more accurately. For the footprint states introduced in what follows, a critical
assumption is made – at most, one non-self transition is allowed per footprint
transition. This assumption is a equivalent to a minimum length constraint on regions of
self-transitions to be footprint size or greater. For genomic applications this is not a

problematic constraint, and when a concern, different ‘gene-scans’ can always be
performed with different footprint sizes.

When encountered sequentially in the Viterbi algorithm, the sequence of (single) non-self
state transition ‘dominated’ footprint states would conceivably score highly when
computed for the footprint-width number of footprint-states that overlap the non-self
transition. In other words, we can expect a natural boosting effect for the correct
prediction at such non-self transitions (compared to the standard HMM). To describe
bases in the irreducible joint probability we have: wn = bn-L+1, …, bn, …, bn+R, and 𝑤�n =
bn-L+1, …, bn, …, bn+R-1 describes the base observations, while sn = λnλn+1 (dimer states,
length in λ’s =2), and fn = sn-l+1, …, sn+r ≅ λn-l+1, …, λn, …, λn+r+1 (footprint state, length
in s’s= l+r), describes the associated labels. Given the above, the clique-factorized HMM
is as follows:

P(B, Λ) = P(w-R, f-R) { Πn=-R+1 N+L-2 [P(wn, fn-1, fn) / P(𝑤� n, fn-1)] },

with appropriate boundary terms (see [2]). A generalization to the Viterbi algorithm can
be directly implemented, using the above clique-factorized HMM form [2], to establish
an efficient dynamic programming table construction. Generalized expressions for the
Baum-Welch algorithm are also possible. Some of the generalizations are straightforward
extensions of the algorithms from 1st order theory with its minimal clique. Sequence-
dependent transition properties in the generalized-clique formalism, however, have no
counterpart in the standard 1st Order HMM formalism.
The core term in the clique-factorization can also be written by introducing a Bayesian
parameter, one that happens to provide a matching joint probability construct (to the
extent possible) with the term in the numerator:

𝜌 = 𝑃(𝑤𝑛,𝑓𝑛−1,𝑓𝑛)
𝑃(𝑤�𝑛,𝑓𝑛−1)

= 𝑃(𝑤𝑛,𝑓𝑛−1,𝑓𝑛)
∑ 𝑃(𝑤�𝑛,𝑓𝑛−1,𝑓′𝑛)𝑓′𝑛(𝑎𝑙𝑙𝑜𝑤𝑒𝑑)

 = 𝑃(𝑤𝑛|𝑓𝑛−1,𝑓𝑛) 𝑃(𝑓𝑛|𝑓𝑛−1) 𝑃(𝑓𝑛−1)
∑ 𝑃(𝑤�𝑛|𝑓𝑛−1,𝑓′𝑛) 𝑃(𝑓′𝑛|𝑓𝑛−1) 𝑃(𝑓𝑛−1)𝑓′𝑛

In the above expression we clearly have sequence dependent transitions. For 𝑓𝑛−1 = 𝑖𝑖,
𝑎𝑛𝑑 𝑓𝑛 = 𝑖𝑒 for example, we have:
��𝜌|𝐺𝐶𝐻𝑀𝑀 = 𝑃(𝑤𝑛,𝑓𝑛−1,𝑓𝑛)

𝑃(𝑤�𝑛,𝑓𝑛−1) �𝑓𝑛−1= 𝑖𝑖,
𝑓𝑛= 𝑖𝑒

 = 𝑃(𝑤𝑛|𝑖𝑒) 𝑃(𝑖𝑒|𝑖𝑖)
𝑃(𝑤�𝑛|𝑖𝑒)𝑃(𝑖𝑒|𝑖𝑖)+𝑃(𝑤�𝑛|𝑖𝑖)𝑃(𝑖𝑖|𝑖𝑖)

= 𝑃(𝑏𝑛+𝑅|𝑤�𝑛,𝑖𝑒)𝑃(𝑖𝑒|𝑖𝑖)

𝑃(𝑖𝑒|𝑖𝑖)+𝑃(𝑖𝑖|𝑖𝑖)�𝑃(𝑤�𝑛|𝑖𝑖)
𝑃(𝑤�𝑛|𝑖𝑒)�

Use of the meta-HMM formalism resolves complications due to heavy-tail duration
distributions and weak contrast. This is a new HMM modeling capability. The form of
the clique factorization in [2] also has LLR terms such as 𝑃(𝑤�𝑛|𝑖𝑒)/𝑃(𝑤�𝑛|𝑖𝑖) that allow
for a simple switch from internal scalar-based state discriminant to a vector-based
feature, allowing for a similar substitution of a discriminant based on an SVM as
demonstrated for splice sites in [5] and described in the pMM/SVM sub-section. These
alternate representations do not introduce any significant increase in computational time
complexity.

3.3 Hidden Semi-Markov model and HMM-with-duration
In the standard HMM, when a state i is entered, that state is occupied for a period of time,
via self-transitions, until transiting to another state j. If the state interval is given as d, the
standard HMM description of the probability distribution on state intervals is implicitly
given by:

𝑝𝑖(𝑑) = 𝑎𝑖𝑖𝑑−1(1 − 𝑎𝑖𝑖)

where aii is self-transition probability of state i. As mentioned previously, this geometric
distribution is inappropriate in many cases. The standard HMMD replaces the equation
above with a pi(d) that models the real duration distribution of state i. In this way explicit
knowledge about the duration of states is incorporated into the HMM. When entered,
state i will have a duration of d according to its duration density pi(d); it then transits to
another state j according to the state transition probability aij (self-transitions, aii, are not
permitted in this formalism). It is easy to see that the HMMD will turn into a HMM if
pi(d) is set to the geometric distribution shown above. The first HMMD formulation was
studied by Ferguson [12]. A detailed HMMD description was later given by [13]. There
have been many efforts to improve the computational efficiency of the HMMD
formulation given its fundamental utility in many endeavors in science and engineering.
Notable amongst these are the variable transition HMM methods for implementing the
Viterbi algorithm introduced in [14], and the hidden semi-Markov model (HSMM)
implementations of the forward-backward algorithm [15].

In [3] it is shown how to ‘lift’ side information that is associated with a region, or
transition between regions, by ‘piggybacking’ that side information along with the
duration side information. We use, as example, HMM incorporation of duration itself as
the guide in what follows. In doing so, we arrive at a hidden semi-Markov model
formalism for a HMMD. An equivalent formulation of the HSMM was introduced in [14]
for the Viterbi algorithm and in [15] for Baum-Welch. In these derivations, however, the
maximum-interval constraint is still present (comparisons of these methods were
subsequently detailed in [16]). Other HMM generalizations include Factorial HMMs [17]
and hierarchical HMMs [18]. For the latter, inference computations scaled as O(T3) in the
original description, and havesince been improved to O(T) by [19].

The HSMM formalism introduced here, however, is directly amenable to incorporation of
side-information and to adaptive speedup (as described in [4] and in Sec. 3.3). For the
state duration density pi(x = d), 1 ≤ x ≤ D, we have:

 𝑝𝑖(𝑥 = 𝑑) = 𝑝𝑖(𝑥 ≥ 1) ∙ 𝑝𝑖(𝑥≥2)
𝑝𝑖(𝑥≥1)

∙ 𝑝𝑖(𝑥≥3)
𝑝𝑖(𝑥≥2)

∙∙∙ 𝑝𝑖(𝑥≥𝑑)
𝑝𝑖(𝑥≥𝑑−1)

∙ 𝑝𝑖(𝑥=𝑑)
𝑝𝑖(𝑥≥𝑑)

where pi(x = d) is abbreviated as pi(d) if no ambiguity. Define “self-transition” variable
si(d) = probability that next state is still λt = i, given that i has consecutively occurred d
times up to now.

 𝑝𝑖(𝑥 = 𝑑) = �∏ 𝑠𝑖(𝑗)𝑑−1
𝑗=1 ��1− 𝑠𝑖(𝑑)�,𝑤ℎ𝑒𝑟𝑒 𝑠𝑖(𝑑) = �

𝑝𝑖(𝑥≥𝑑+1)
𝑝𝑖(𝑥≥𝑑)

 𝑖𝑓 1 ≤ 𝑑 ≤ 𝐷 − 1

0 𝑖𝑓 𝑑 = 𝐷
�

We see with comparison of the equation for pi(d) above and pi(d) = (aii)d-1(1- aii), that we
now have similar form, there are ‘d-1’ factors of ‘s’ instead of ‘a’, with a ‘cap term’ ‘(1-
s)’ instead of ‘(1-a)’, where the ‘s’ terms are not constant, but only depend on the state’s
duration probability distribution. In this way, each ‘s’ can mesh with the HMM’s
dynamic programming table construction for the Viterbi algorithm at the column-level in
the same manner that ‘a’ does. Side-information about the local strength of EST matches
or homology matches, etc., that can be put in similar form, can now be ‘lifted’ into the
HMM model on a proper, locally optimized Viterbi-path. The derivations of the Baum-
Welch and Viterbi HSMM algorithm is in [3].

The memory complexity of this method is O(TN). No forward table needs to be saved.
The computation complexity is O(TN2+TND). In an actual implementation, a scaling
procedure may be needed to keep the forward-backward variables within a manageable
numerical interval. One common method is to rescale the forward-backward variables at
every time index t using the scaling factor ct = Σi ft(i). Here we use a dynamic scaling
approach. For this we need two versions of θ(k, i, d). Then at every time index, we test if
the numerical values is too small, if so, we use the scaled version to push the numerical
values up; if not, we keep using the unscaled version. In this way, no additional
computation complexity is introduced by scaling.

As with Baum-Welch, the Viterbi algorithm for the HMMD is O(TN2+TND). Because
logarithm scaling can be performed for Viterbi in advance, however, the Viterbi
procedure consists only of additions to yield a very fast computation. For both the Baum-
Welch and Viterbi algorithms, use of the HMMBD algorithm [4] can be employed (as in
this work) to further reduce computational time complexity to O(TN2), thus obtaining the
speed benefits of a simple HMM, with the improved modeling capabilities of the
HMMD.

3.4 HMMD with binned duration
The intuition guiding the HMMBD approach is that the standard HMM already does the
desired duration modeling when the distribution modeled is geometric, suggesting that,
with sufficient effort, a self-tuning explicit HMMD might be possible to achieve HMMD
modeling capabilities at HMM computational complexity in an adaptive context.

The duration distribution of state i consists of rapidly changing probability regions (with
small change in duration) and slowly changing probability regions. In the standard
HMMD all regions share an equal computation resource (represented as D substates of a
given state) -- this can be very inefficient in practice. In this section, we describe a way to
recover computational resources, during the training process, from the slowly changing
probability regions. As a result, the computation complexity can be reduced to
O(TN2+TND*), where D* is the number of “bins” used to represent the final, coarse-
grained, probability distribution. A “bin” of a state is a group of substates with
consecutive duration. For example, f(i, d), f(i, d+1), ...f (i, d+δd) can be grouped into one
bin. The bin size is a measure of the granularity of the evolving length distribution
approximation. A fine-granularity is retained in the active regions, perhaps with only one
length state per bin, while a coarse-granularity is adopted in weakly changing regions,

with possibly hundreds of length states per bin. An important generalization to the exact,
standard, length-truncated, HMMD is suggested for handling long duration state intervals
– a “tail bin”. Such a bin is strongly indicated for good modeling on certain important
distributions, such as the long-tailed distributions often found in nature, the exon and
intron interval distributions found in gene-structure modeling in particular. In practice,
the idea is to run the exact HMMD on a small portion, δT, of the training data, at
O(δTNN + δTND) cost, to get an initial estimate of the state interval distributions. Some
preliminary course-graining is then performed, where strongly indicated, and the number
of bins representing the length distribution is reduced from D to D′. The exact HMMD is
then performed on the D′ substate model for another small portion of the training data, at
computational expense O(δTNN + δTND′). This is repeated until the number of bin
states, D*, reduces no further, and the bulk of the training then commences with the D*
bin-states length distribution model at expense O(TN2+TND*). The key to this process is
the retention of training information during the ‘freezing out’ of length distribution states,
and such that the D* bin state training process can be done at expense O(TN2+TND*) ≈
O(TN2), which is the same complexity class as the standard HMM itself. Starting from
the above binning idea, for substates in the same bin, a reasonable approximation is
applied:

∑ 𝑓𝑡(𝑖,𝑑′)𝜃(𝑏𝑡, 𝑖, 𝑑′)
𝑑+δ𝑑
𝑑′=𝑑 = 𝜃�𝑏𝑡, 𝑖, 𝑑̅�∑ 𝑓𝑡(𝑖, 𝑑′)

𝑑+δ𝑑
𝑑′=𝑑 ,

where 𝑑̅ is the duration representative for all substates in this bin.

3.5 Adaptive null-state binning for O(TN) computation
During the HMM Viterbi table construction for each of T sequence data values, there is a
column entry, and for each of N states there is a row. At each column the HMM Viterbi
algorithm must look to the past column entries as it populates the table from left to right,
thus leading to an O(TN2) computation. If we establish an adaptive binning capability,
reminiscent of what was done with the HMMBD method, then we can keep track of lists
with respect to each state that correspond to prior column transitions to that state. If we,
in particular, track those Viterbi most-probable-paths that arrive at our state cell with
probability below some cutoff (with respect to the other probabilities arriving at that cell),
we can ignore transitions from such cells in later column computations. What results is an
initial O(tN2) (t<<T) computation to learn the state lists for above cut-off transitions
(suppose K on average), followed by the main body of the O(TNK) computation (with
K<<N).

A method is also possible comprising use of a “fastViterbi” process where O(TN2) 
O(TmN) via learned, local, max-path ordering in a given column of the Viterbi
computation for the highest ‘m’ values. Subsequent columns first only examine the top
‘m’ max-paths and if their ordering is retained, and their total probability advanced
sufficiently, then the other states remain ‘frozen-out’ with a large grouping (binning) on
the probabilities on those states used to maintain their probability information (and
correct normalization summing) when going forward column-by column, with reset to
full column evaluation on the individual state level when the m values fall out of their
initially identified ordering.

A method is possible comprising use of a fastViterbi with null-binning process where
O(TN2)  O(Tmn)  O(T) via learned global and local aspects of the data as indicated
above. This approach offers significant utility as a purely HMM-based alignment
algorithm that may outperform BLAST (Basic local alignment search tool. Altschul SF et al.
1990) with comparable time complexity.

3.6 NTD ‘Binary’ event communication, a precursor to stochastic ‘phase’
modulation (SPM)
In the NTD experiments, the molecular dynamics of a (single) captured transducer
molecule provide a unique stochastic reference signal with stable statistics on the
observed, single-molecule blockaded, channel current, somewhat analogous to a carrier
signal in standard electrical engineering signal analysis. Discernible changes in blockade
statistics, coupled to SSA signal processing protocols, enable the means for a highly
detailed characterization of the interactions of the transducer molecule with binding
targets (cognates) in the surrounding (extra-channel) environment.
The transducer molecule is specifically engineered to generate distinct signals depending
on its interaction with the target molecule. Statistical models are trained for each binding
mode, bound and unbound, for example, by exposing the transducer molecule to zero or
high (excess) concentrations of the target molecule. The transducer molecule is
engineered so that these different binding states generate distinct signals with high
resolution. Once the signals are characterized, the information can be used in a real-time
setting to determine if trace amounts of the target are present in a sample through a serial,
high-frequency sampling, and pattern recognition, process.
Thus, in NTD applications of the SSA Protocol, due to the molecular dynamics of the
captured transducer molecule, a unique reference signal with stationary (or approximately
stationary) statistics is engineered to be generated during transducer blockade, analogous
to a carrier signal in standard electrical engineering signal analysis. The adaptive SSA
machine learning algorithms for real-time analysis of the stochastic signal generated by
the transducer molecule offer a “lock and key” level of signal discrimination. The heart
of the signal processing algorithm is an adaptive Hidden Markov Model (AHMM) based
feature extraction method, implemented on a distributed processing platform for real-time
operation. For real-time processing, the AHMM is used for feature extraction on channel
blockade current data, while classification and clustering analysis are implemented using
a Support Vector Machine. In addition, the design of the machine learning based
algorithms allow for scaling to large datasets, real-time distributed processing, and are
adaptable to analysis on any channel-based dataset, including resolving signals for
different nanopore substrates (e.g. solid state configurations) or for systems based on
translocation technology. The machine learning software has also been integrated into the
nanopore detector for “real-time” pattern-recognition informed (PRI) feedback [20,21]
(see Fig. 3). The methods used to implement the PRI feedback include distributed HMM
and SVM implementations, which enable the processing speedup that is needed.

Figure 3. PRI Sampling Control (see
[21] for specific details). Labwindows
Feedback Server Architecture with
Distributed CCC processing. The
HMM learning (on-line) and SVM
learning (off-line), denoted in orange,
are network distributed for N-fold
speed-up, where N is the number of
computational threads in the cluster
network.

A mixture of two DNA hairpin species (denoted {9TA, 9GC} in [9]) is examined in an
experimental test of the PRI system [21]. In separate experiments, data is gathered for the
9TA and 9GC blockades in order to have known examples to train the SVM pattern
recognition software. A nanopore experiment is then run with a 1:70 mix of 9GC:9TA,
with the goal to eject 9TA signals as soon as they are identified, while keeping the 9GC’s
for a full 5 seconds (when possible, sometimes a channel-dissociation or melting event
can occur in less than that time). The results showing the successful operation of the PRI
system is shown in Fig. 4 as a 4D plot, where the radius of the event ‘points’ corresponds
to the duration of the signal blockade (the 4th dimension). The result in Fig. 4
demonstrates an approximately 50-fold speedup on data acquisition of the desired
minority species.

Figure 4. PRI Mixture Clustering Test with 4D plot [21]. The vertical axis is the event
observation time, and the plotted points correspond to the standard deviation and mean
values for the event observed at the indicated event time. The radius of the points
correspond to the duration of the corresponding signal blockade (the 4th dimension).
Three blockade clusters appear as the three vertical trajectories. The abundant 9TA
events appear as the thick band of small-diameter (short duration, ~100ms) blockade
events. The 1:70 rarer 9GC events appear as the band of large-diameter (long duration, ~
5s) blockade events. The third, very small, blockade class corresponds to blockades that
partially thread and almost entirely blockade the channel.

4 Results
The Results in Sections 4.1 – 4.3 describe methodological developments and results
involving the SSA Protocol, including stochastic carrier-wave communications. The
Results in Sections 4.4 and 4.5 showcs statistical support for the practical deployment of
complex holographic HMM modeling extensions and implementation of distributed
HMM computations.

4.1 Stochastic Sequential Analysis
A protocol has been developed for the discovery, characterization, and classification of
localizable, approximately-stationary, statistical signal structures in stochastic sequential
data (see Fig. 2), such as channel current data. Some of the CCC methods involved are
shown in Fig. 5.

The stochastic sequential analysis methods, described in what follows, provide a robust
and efficient means to make a device or process as smart as it can usefully be, with
possible enhancement to device (or process) sensitivity and productivity and efficiency,
as well as possibly enabling new capabilities for the device or process (via transduction
coupling, for example, as with the nanopore transduction detector (NTD) platform). The
SSA Protocol can work with existing device or process information flows, or can work
with additional information induced via modulation or introduction via transduction
couplings (comprising carrier references [22,23], among other things). Hardware ‘device-
awakening’ and process-enabling may be possible via introduction of modulations or
transduction couplings, when used in conjunction with the SSA Protocol implemented to
operate on the appropriate timescales to enable real-time experimental or operational
control.

The general components for a stochastic signal analysis protocol and a stochastic carrier
wave communications protocol are described in the next section. NTD, with the channel
current cheminformatics implementation of the SSA protocol, provides proof-of-concept
examples of the SSA methods utilization, and can be used as an example of finite state
communication. From the CCC/NTD starting point, it is easier to convey the unique
signal boosting capabilities when working with real-time capable HMMBD signal
processing [4,24] and other SSA methods. In the larger sense, recognition of stationary
statistics transitions allows one to generalize to full-scale encoding/decoding in terms of
stationary statistics ‘phases’, i.e., stochastic phase modulation, a form of stochastic
carrier-wave communications. Many of the Proof-of-concept experiments described in
what follows involve SSA applications in a CCC implementation or a context for the
NTD platform. The SSA Protocol, however, is a general signal processing paradigm for
characterizing stochastic sequential data, as will be detailed next.

Figure 5. Nanopore
cheminformatics & data-
flow control architecture.
Aside from the modular
design with the different
machine learning methods
shown (HMMs, SVMs,
etc.), recent augmentations
to this architecture for
real-time processing
include use of a networked
server to link to the patch-
clamp amplifier, and the
‘real-time’ pattern
recognition informed
signal processing
architecture (the latter
shown in Fig. 3).

4.2 General SSA Protocol
The SSA Protocol tries to associate acquisition, feature extraction, classification, and
clustering tasks with their most appropriate machine learning method, given the data, the
noise properties, the operational time-constraints, and other constraints involved. Since
data processing is often encountered in stages, the decomposition described in what
follows is in terms of stages for acquisition, feature extraction, classification, and
clustering, but the methods can have more complex seqneces of operation or embedded
operation in another method, etc., as is described, to some extent, in what follows as well.

(Stage 1) primitive feature identification: this stage is typically finite-state automaton
based, with feature identification comprising identification of signal regions (critically,
their beginnings and ends), and, as-needed, identification of sharply localizable ‘spike’
behavior in any parameter of the ‘complete’ (non-lossy, reversibly transformable) classic
EE signal representation domains: raw time-domain, Fourier transform domain, wavelet
domain, etc. (The methodology for spike detection is shown applied to the time-domain
in [7].) Primitive feature extraction can be operated in two modes: off-line, typically for
batch learning and tuning on signal features and acquisition; and on-line, typically for the

overall signal acquisition (with acquisition parameters set – e.g., no tuning), and, if
needed, ‘spike’ feature acquisition(s).

The FSA method that is primarily used in the channel current cheminformatics signal
discovery and acquisition is to identify signal-regions in terms of their having a valid
‘start’ and a valid ‘end’, with internal information to the hypothesized signal region
consisting, minimally, of the duration of that signal (e.g., the duration between the
hypothesized valid ‘end and hypothesized valid ‘start’). One approach along these lines is
a signal ‘fishing’ protocol “ …constraints on valid ‘starts’ that are weak (with prominent
use of ‘OR’ conjugation) and constraints on valid ‘ends’ that are strong (with prominent
use of ‘AND’ conjugation).” We underpin our approach to signal analysis in a
fundamentally different way, however, although the signal fishing method indicated
above is still used as needed. The FSA signal analysis methodology used here, for
example, involves identifying anomalously long-duration regions. Identification of
anomalously-long duration regions in the more sophisticated Hidden Markov model
representation would require use of a HMM-with-duration to not lose the information on
the anomalous durations, which is one of the application areas for the HMMBD method
(described in the Methods).

Once identification rules, often threshold-based, are established for the signal starts and
signal ends, then those definitions can be explored/used in signal acquisition. As those
definitions are tuned over, by exploring the different signal acquisition results obtained
with different parameter settings, the signal acquisition counts can undergo radical phase
transitions, providing the most rudimentary of the holistic tuning methods on the
primitive feature acquisition FSA. By examining those phase transitions, and the stable
regimes in the signal counts (and other attributes in more involved holistic tuning), the
recognition of good parameter regimes for accurate acquisition of signal can be obtained.
As more internal signal structure is modeled by the FSA, the holistic tuning can involve
more sophisticated tuning recognition of emergent grammars on the signal sub-states.
The end-result of the tuning is a signal acquisition FSA that can operate in an on-line
setting, and very efficiently (computation on the same order as simply reading the
sequence) in performing acquisition on the class of signals it has been ‘trained’ to
recognize. On-line learning is possible via periodic updates on the batch learning
state/tuning process. For typical SSA (and CCC) applications, the tFSA is used to
recognize and acquire ‘blockade’ events (which have clearly defined start and stop
transitions).

A computationally ‘expensive’ HMM signal acquisition at Stage 1 may be necessary for
very weak signals, for example, if the typical Stage 1 methods fail. In this situation the
HMM will probably have a very weak signal differential on the different signal classes if
it were to attempt direct classification (and eliminate the need for a separate Stage 3). In
this setting, the HMM would probably be run in the finest grayscale generic-state mode,
with a number of passes with different window sample sizes to ‘step through’ the
sequence to be analyzed. Then, there are two ways to proceed: (1) with a supervised
learning ‘bias’, where windows on one side of a ‘cut’ are one class, and those on the
other side the other class, can the SVM classify at high accuracy on train/test with the

labeled data so indicated. If so, a transition is identified. In (2) the idea is to use an
unsupervised learning SVM-based clustering method where we look for a strong knife-
edge split on clustered populations along the sequence of window samples. When this
occurs, there is a strong identification of a transition. Since regions are identified
(delineated) by their transition boundaries, we arrive at a minimally-informed means for
state and state-transition discovery in stochastic sequential data involving HMM/SVM
based channel current signal processing.

(Stage 2a) feature identification and feature selection: this stage in the signal
processing protocol is typically Hidden Markov model based, where identified signal
regions are examined using a fixed state HMM feature extractor or a template-HMM
(states not fixed during template learning process where they learn to ‘fit’ to arrive at the
best recognition on their train-data, the states then become fixed when the HMM-
template is used on test data). The Stage 2 HMM methods are the central
methodology/stage in the CCC protocol in that the other stages can be dropped or merged
with the Stage 2 HMM in many incarnations. For example, in some data analysis
situations, the Stage 1 methods could be totally eliminated in favor of the more accurate
HMM-based approach to the problem, with signal states defined/explored in much the
same setting, but with the optimized Viterbi path solution taken as the basis for the signal
acquisition structure identification. The reason this is not typically done is that the FSA
methods sought in Stage 1 are usually only O(T) computational expense, where ‘T’ is the
length of the stochastic sequential data that is to be examined. The typical HMM Viterbi
algorithm, on the other hand, is O(TN2), where ‘N’ is the number of states in the HMM.
Stage 1 provides a faster, and often more flexible, means to acquire signal, but it is more
hands-on. If the core HMM/Viterbi method can be approximated such that it can run at
O(TN) or even O(T) in certain data regimes, for example, then the non-HMM methods in
stage 1 could be phased out. Such HMM approximation methods are described in the
Methods, and present a data-dependent branching in the most efficient implementation of
the protocol. If the data is sufficiently regular, direct tuning and regional approximation
with HMM’s may allow Stage 1 FSA methods to be avoided entirely. For general data,
however, some tuning and signal acquisition according to Stage 1 will be needed
(possibly off-line) if only to then bootstrap (accelerate) the learning task of the HMM
approximation methods.

The HMM emission probabilities, transition probabilities, and Viterbi path sampled
features, among other things, provide a rich set of data to draw from for feature extraction
(to create ‘feature vectors’). The choice of features is optimized according to the
classification or clustering method that will make use of that feature information. In
typical operation of the protocol, the feature vector information is classified using a
Support Vector Machine. This is described in Stage 3 to follow. Once again, however, the
Stage 3 classification could be totally eliminated in favor of the HMM’s log likelihood
ratio classification capability at Stage 2, for example, when a number of template HMMs
are employed (one for each signal class). This classification approach is inherently
weaker and slower than the (off-line trained) SVM methodology in many respects, but,
depending on the data, there are circumstances where it may provide the best performing
implementation of the protocol.

(Stage 2b) Stochastic carrier wave encoding/decoding
Using HMMBD, we have an efficient means to establish a new form of carrier-based
communications where the carrier is not periodic but is stochastic, with stationary
statistics. The HMMBD algorithmic methodology, [24], enables practical stochastic
carrier wave encoding/decoding with this method.

Stochastic carrier wave signal processing is also encountered at the forefront of a number
of efforts in nanotechnology, where it can result from establishing or injecting signal
modulations so as to boost device sensitivity. The notion of modulations for effectively
larger bandwidth and increased sensitivity is also described in [22,23]. Here we choose
modulations that specifically evoke a signal type that can be modeled well with a HMMD
but not with a HMM. This is a generally applicable approach where conventional,
periodic, signal analysis methods will often fail. Nature at the single-molecule scale may
not provide a periodic signal source, or allow for such, but may allow for a signal
modulation that is stochastic with stationary statistics, as in the case of the nanopore
transduction detector.

(Stage 3) classification: this stage is typically SVM based. SVMs are a robust
classification method. If there are more classes to discern than two, the SVM can either
be applied in a Decision Tree construction with binary-SVM classifiers at each node, or
the SVM can internally represent the multiple classes, both are done in proof-of-concept
experiments that are described. Depending on the noise attributes of the data, one or the
other approach may be optimal (or even achievable). Both methods are typically explored
in tuning, for example, where a variety of kernels and kernel parameters are also chosen,
as well as tuning on internal Karush-Kuhn-Tucker (KKT) handling protocols. Simulated
annealing and genetic algorithms have been found to be useful in doing the tuning in an
orderly, efficient, manner. If the feature vectors produced correspond to complete data
information/profiling in some manner, which is explicitly the case in a probability feature
vector representation on a complete set of signal event frequencies (where all the feature
‘components’ are positive and sum to 1), then kernels can be chosen that conform to
evaluating a measure of distance between feature vectors in accordance with that notion
of completeness (or internal constraint, such as with the probability vectors). Use of
divergence kernels with probability feature vectors in proof-of-concept experiments have
been found to work well with channel blockade analysis and is thought to convey the
benefit of having a better pairing of kernel and feature vector, here the kernels have
probability distribution measures (divergences), for example, and the feature vectors are
(discrete) probability distributions.

(Stage 4) clustering: this stage is often not performed in the ‘real-time’ operational
signal processing task, as it is more for knowledge discovery, structure identification,
etc., although there are notable exceptions, one such being the jack-knife transition
detection, via clustering consistency with a causal boundary. This stage can involve any
standard clustering method, in a number of applications, but the best performing in the
channel current analysis setting is often found to be an SVM-based external clustering
approach (see [25]), which is doubly convenient when the learning phase ends because

the SVM-based clustering solution can then be fixed as the supervised learning set for a
SVM-based classifier (that is then used at the operational level).

4.3 Stochastic Carrier Wave Communications
The original description of an explicit HMMD required computation of order
O(TN2+TND2) [12] (where T is the sequence length to be examined, N is the number of
states in the HMM/HMMD model, and D is the maximum duration length allowed in the
HMMD model). The ‘D2’ term made the original approach prohibitively computationally
expensive in practical, real-time, operations, and introduced a severe maximum-duration
constraint on the duration-distribution model. Improvements via hidden semi-Markov
models to computations of order O(TN2+TND) are described in [14,15], where the
maximum-interval constraint is still employed, and comparisons of these methods were
subsequently detailed in [16]. In [4] we show that O(TN2+TND*) is possible with the
HMMBD algorithm, where D* is the number of binned length states. The HMMBD
implementation brings the HMMD modeling within the range of computational viability
for many applications. In the HMMBD approach we also eliminate the maximum-
duration constraint. We can often reduce to a bin representation with D*<10, such that
D*<<N in many situations, in which case that the HMMBD requires computations of
order O(TN2), the same as for the HMM alone.

One important application of the HMM-with-duration method used in the CCC context
[3,4,20] includes kinetic feature extraction from EVA projected channel current data (the
HMM-with-Duration is shown to offer a critical stabilizing capability in [3]). The EVA-
projected/HMMD processing offers a hands-off (minimal tuning) method for extracting
the mean dwell times for various blockade states (the core kinetic information on the
blockading molecule’s channel interactions). Extensive results have been obtained in
NTD experiments with blockade signals appearing like that shown in Fig. 6. In the case
of Fig. 6, however, we have synthetically generated data where we employ the HMM’s
generative capability to generate signal profiles with the stationary statistics indicated in
the model (to synthetically generate signals like that seen in current NTD experiments,
e.g., with the same stationary statistics). The synthetic data allows NTD situations to be
simulated where multiple channels, or other noise sources, might be present. The greater
noise, and weak carrier signal-to-noise, is pushed to an extreme in the analysis shown in
Fig. 6.

Fig. 6 relates to work described in [3], where experiments with synthetic data with two
blockade levels were considered, with lifetime in each level determined by a governing
distribution (Poisson and Gaussian distributions with a range of mean values were
considered). The results clearly demonstrate the superior performance of the HMMD
over the simpler standard HMM formulation on data with non-geometrically distributed
same-state interval durations. In the stochastic carrier wave context in which the Fig. 6 is
discussed here, this describes a means to discern carrier with HMMD (while with HMM
alone we are much weaker in this regard and cannot robustly discern carrier). With use of
the EVA-projection method, this also affords a robust means to obtain kinetic-type

feature extraction. The HMM with duration is critical for accurate kinetic feature
extraction when using EVA, and the results in [3] suggest that this problem can be
elegantly solved with a pairing of the HMM-with-Duration stabilization with EVA-
projection.

In Fig. 6 we show state-decoding on synthetic data that is representative of a biological-
channel, two-state ion-current decoding problem, or an encode/decode software radio
signal. For this problem 120 data sequences were generated that have two states with
channel blockade levels set at 30 and 40 pA (a typical scenario in practice). Every data
sequence has 10,000 samples. Each state has emitted values in a range from 0 to 49 pA.
The maximum duration of states is set at 500. The mean duration of the 40 pA state is
given as 200 samples (typically have one sample every 20 microseconds in actual
experiments), while the 30 pA level has mean duration set at 300 samples. The task is to
train using 100 of the generated data sequences and attempt state-decoding on the
remaining 20 data sequences. Example sequences from this effort are shown in Fig. 6,
along with their decoding when an HMM or an HMMD is employed. The performance
difference is stark: the exact and adaptive HMMD decodings are 97.1% correct, while the
HMM decoding is only correct 61% of the time (where random guessing would
accomplish 50%, on average, in a two-state system). Three parameterized distributions
were examined: geometric, Gaussian, and Poisson. Distributions that were segmented and
“messy” were also examined. In all cased the HMMD performed robustly, similar to the
above, and in all cases the adaptive HMMD optimization performed comparably to the
more computationally expensive exact HMMD.

Fig. 6. In the figure we show state-decoding results on synthetic data that is
representative of a biological-channel two-state ion-current decoding problem. Signal
segment (a) (at the top) shows the original two-level signal as the dark line, while the

noised version of the signal is shown in red. Signal segment (b) (in the middle) shows the
noised signal in red and the two-state denoised signal according to the HMMD decoding
process (whether exact or adaptive), which is stable (97.1% accurate) allowing for state-
lifetime extraction (with the concomitant chemical kinetics information that is thereby
obtained in this channel current analysis setting). Signal segment (c) (at the bottom)
shows the standard HMM signal resolution, and its failure to properly resolve the desired
level-lifetime information.

4.4 Holographic HMMs -- multi-track HMMs with generalized clique, maximally
interpolated, with minimum-size meta-state constraints
The label and other counts described in what follows (Tables 1-5), show statistical
support for a two-track HMM with generalized clique, with the meta-states indicated for
the C. elegans Genome. Consider exon forward read labels made according to (012)
frame: 0, 1, 2. Likewise, consider exon reverse read labels according to (CBA) frame: A,
B, C. For intron in forward gene: use ‘i’ for the label. For intron in reverse gene: use ‘I’
for the label. For non-coding, non-intron, ‘junk: use ‘j’ for the label. There are, thus, 9
labels: (0,1,2,A,B,C,i,I,j) in the “single-track” label scheme. The first chromosome of C.
elegans has 14,025,570 bases, and with annotation according to the above label scheme,
the counts on different labels are shown in Table 1:

0 571,187 A 518,431 I 1,634,653
1 571,187 B 518,431 i 1,779,392
2 571,187 C 518,431 j 7,336,733
Table 1. Counts on Labels.

For the 9-label alphabet used in the annotation we find 25 transitions between labels (see
Table 2), or transition “states”, with the following counts showing consistency with the
25 ‘allowed transition’ out of 9x9=81 possible (i.e., only 25 transitions with nonzero
counts):

01 569,483 BA 516,874 II 1,628,572
12 569,490 CB 516,868 ii 1,772,795
20 566,732 AC 514,309 jj 7,334,177
0i 1,704  i1 1,704* IA 1,557  BI 1,557 j0 1,257  2j 1,257
1i 1,696  i2 1,696 IB 1,563  CI 1,563 Aj 1,161  jC 1,161
2i 3,197  i0 3,197 IC 2,961  AI 2,961
Table 2. Counts on Transitions.

The label convention on introns is such that a sequence of transitions between to the next
exon might look like the following: …20 0i ii ii ii ii ---- ii i1 12 20 01 …., thus it is
expected that the number of 0i transitions will equal the number of i1 transitions, etc., as
is verified above.

Now suppose that there were multiple annotations regarding the labeling of a base (i.e.,
alternative splicing). As the genome is traversed in the forward direction, gene
annotations not in conflict with annotations already seen are used to determine labels on
the first label track. If a gene annotation is in conflict (an alternative splicing), then its

label information is recorded on a second, adjacent, label track. The above tables are
actually the label counts on track one, in Table 3 below are the label counts on track two
(where the default base label is taken to be ‘j’):

0 21,599 A 64,475 I 325,471
1 21,599 B 64,471 i 81,289
2 21,599 C 64,467 j 13,354,661
Table 3. Counts on Track ‘2’ Labels.

Since the j count on track two is 13,354,661, this indicates that about 5% of the coding
regions in the first chromosome of C. elegans have alternate splicing at the coding base
level. The counts on Track 2 transitions are shown in Table 4.

01 21,554 BA 64,296 II 324,751
12 21,548 CB 64,275 ii 81,073
20 21,441 AC 63,986 jj 13,354,350
0i 45  i1 45 IA 175  BI 175 j0 38  2j 38
1i 51  i2 51 IB 192  CI 192 Aj 136  jC 136
2i 120  i0 120 IC 353  AI 353
Table 4. Counts on Track ‘2’ Transitions.

Consider the preliminary results on the alternative splice data in a new way. Now let us
consider a label scheme that is truly multi-track insofar as integrating with the HMM
hidden label formalism. For this, consider the ‘V-label’ -- the two-element “vertical”
label comprising the track 1 and 2 values. So if a base has label ‘0’ on track 1 and label
‘A’ on track 2, its V-label is ‘V0A’. 72 V-labels are found to have nonzero counts (out of
9*9=81 possible). Most of the V-labels describe an overlap of noncoding on one track
with coding on the other track. These are the counts on V-labels describing coding region
overlaps, shown in Table 5:

V00, V11, V22 17,839 VA0, VB2, VC1 0 V0A, V1C, V2B 741 VAA, VBB, VCC 16,169
V01, V12, V20 3 VA1, VB0, VC2 0 V0B, V1A, V2C 957 VAB, VBC, VCA 0
V02, V10, V21 58 VA2, VB1, VC0 829 V0C, V1B, V2A 5164 VAC, VBA, VCB 54
Table 5. Counts ‘Vertical” labels (V-labels), consisting of the track 1 and track 2 labels at
a particular emission instance being grouped as (track 1 label)(track 2 label), of which
only 72 out of 81 possible have non-zero counts and the nontrivial coding-coding
overlaps are shown here. Notice how the V-labels tend NOT to favor simple frame-shifts
in a given read direction (i.e., the V01 count is very low compared to V00, etc.).

Some of the 263 ‘V-transitions’ only have one count, and an analysis indicates that other,
similar type transitions may be allowable as well. The initial model that we will adopt has
the following two-track transition overlap rules: (1) if coding overlaps and has the same
read direction it must have same framing; (2) transitions between coding and non-coding
(‘eij-transitions’) can only overlap other transitions between coding and non-coding if
half in agreement (the signature of a common splice variant); (3) transitions between
coding and non-coding can overlap coding to coding transitions (coding ‘xx-transitions’)
regardless of frame mismatch; (4) non-coding to non-coding transitions (coding ‘xx-

transitions’) can overlap any other transition. This leads to 389 V-transitions, with 320
eij-transitions and 69 xx-transitions. In the clique-generalized version of the 389-element
‘base model’ the states grow as N=69+320(F-1), where ‘F’ is the size of the clique
‘footprint’ state, and the order of computation for the footprint-size F meta-HMM scales
as 320*F (not N2). The 389 V-transitions present a notable reduction from the 25x25
possible overlaps (625 total). This is a tractable number of states to manage in the HMM
analysis, suggesting a simple and direct approach to alternative splice HMM analysis.
The 389 V-transitions do not require 389 independent tables -- 311 independent tables are
needed, and this is the same even for the N-element footprint state versions, where many
of the xx-transitions and eij-transitions have merged counts (and shared look-up tables),
just as with the 25-transition model having 11 independent tables in the original clique-
generalization analysis [2]. Although sufficient support for statistical modeling is already
at hand, improvement to the V-transitions statistical model can also be pursued by
incorporating information from related genomes (such as C. Briggsae).

4.5 Distributed HMM processing via ‘Viterbi-overlap-chunking’ with GPU speedup
Distributed processing has been done by use of simple chunking with overlaps
‘sufficient’ for recovery, where the details of the latter are described in what follows. A
central Viterbi-like feature of the chinking methods employed is first described: the table
chunking methods for the dynamic programming algorithms that have been developed
involve only a single-pass computation analogous to the Viterbi algorithm (ignoring O(L)
traceback) [1]. The Viterbi algorithm efficiently calculates the most probable state path.
The Baum-Welch algorithm calculates the probability of having a state at a particular
index, summing over all path probabilities that arrive at that state-instance, and is usually
implemented as two passes, for the forward and backward parameters. In the Linear
Memory HMM introduced in [26], however (see Methods),the Baum-Welch
implementation has a distinctive trait other than a linear memory implementation, it’s
also a ‘single-pass’ implementation for the algorithm, which is needed for the Viterbi
single-pass referenced, overlap-stitched, reconstituted signal in a distributed processing
setting (see Methods for details). This can used be for brute force, and massively
scalable, computational speed-up on all the HMM-based algorithms used in the SSA
Protocol.

4.5.1 Single-Pass Table Algorithm
The table chunking methods for the dynamic programming algorithms that are described
in what follows make use of a single-pass computation analogous to the Viterbi algorithm
(ignoring O(L) traceback). In the Linear Memory HMM introduced in [26], and described
below, the Baum-Welch algorithm implementation has a distinctive trait other than a
linear memory implementation; itis also a ‘single-pass’ implementation.

Following the notation used in [26], ti,j(t,m) is the weighted sum of probabilities of all
possible state paths that emit subsequence b1,…,bt and finish in state λt = m, taking an
λt=i  λt+1=j (ij) transition at least once (for some t) where the weight of each state
path is the number of ij transitions that it takes. Processing of the entire ti,j(t,m)
recurrence takes memory proportional to O(NQ) and processor time O(TNQQmax).

Initially, since no transitions have been made, ti,j(1,m)=0. After initialization we have the
following recurrence steps

ti,j(t,m) = fi(t-1) aim em(bt)δ(m=j)+ ∑ ti,j�t-1,n�𝑁
𝑛=1 anm em(bt)

The computation is in-step with the forward variable as a single-pass computation, where

the delta function is defined as: δ(m=j)= � 1, 𝑖𝑓 𝑚 = 𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� . At a certain time moment t we

need to score the evidence supporting transition between nodes i and j, which is the sum
of probabilities of all possible state paths that emit subsequence b1,…,bt-1, and finish in
state i (forward probability fi(t-1)), multiplied by transition aij and emission ej(bt)
probabilities upon arrival to bt. We extend the weighted paths containing evidence of ij
transitions made at previous time moments 1,…,t-1 further down the trellis in the second
part of the equation above. Finally, by the end of the recurrence, we marginalize the final
state m out of probability ti,j(T,m) to get a weighted sum of state paths taking transition
ij at various time moments. Thus, we estimate transition utilization using

aij = ∑ ti,j(T,m)𝑁
𝑚=1

∑ ∑ ti,j(T,m)𝑁
𝑚=1𝑗∈𝑜𝑢𝑡(𝑠𝑡𝑎𝑡𝑒 𝑖)

,

where out(state i) of nodes connected by edges from state i.

The following algorithm updates the ‘emission’ parameters for the set of discrete symbol
probability distributions E={e1(b),…, eN(b)} in O(NED) memory and O(TNEDQmax)
time. According to [26], ei(b,t,m) is the weighted sum of probabilities of all possible state
paths that emit subsequence b1,…,bt and finish in state m, for which state i emits
observation b at least once where the weight of each state path is the number of b
emissions that it makes from state i. Initialization step: ei(b,1,m)= fmlδ(i=m)δ(b=b1).
After initialization we make the recurrence steps, where we correct emission recurrence
presented in [27]:

ei(b,t,m)= fmtδ(i=m)δ(b=bt) + ∑ ei(𝑏, 𝑡 − 1,n)𝑁
𝑛=1 anm em(bt)

Finally, by the end of the recurrence, we marginalize the final state m out of
ei(b,T,m) and estimate the emission parameters through normalization

ej(b)= ∑ ei(b,T,m)𝑁
𝑚=1

∑ ∑ ei(b,T,m)𝑁
𝑚=1

𝐷
γ=1

,

The forward sweep takes O(TNQmax) time, where only the values of fi(t-1) for 1≤i≤N are
needed to evaluate fit, thus rendering memory requirement to O(N)for the forward
algorithm. Computing ei(b,t,m) takes O(NED) previous probabilities of ei(b,t-1,m) for
1≤m≤N, 1≤i≤E, 1≤b≤D. Recurrent updating of each ei(b,t,m) probability elements takes
O(Qmax) summations, totaling O(TNEDQmax).

4.5.2 Chunking with overlap resolution
In HMM signal processing latency becomes very prohibitive when attempting to increase
device bandwidth or when input datasets are large. Described in what follows are results
from performing HMM algorithms in a distributed manner by breaking into overlapping
chunks and leveraging the Markovian assumption underlying the HMM to help arrive at a
chunk-data reconstruction. The pathological instances where the distributed merges can
fail to exactly reproduce the non-distributed HMM calculation can be made as least likely
as desired with sufficiently strict, but not computationally expensive, segment join
conditions. In this way, the distributed HMM provides a feature extraction that is
equivalent to that of the sequentially run, general definition HMM, and with a speedup
factor approximately equal to the number of independent CPUs operating on the data.
The Viterbi most probable path calculation and the Expectation/Maximization (EM)
calculation can both be performed in this distributed processing context.

The linear memory implementation described above (and in [27]) was optimized
according to the observation that Viterbi traceback paths in the Viterbi procedure
typically converge to the most likely state path and travel all together to the beginning of
the decoding table – the picture being much like a river with minor tributaries
backtracking onto that river, and maybe those ‘tributaries’ themselves have more minor
state paths converging into them, etc. But the trait that is most notable in the
convergence-durations to the ‘main-tributary’, or what is to be the most likely (Viterbi)
path, is that it is usually a modest number of columns for many data types. This
backwards Markovian memory loss on a tributary with respect to its origin (said to occur
when backtracked and mixed with the main, Viterbi, convergence path of the tributaries)
is hypothesized to be an indicator of the span of sequence needed to have Viterbi path
probabilities in a given column that have settled into their properly ordered relative
probabilities in that column. Further column processing refinement to bring the relative
values of the Viterbi-path probabilities into better estimation is then possible. In
distributed processing efforts, this “Viterbi relaxation time” is a key parameter that can be
used to design an optimally overlapping chunking of the data sequence in a distributed
speed-up on the sequence analysis.

A distributed signal processing test of some basic chunk reconstruction heuristics was
performed on 5 computers with 300 signals. Each signal had 5000 samples. The resulting
viterbi paths matched between the distributed HMM and standard HMM on a 10-column
segment. For the standard HMM, EM training (5 loops) the Viterbi algorithm took 272
seconds. For distributed HMM with 5 CPU’s, the computational time was reduced to 69
seconds. So using 5 computers, we had a speedup of 3.94. A perfect de-segmentation
was performed with an N=10 match window as indicated, initally, but it was found that a
perfect re-stitching of segments was also possible simply with N=1 (see Fig. 7), due to
the implicit stringency of the simultaneity condition (the overlap match, at the one
position corresponding to N=1, must globally index to the same observation data index
for both segments). The multi-chunk re-stitching makes use of the Viterbi path and the
entire set of Viterbi traceback pointers in a given overlap set of columns [1].

......

…
..

......

…
..

......

…
..

......

…
..

......

…
..

......

…
..

......

…
..

......

…
..

......

…
..

......

…
..

Table2

Table1

......

…
..

......

…
..

......

…
..

......

…
..

......

…
..

......

…
..

......

…
..

......

…
..

Figure 7. Viterbi
column-pointer match
de-segmentation rule.
Table1 and Table2 are
overlapped. And their
blue columns have the
same pointers. Then the
index of this blue
column becomes the
joint. The black
pointers form the final
viterbi path.

5 Discussion

Stochastic carrier wave signal processing occurs in both natural and engineered
situations. Whenever Nature is observed with a sequence of observations that have
stationary statistics (associated with equilibrium and near-equilibrium flow situations, for
example), then the basis for SCW signal processing arises. SCW also parallels all
electrical engineering carrier-wave methodologies where periodic wave methods are used
in some modulation scheme, thus the number of engineering applications is enormous.
AM heterodyning, for example, can be replaced with stochastic carrier wave with pattern
recognition informed (PRI) heterodyning. In a similar manner, also have phase
modulation equivalence: the standard periodic carrier wave approach has a coherent
phase reference, while SCW introduces a stochastic carrier wave with stationary statistics
‘phase’, where we have similar capabilities as with phased-locked loop (PLL), for
example, where the phase tracking is done on SCW encoded information and transducer
selection.

5.1 SCW for detector sensitivity boosting and secure, hidden, communications
Recently developed HMM implementations, summarized in the Methods, allow a new
form of carrier-based communications, where the carrier is not periodic but is stochastic
with stationary statistics. The “stochastic carrier wave” approach is not only a means to
understand the messages Nature provides (in near-equilibrium flow phenomenologies
with stationary statistics), but also provides a hidden carrier method, enabling secure
communications, making signal jamming much more difficult, and making signal
location much more difficult. An algorithmic methodology that allows for 100-fold, or
faster, implementation of a Hidden Markov model with duration (the HMMBD algorithm
[4,24]), is critical to this encoding/decoding method.SCW communications are found at
the forefront of a number of efforts in nanotechnology. This is because nature at the
single-molecule scale has a signal modulation that is stochastic, sometimes with
stationary statistics. Such is the case with the signal analysis in a nanopore transduction
detector.

If states have self-transitions with a notably non-geometric distribution on their self-
transition ‘durations’, then a fit to a geometric distribution in this capacity, as will be
forced by the standard HMM, will be weak, and HMMD modeling will serve better. In
engineered communications protocols, or in engineered, modulated, nanopore
transduction detector signals, highly non-geometric distributions can be sought. One
encoding scheme that is strongly non-geometric in same-state duration distribution is
Nature’s familiar long open-reading-frame (ORF) encoding found in genomic data. This
suggests a similar ORF-like encoding scheme to establish a carrier duration peak in the
self-transition distribution’s tail region, e.g., a second peak in the duration distribution
(perhaps one even more skewed from the geometric distribution than the heavy-tail
distributions found for ORFs).

The NTD signal analysis demonstrates the simplest stochastic carrier wave utilization in a
biophysics experimental setting – a stochastic phase modulation (with just two phases of
stationary statistics). A minor elaboration on the signal analysis, to go from a simple two-
state (bound/unbound) signal recognition to a two-phase SCW telegraph signal, then
yields the rudimentary implementation for stochastic carrier communications purposes.

5.2 NTD with multiple channels (or high noise)
The nanopore transduction detection platform involves functionalizing a standard
nanopore detector platform in a new way that is cognizant of signal processing and
machine learning capabilities and advantages, such that a highly sensitive biosensing
capability is achieved. In the NTD functionalization of the standard nanopore detector,
we design a molecule that can be drawn into the channel (by an applied potential) but be
too big to translocate, instead becoming stuck in a bistable ‘capture’ such that it
modulates the ion-flow in the single nanopore channel established in a distinctive way.
An approximately two-state ‘telegraph signal’ is engineered for this purpose. If the
channel modulator is bifunctional, in that one end is meant to be captured and modulate
while the other end is linked to an aptamer or antibody for specific binding, then we have
the basis for a remarkably sensitive and specific biosensing capability. The biosensing
task is reduced to the channel-based recognition of bound or unbound NTD modulators.
Preliminary results demonstrate successful application of this method in a streptavidin
(toxin) detection scenario using a biotinylated DNA hairpin. In typical NTD biosensing
there is only one (nanometer-scale) channel established in the detector apparatus,
however, where other channels bridging the same membrane (bilayer) would do so in
parallel with the first (single) channel. In a naïve setting, additional channel noise sources
degrade sensitivity and offset gains from having multiple channel ‘receptors’. In the
stochastic carrier wave encoding/decoding with HMMD, it may be possible to have
multiple channels but avoid signal degradation such that the full benefits of a multiple
receptor gain can be realized.
In the NTD platform, sensitivity increases with observation time in contrast to
translocation technologies where the observation window is fixed to the time it takes for a
molecule to move through the channel. The key to the sensitivity and versatility of the
NTD platform is the unique ability to couple real-time adaptive signal processing

algorithms to the complex blockade current signals generated by the captured transducer
molecule. The NTD approach can provide exquisite sensitivity and can be deployed in
many applications where trace level detection is required.

Consider the case where 100 parallel channels are in operation, a scenario that has the
potential to increase the sensitivity of the NTD 100-fold, but the signal analysis typically
becomes more challenging, and sensitivity gains limited, since there are 100 parallel
noise sources. The HMMD recognition of a transducer signal’s stationary statistics,
however, is analogous to ‘time integration’ heterodyning a radio signal with a periodic
carrier in classic electrical engineering, in that there is improved carrier-signal
recognition with longer observation time. In order to introduce a ‘time integration’
benefit in the recognition of a transducer signal, periodic (or stochastic) modulations may
be introduced to the transducer environment. In a high noise background, modulations
may allow some of the transducer states to have heavy-tailed, or multimodal, self-
transition duration distributions. With these modifications to the signal processing
software, a single transducer molecule signal is recognizable in the presence of 100s of
channels. Increasing the number of channels by 100 and retaining the capability of
recognizing a single transducer blockading one of those channels provides a direct gain in
sensitivity according to the number of channels (e.g., 100 channels would provide a
sensitivity boost of 100). It is important to note that the increase in sensitivity is mostly
implemented computationally and does not add complexity or cost to the NTD device
itself.

5 Conclusions

Hidden Markov models are a pervasive and fundamental tool in sequential data analysis
and signal communications. Critical HMM tools have recently been improved via a
number of computationally efficient generalizations. Generalized HMMDs that are
clique-generalized and with side-information provide an efficient means to establish a
new form of carrier-based communications, where the carrier is not periodic but is
stochastic, with stationary statistics. The generalized HMMD algorithmic methodology
enables practical stochastic carrier wave encoding/decoding. SCW type signal processing
is encountered at the forefront of a number of efforts in science and nanotechnology,
since Nature offers up stationary statistics in many near-equilibrium situations and flow
situations, and since engineered stationary statistics systems are common (such as with
the nanopore transduction detection examples).

The new level of signal processing and clique-scaling functionality with HMMs enables
robust stochastic carrier wave signal processing, especially when implemented within the
weakness recovery protocol outlined for the SSA Protocol described in the Results. The
new stochastic carrier wave functionality described here offers a significant and new
dimension to signal processing, with numerous applications.

6 Acknowledgements
The author would like to thank lab technicians Amanda Alba and Eric Morales for help
performing the nanopore experiments and University of New Orleans students Evenie
Horton, Jorge Chao, and Joshua Morrison for help with the nanopore experiments and the
channel current cheminformatics analysis. The author would like to thank the University
of New Orleans, NIH, NSF, NASA, and the Louisiana Board of Regents for research
support. The author would also like to thank META LOGOS Inc., for research support
and a research license. (META LOGOS was co-founded by the author in 2009, when it
obtained exclusive license to the NTD and machine-learning based signal processing
intellectual property.) The author would also like to thank Robert Adelman (CEO META
LOGOS, Inc.), Andrew Peck (CEO PxBioSciences), and Mike Lewis (Professor,
University of Missouri-Columbia), for insights into the potential impact of the NTD
approach.

7 References
[1] Winters-Hilt, S. and R. Adelman. Method and System for Characterizing or Identifying Molecules and
Molecular Mixtures. USPTO Filing. Meta Logos Inc. 2010.

[2] Winters-Hilt, S. and C. Baribault. A Meta-state HMM with application to gene structure identification in
eukaryotes. EURASIP Journal of Advances in Signal Processing, Special Issue, Genomic Signal Processing, 2010.

[3] Winters-Hilt, S., Jiang, Z., and C. Baribault. Hidden Markov model with duration side-information for novel
HMMD derivation, with application to eukaryotic gene finding. EURASIP Journal of Advances in Signal
Processing, Special Issue on Genomic Signal Processing, 2010.

[4] Winters-Hilt S and Jiang Z. A hidden Markov model with binned duration algorithm. IEEE Trans. on Sig.
Proc., Vol. 58 (2), Feb. 2010.

[5] Roux B and Winters-Hilt S. Hybrid SVM/MM Structural Sensors for Stochastic Sequential Data. BMC Bioinf.
9 S9, S12 (2008).

[6] Iqbal R, Landry M, Winters-Hilt S: DNA Molecule Classification Using Feature Primitives. BMC
Bioinformatics 2006, 7 S2: S15.

[7] Landry M, Winters-Hilt S. Analysis of nanopore detector measurements using machine learning methods, with
application to single-molecule kinetic analysis. BMC Bioinf. 8 S7, S12 (2007).

[8] Donoho D. Compressed sensing. IEEE Trans. On Information Theory, 52(4), pp. 1289 - 1306, April 2006.

[9] Winters-Hilt, S., W. Vercoutere, V. S. DeGuzman, D. Deamer, M. Akeson, and D. Haussler, "Highly Accurate
Classification of Watson-Crick Base-Pairs on Termini of Single DNA Molecules," Biophys. J. Vol. 84, pg 967,
2003.

[10] Winters-Hilt S: Hidden Markov Model Variants and their Application. BMC Bioinf. 2006, 7 S2: S14.

[11] Vapnik, V. N. 1999. The Nature of Statistical Learning Theory (2nd Ed.). Springer-Verlag, New York.

[12] Ferguson, J.D. Variable duration models for speech. Proceedings of Symposium on the Application of Hidden
Markov models to Text and Speech, pages 143-179, 1980.

[13] Rabiner, L.R. A tutorial on hidden markov models and selected application in speech recognition. Proceedings
of the IEEE, 77:257-286, 1989.

[14] Ramesh, P., and J.G. Wilpon. Modeling state durations in hidden markov models for automatic speech
recognition. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, 1:381-384,
1992.

[15] Yu, SZ. and H. Kobayashi. An efficient forward-backward algorithm for an explicit-duration hidden markov
model. IEEE Signal Processing Letters, 10:11-14, 2003.

[16] Johnson, M.T. Capacity and complexity of hmm duration modeling techniques. IEEE Signal Processing
Letters, 12:407-410, 2005.

[17] Ghahramani, Z. and M. Jordan. Factorial hidden markov models. Machine Learning, 29:245-273, 1997.

[18] Singer, Y., S. Fine and N. Tishby. The hierarchical hidden markov model: Analysis and applications. Machine
Learning, 32:41, 1998.

[19] Murphy, K. and M. Paskin. Linear time inference in hierarchical hmms. Proceedings of Neural Information
Processing Systems, 2001.

[20] Baribault, C and Winters-Hilt S. A novel, fast, HMM-with-Duration implementation -- for application with a
new, pattern recognition informed, nanopore detector. BMC Bioinformatics 2007, 8 S7: S19.

[21] Eren AM, Amin I, Alba A, Morales E, Stoyanov A, and Winters-Hilt S. Pattern Recognition Informed
Feedback for Nanopore Detector Cheminformatics. Accepted paper in book “Advances in Computational Biology”,
Springer: Advances in Experimental Medicine and Biology, June 2010

[22] Winters-Hilt, S., and Pincus, S. Nanopore-based biosensing. PATENT, UNO filing, 2004.

[23] Winters-Hilt, S. , and Pincus, S. Channel current cheminformatics and bioengineering methods for
immunological screening, single-molecule analysis, and single molecular-interaction analysis. PATENT, UNO
filing, 2005. [All paragraph citations specifically refer to version PCT WO2006041983A2 in case of ambiguity.]

[24] Winters-Hilt, S.; U.S. Provisional Patent Application No. 61/233,732. Title: A Hidden Markov Model With
Binned Duration Algorithm (HMMBD). August 13, 2009. Re-filing: Winters-Hilt, S.; U.S. Provisional Patent
Application No. 61/234,885. Title: An Efficient Self-Tuning Explicit and Adaptive HMM with Duration Algorithm.
August 18, 2009.

[25] Winters-Hilt S, Yelundur A, McChesney C, Landry M: Support Vector Machine Implementations for
Classification & Clustering. BMC Bioinformatics 2006, 7 S2: S4.

[26] Churbanov, Alexander and S. Winters-Hilt. Implementing EM and Viterbi algorithms for Hidden Markov
Model in linear memory. BMC Bioinformatics 2008, 9:228.

[27] Miklos I, Meyer I: A linear memory algorithm for Baum-Welch training. BMC Bioinformatics 2005, 6(231).

