
1.  
 
Support Vector Machine(SVM) 
 
Linear Binary SVM:  
 
N training data “points” (feature vectors with binary labels): 
 
{ }, ),(),...,,(),,( 2211 nn yxyxyx vvv

ixv ℜ∈ m, iy ∈{± 1} 
 
Assumption: The positive and negative labled data( =iy ± 1)is sufficiently separable and 
“dumped”(as positives and negatives) that notions such as positive and negative data 
clusters, and a hyperplane separating them, are meaningful. Often this is achieved 
manually, through the choice of feature vector components used to represent the data 
instances, separability of positives and negatives is often achieved without specific choice 
of feature vector, however, instead leaving this to (automated) tuning at the level of the 
SVM kernel(to be discussed later).  
 
Want a separating hyperplane between positives and negatives, =iy ± 1, assume full 
separability possible with choice of feature vector ( )components: ..vf
 
                                         Hφ : bxy −⋅= vvω =φ  
 

 
All hyperplanes parallel, 
Hφ || H +||H_  all have hyperplanes proportioned toωv . 
 
 



2. 
 
So, have without loss of generality (w,l,o,g): 
 
H + : bxy −⋅= vvω + =φ  

H - : bxy −⋅= vvω -=φ  
Again, rescaling on ωv possible (w,l,o,g) to bring m to form: 
 
H + : bxy −⋅= vvω + = +1 

H - : bxy −⋅= vvω -= -1 
 
So, for fully separable binary data ( ii yx ,v ): 

bxi −⋅ vvω ≥+1 for = +1 iy

bxi −⋅ vvω ≤- 1 for = -1 iy
Combined using sign trick:  
 

iy ( bxi −⋅ vvω ) -1 0   ≥ i∀
 
This is the key constraint that must be satisfied for separable(binary) data. 
 
With rescaling the separation between H+ and H_ becomes: 
First, the boundary hyperplanes are: 
 

)(+
ixv  . ω -b=1;   )(−

ixv . ω -b= -1 
 
Where )(+

ixv are from that have = +1, and that reside on(“support”) the H+ 

boundary (i.e., a support vector , ”S.V.”). Likewise for the

svf '.. ixv iy
)(−

ixv . 
 
( )(+

ixv - )(−
ixv ) . ω =2 

 
When ( - ) is perpendicular to the hyperplane the distance between the 

hyperplanes is given by d=||(

)(+
ix )(−

ix
)(+

ixv  - )(−
ixv ) || = ω

2 .      d= 2||ω ||-1 

 
 
 
 
 
 



 
3. 
 
A variational derivation of the result d= ω

2 , the distance between hyperplanes H+ and 

H_, is now shown. The variational derivation is meant to provide a refresher on methods 
to be used in what follows, 
 
2-D space:   
                                                  Line: Ax+By+C=0 

 
 
D= 2

0
2

0 )*()*( yyxx −+−  
 
Want to minimize D subject to constraint Ax*+By*+C =φ (i.e., that the nearest point to 
(x0,y0) reside on the line. This suggests the following Lagrangian formulation: 
 
  L(x*,y*,α )=D(x*,y*)+α [ Ax*+By*+C] 
 
The Lagrangian solution is obtained by minimizing L on choice of {x*, y*}, i.e., 
minimize D(x*, y*), but subject to the constraint Ax*+By*+C=0(encapsulated in the 
term with the Lagrange Multiplier): 
 

 =
∂
∂
α
L [Ax*+By*+C], requiring =

∂
∂
α
L 0 then restores on constraint, 

    0= =
∂
∂

*x
L

D
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L
∂
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D
yy )*( 0−
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   2

2
0 )*(

D
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D
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4. 
 
Ax*+By*+C=0 [Ax0+By0+C]-α  (A2+B2)D=φ  
↓                                              ↓     ↓
↓                                                 Sign choice, abs maintains consisting   
↓                                                      ↓  

Ax*= - D+Ax0                            D=2Aα
22

00

BA

CByAx

+

++
 

By*= -  D+By0 
2Bα

 
Generalization from 2-D space to m-D space, consider distance from a point on H+ to H : φ

| | |CByAx ++ 00 → bx −⋅ vvω |=1 

While the “ωv ”parameters in H (same as in H+) correspond to: φ

22 BA + → ∑
k

kw2 = ωω vv . =||ωv || 

So, D= ||||
1
ωv from H+ to H , twice that for H+ to H_: φ

 
d= ||||

2
ω  

 
The SVM approach encapsulates a Key Structured Risk Minimization (SRM) criterion 
when it seeks to obtain the separable solution for which “d” is the greatest. This is the 
solution for which the separating hyperplane is the furthest distance possible from the 
positive & negative supper vectors (the nearest data points). The risk assumed in using a 
hyperplane to separate is, intuitively, lessened if we aient that separating hyperplane to 
maximize its distance to the training data (least sensitivity to , etc) svs '..
 
For Separability we have the Constraint: (iy bxi −⋅ vvω ) -1 0 ≥ i∀ , 

For SRM we have maximize d= ||||
2

ω , or minimize ||ω ||2 (maximizing ||ω ||-2, instead 

of ||ω ||-1), is chosen due to simplifications in the formalism that follows---intuitively, if 
we max ||||

1
ω by min on ||ω ||, it could just as well be done with min on ||ω ||2. 

 
 
 
 
 
 
 



5. 
 
 
Lagrangian Formulation: 
 

L( αω vv ,,b )= 2||||
2
1 ω - ,]1)([ −−⋅∑ bxy ii

i
i ωα 0≥iα  

 
As with the practice Lagrangian described earlier, we seek to minimize L on { b,ωv }and 
to extremize(maximize in this case) L on{αv },i.e., what results due to the simultaneous 
minimization/ maximization is what is called the saddle-point optimization for the 
solution. 
 
Note how the inequality constraints above differ from the practice (distance-to-line) 
problem. In the latter case, the constraint was an exact equality (Ax*+By*+C=φ ), and 
the term entering the Lagrangian was: 
“α [Ax*+By*+C]” 

For which the recovery of the constraint from =
∂
∂
α
L 0 was clear. Now, the Lagrange 

Multipliers,α , are no longer free to be positive or negative(recall the α =  

solution before). Now the 

122 )( −+± BA

α ’s
are restricted to be positive, and the term entering the 

Lagrangian has an overall negative in front: 
 
“- ]1)([ −−⋅ bxy iii ωα ” 
 
Where there are as many constraint “ ” as there are training data points. The way to 
understand these constraints and their Lagrangian contributions is to directly consider the 
Lagrangian in an incremented saddle-point optimization: 

i

 
Knows as the Karush-Kuhn-Tucker relations, i.e., the “KKT relations” 
                                                               ↓  

• If [ 1)( −−⋅ bxy ii ω ]>φ (constraint satisfied), then maximization(on s
i
'α  ) 

for ” ]1)− b ” is achieved for i([ −∑ xy ii
i

i ωα α φ (since iα φ≥  constraint!). 

• If [ 1)( −−⋅ bxy ii ω ] =φ  (constraint satisfied, a support vector), then there is no 
constraint or iα . 

• If [ 1)( −−⋅ bxy ii ω ] <φ , then iα ∞ ! 
 
 
 
 
 



 
6. 
 
The last case, [ 1)( −−⋅ bxy ii

vω ] <φ , is an example of where the constraint is not 
satisfied. For completely separable data this case will not occur in the solution, but may 
occur when incrementally optimizing to achieve that solution. 
 
As we shall see, non-separable (perfectly) data can have constraint violations in the 
solution. How is this managed if the Lagrangian optimization will drive the associated 
Lagrange multipliers to larger and larger positive values ( iα ∞→ )? 
 
The answer is to establish a max α  cut off: 
max( iα )=C 
 
Practically speaking the above is imposed for both separable and non-separable data. 
 
When we consider the derivation of the “Dual Formalism” for L( αω ,,b ), and compare to 
the same Dual on the non-separable formulation--- we will find that the Duals are the 
same(which is very convenient). Here is the formalism w/wo separability: 

L= 2||||
2
1 ω - ,]1)([ −−⋅∑ bxy ii

i
i ωα 0≥iα , 

                        [Note: C φ≥ →α C term in Lagrangian with α φ≥ ]  
From an implementation stand point, if nothing else, have max( iα )=C, so, practically 
speaking: 
 

L= 2||||
2
1 ω - ,]1)([ −−⋅∑ bxy ii

i
i ωα 0≥iα , iα ≤C     (C- iα ≥0) 

The (C- iα ≥0) constraint can itself be absorbed into the Lagrangian: 
   
      minimize                                         interpretive (minimize) (maximize)          
           ↓                                                                         ↓                   ↓

L= 2||||
2
1 ω -  +]1)([ −−∑ bxy ii

i
i ωα ∑ − )( ii C ασ ,   φσ ≥i ,      φα ≥i  

                          positive variants                 negative variants 
 
 
 
 
 
 
 
 



 
 
7. 
 
If we rewrite the Lagrangian: 
 

L= 2||||
2
1 ω - +C∑ +−−⋅

i
iiii bxy ]1)([ σωα ∑ iσ , 0,0 ≥≥ ii ασ  

                              -------------------------- 
                             Corresponds to constraint: 
                             φσω ≥+−−⋅ iii bxy 1)(  
                             iii bxy σω −≥−⋅ 1)(       φσ ≥i  
Back tracking: ii bx σω −≥−⋅ 1  for 1+=iy  
                        ii bx σω +−≤−⋅ 1  for 1−=iy  
So, the Lagrange Multiplier iσ , introduced to deal with the max( iα )=C constraint, can 
be interpreted as a “slack variable”: 
 

  

 
 
 
 
 

• If C> φσα →ii ,  
• If C= ii σα ,  free( φ≥ ) 
• If C< ∞→ii σα ,  

 
                 ↓  
             See Note

Note: 
 
With the  we have more control than with s'α ]1)([ −−⋅ bxy ii ω , where previously 

∞→iα  resulted. Now, can avoid C< iα  condition by establishing initial conditions 
without C< iα  and maintaining these conditions as the Lagrangian optimization stars 
forward(such freedom of initialization not possible when “given” the training data{ ii yx ,v } 
as the starting point). 
 
 
 
  



 
8. 
 
To recap, a slack-variable formalism, to deal with non-perfect separability scenarios, 
naturally arises:  

                   
If we penalize violations with a term C, then a Lagrangian modification results to  
  ↓                           (minimize) 
  ↓                                iσ           (C∑

i
iσ )                    

The new slack constraint is:   ∑  +−−⋅
i

iiii bxy ]1)([ σωα

Together: 

     L= 2||||
2
1 ω - +C∑ +−−⋅ ]1)([ iiii bxy σωα ∑ iσ , 0,0 ≥≥ ii ασ  

 
Exactly what we had from the max( iα )=C constraint! 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
9. 
 
Dual Calculations: 
 

L= 2||||
2
1 ω - , ∑ −−⋅

i
iii bxy ]1)([ ωα 0≥iα  

Lσ =
2
1 2||||ω - +C∑ +−−⋅

i
iiii bxy ]1)([ σωα ∑ iσ , 0,0 ≥≥ ii ασ  

                ↓  
              ∑  

j
j
2ω

0= ∑−=
∂
∂

i
jiiij

j

xyL )(αω
ω

   ⇒∀ j i
i

ii xy vv ∑= αω  

0= ⇒=
∂
∂ ∑

i
ii yb

L α   φα =∑
i

ii y

Notice that =
∂
∂

j

L
ω
σ

j

L
ω∂
∂  and =

∂
∂

b
Lσ

b
L
∂
∂ , so in the duality transform, where we shift to 

dual variables without direct reference to { b,ω }, it will much the same: 
 

∑∑ ∑ ∑∑ ∑ +−=
i

i
i

ji
j

jii
i

iii
j

jii
i

i xxyyxyL αααα
'

''' ))())((())((
2
1~ 2  

= kjk
k

iji
ji

ji
i

i xxyy )()(
2
1

,
∑∑∑ − ααα  

)(~ αL = jiji
ji

ji
i

i xxyy vv ⋅− ∑∑
,2

1 ααα , 0≥iα  

 
Where we want to find the  that maximize s'α L~ (α ). Notice how in the Dual 

Formalism the dependence on the training data is made very clear in the  
jiji

ji
ji xxyy vv ⋅∑

,
αα  term. 

 
 
 
 
 
 
 
 



 
 
10. 
 
For the Dual: σL

σL =),(~ ασL jiji
ji

ji
i

i xxyy vv ⋅− ∑∑
,2

1 ααα ∑ −− )( Cii ασ , 0,0 ≥≥ ii ασ  

         

)(~ ασL = jiji
ji

ji
i

i xxyy vv ⋅− ∑∑
,2

1 ααα , C 0≥≥ iα  

 
So, the duals are the same aside from the C iα≥  ( max C≤)(α ) constraint, which is 
desirable(in some implementations) anyway. 
 
Before moving on with the solution to )(~ ααL , and thus the whole optimization/solution 
for the “decision hyperplane” (the trained SVM), let’s examine further how the training 
data is entering the problem: Note the ji xx vv ⋅ term in the above(binary) classification 
Lagrangian. What does the ji xx vv ⋅  term represent? 
 

ixv : feature vector “ i ” 

ji xx vv ⋅ =|| || ||ixv jxv || ijθcos  
 
Suppose || ||=1 ixv i∀ ⇒unit hyperspherical data (data points lie on unit hypersphere, where ||x||=1) 
                    ↓  

⇒=∑ 1)( 2

j
jix 1)( 2 =∑

j
jix   |||| ix⇒

(Note: 1|)(| =∑
j

jix   discrete probability distribution interpretation if  → 0)( ≥jix ji ,∀ ) 

So, for data normalized to be unit hyperspherical: || ixv ||=1 || jxv || ⇒  ji xx vv ⋅ = ijθcos  
 
 
 
 
 
 
 
 
 
 
 
 



 
11. 
 
On unit hyperspherical data the interpretation of ijθ  is clear, it is the spherical arc angle 
between points  and ixr jxr on its surface: 
                                                 ji xx vv ⋅ = ijθcos  

For small angle(data in same cluster): θcos =1- ...
2
1 2 +θ  

                                                 ji xx vv ⋅ ≈1- 2

2
1

ijθ  

In the Lagrangian the constant term does not matter: 
 
 

)(~ ασL ≈
2
1

−∑
i

iα ))((
,

jji
ji

i yy αα∑ )
2
1(

2
1 2

,
ijji

ji
ji yy θαα −− ∑  

                              ∑∑
j

jji
ji

i yy ))((
,

αα

                                    ↓  

                                   =0 from 
b
L
∂
∂ constraint. 

So, for unit hyperspherical, proximate, feature vectors: 

“ ji xx vv ⋅ ” -≈ 2

2
1

ijθ ≈ -  2|| ji xx vv −

                      ↑                ↑                
Square arc length         Euclidean distance squared 
 
So, for unit hyperspherical data, “ ji xx vv ⋅ ”can be thought of as measuring a distance that 
has been regularized in some manner when the distance grows large(i.e. as angular 
coordinate limitation, or in exponentiation to be seen in what follows). 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
12. 
 
So, for unit hyperspherical data: 

ji xx vv ⋅ ≈    - for  “near” 2|| ji xx vv − ixv jxv  
                 regularized { ji xx vv , } expression for ixv  not “near” jxv  
We will see in a moment that we are free to manipulate our feature vectors by some 
mapping (with inverse) such that ixv )( ixvΦ→ , which blurs the boundaries in the above 
example, for example, by 
      

)||()()( 2
jiji xxxx vvvv −−≈Φ⋅Φ φ for positive, monotonically increasing φ , and for  “near” ixv jxv . 

                 regularized ≈ }),({ ji xx vvφ expression for ixv  not “near” jxv (which may be     
          accomplished in choice of φ  implied for when ixv  “near” jxv ). 
 
One popular function of type )||( 2

ji xx vv −−φ  is the Gaussian:  
 

         )2
||exp(),( 2

2

σφ ji
jiG

xxxx
vv

vv −−
=  

For 2
2 ||

2
11, jiGji xxxx vvvv −−≈≈
σ

φ , and ignoring the unit constant as before we have the 

same form as with the hyperspherical case, except now with an extra tuning 
parameter(variance).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
13. 
 
As mentioned, we can map our feature vectors in a variety of ways, including lifting to a 
higher dimensioned feature space. This can be very powerful in identifying a separating 
hyperplane in a higher-dimensional mapping: 
 
                           formerly )(: ii xx v

a
v ΦΦ ji xx vv ⋅   

                    )(~ ασL ≈ ∑
i

iα )()(
2
1

,
jiji

ji
ji xxyy vv Φ⋅Φ− ∑ αα  

The inner product )()( ji xx vv Φ⋅Φ  can be described as a special type of Kernel function: 
 
                         )()( jiij xxK vv Φ⋅Φ=   
Kernel functions expressible in this way satisfy what are known as Mercer’s 
conditions(positive semidefinite K). Not all kernels satisfy Mercer’s conditions, and are 
not describable as a mapping Φ  on feature vectors. Although all kernels examined 
appear to satisfy Mercer’s condition, this will not be taken as a critical limitation (until 
needed). So, w,l,o,g, 
 

                    )(~ ασL =∑
i

iα CKyy iijji
ji

ji ≤≤− ∑ ααα 0,
2
1

,

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
14. 
 
As mentioned previously, the choice of kernel eliminates the need for refining a choice 
on feature vector mappings (beyond a certain point, such as requiring some consistent 
normalization on for example). svf '..
 
The Gaussian kernel is consistently one of the best performings:  
 

                                          )2
||exp(),( 2

2

σ
ji

jiG
xxxxK
vv

vv −−
=  

 
The InnerProduct kernel(the naturally occurring one in the simple  case) is one of the 
worst performing: 

..vf

                              )( jiIP xxK vv ⋅ = ji xx vv ⋅  
 
How is the “regularization” in the Gaussian kernel better, and how might it be improved 
upon? The key is to see how the Gaussian kernel behaves with respect to it parameters: 
rewrite )2||||exp(),( 22 σzyzyKG

vvvv −−=   

            
K

G

y
zyK

∂
∂ ),(ln vv

= 2)( σKK zy −                  (Euclidean Distance) 

Clearly, the sign is important, as is a notion of difference. Suppose we generalize on this 
basis to 

             
K

V

y
zyK

∂
∂ ),(ln vv

  22)( σα KK zysign −−        

                                            Where sign y=1 if y>0 
                                                                 =-1 if y<0 
 

Notice: 
k

k
kk

y

zy

∂

−∂ ∑ 21)||(
=
∑ −

k
kk zy 21

kk

|)|(
)z-sign(y

 

 
 
 
 
 
 
 
 
 
 



 
 
 
15. 
 
So, with integrating factor “ ∑ −

k
kk zy ||1 ”, we obtain an integrable form in one of the 

simplest ways possible. Note that now the sign convention is separated from the “notion 
of distance”, here re-entering the kernel expression by way of the integration factor: 
 

          
K

V

y
zyK

∂
∂ ),(ln vv

= )
2

1( 2σ
− )

||

)z-sign(y
( kk

∑ −
k

kk zy
 

          )2||exp(),( 2σ∑ −−=
k

kkV zyzyK vv  

  
This is usually the best performing kernel on the  normed data  considered in the 
channel current analysis 

1L

(  norm: |x|1=∑ , a discrete prob. dist if  also) 1L
k

kx || 0>kx

 
Since 4

1 normL − can be a distance (triangle inequality, etc.), then the kernel, 
)2exp( 22 σvV dK −=  satisfies Mercer’s conditions. 

 
Consider now the case where the notion of difference is not arithmetic but multiplicative, 

i.e., based on (1-
k

k

y
z

) rather than ( kk zy − ) (for the Gaussian). 

In doing so, we must restrict to 0≠ky of course(thus, for all components). ..vf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
16. 
 

As before, the sign of ( ) is information preserved in (1-kk zy −
k

k

y
z

), but the latter is not 

integrable. However, )ln( kk zy also provides sign info—positive when , etc., as 
before, and also includes a ratio(a multiplicative term). Which to go with? A combination 
seems best as this is integrable (but now need , to avoid negative terms in the log): 

kk zy >

0>kz

                                                                   
Ky

zyK
∂

∂ ),(ln vv
σ = )

2
1( 2σ

− [(1-
k

k

y
z

)+ )]ln(
k

k

z
y

 

        )2)]||()||([exp(),( 2σσ yzDzyDzyK +−=vv  
 
This is usually a close 2nd to the kernel, sometimes out performing. This kernel relates 

via relative entropy terms: 
VK

svf '..
 

           ∑=
k k

k
k z

y
yzyD )ln()||(  

 

Symmetrization imposed                
ky

zyD
∂

∂ )||( = )ln(
k

k

z
y

+1 

on relative entropy ( ) zyyz DD +

≡Kullback-Lerbler Divergence,    
ky

yzD
∂

∂ )||( =
k

k

y
Z

−  

A fundamental, symmetrized, information 
comparison between two probability 

 distributions. )
2

1( 2σ
−

ky
yzDzyD

∂
+∂ )]||()||([ = )

2
1( 2σ

− [(1-
k

k

y
z

)+ln(
k

k

z
y

)] 

 
notice how the symmetrization is critical for coming together with a trivially matching 
term. 
 
 
 
 
 
 
 
 
 



 
17.  
 
The doubly novel aspect of the entropic kernel is that it would be the very first guess if 
one wanted to generalized from kernels based on exponentially regularized, square 
distances, to exponentially regularized, symmetrized, divergences (beginning with the 
most fundamental, symmetrized ”relative entropy” also known as then Kullback-Leibler 
information divergence) . 
 
Note that we begun with the supposition that sign was important, as was some well-
behaved” notion of difference” (whether if be distance-based or divergence-based, etc.) 
 
Remarkably, the entropic kernel appears to satisfy Mercer’s condition, when properly 
restricted to discrete probability distributions: 

σK

∑ => 1,0 kk yy . This is not established 
with precise mathematical proof, but is established through exhaustive numerical testing. 
 
The Mercer test: 0),(

,
≥∑ ji

ji
ji CCxxk vv  mC ℜ∈∀

v
 (for positive semidefinite K) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
18. 
 
To Recap: 
 
Seeking theαv  that will maximize the following Larangian:  

               )(~ ασL =∑
i

iα CKyy iijji
ji

ji ≤≤− ∑ ααα 0,
2
1

,

 

KKT Relations: Let bxxf ii −⋅= vv ω)(  
 ijji Kxx ⇒⋅

 
Have solution on constraints when:   

• 1)( ≥⇔= iii xfy vφα  
• 1)(0 =⇔<< iii xfyC vα  
• 1)( ≤⇔= iii xfyC vα  

Where: 
             bxxf ii −⋅= vv ω)( = bxxy

j
ijjj −⋅∑ )( vvα  

                      kernel generalization(↓ ),( yxKyx →⋅ ) 
             =)( ixf v bxxKy

j
ijjj −⋅∑ )( vvα  

Initialization: 
 

Since , choose φα =∑
i

ii y −+
+ ==

NN ii
1,1 _αα  

Now to consider the solution αv  by sequential Minimal Optimization(SMO), where 
successive pairs of  are selected for optimization! s'α
 

),...,,(~)(~
321 nLL ααααα σσ =v  then “freeze” all but 1α  and 2α  in variational optimization 

(each pair of selected above could simply be relabeled as s'α 1α  and 2α , thus use the 
same derivation to follow). 
 
 
 
 
 
 
 
 
 
 
 



 
19. 
 
SMO 
 

),...;,(~)(~
321 mLL ααααα σσ =v ; Note: 21 yys =  

            =( )∑
≥

++
3

21
i

iααα )2(
2
1

122122
2

211
2

1 skkk αααα ++−  

               )22(
2
1

3
222

3
111 ∑∑

≥≥

+−
j

jjj
j

jjj kyykyy αααα ∑
≥≥

−
3,32

1
ij

ijjiji kyyαα  

Let =∑
≥

=
3j

ijjji kyv α 222111 iii kykyx ααω −−⋅ vv  

21)(~ ααασ +=vL )2(
2
1

122122
2

211
2

1 skkk αααα ++− 222111 vyvy αα −−  

               +∑
≥3i

iα ∑
≥≥

−
3,32

1
ij

ijjiji kyyαα  

              { 21,αα }independent term s 
Now consider variational parameters other than { 21,αα } to be fixed in the { 21,αα } 
variational optimization. Furthermore:  
 
          =22110 ααα yyy

i
ii +⇒=∑ ∑

≥

−
3i

iiy α  

                                  ( 21 αα s+ )=γ              (γ = ∑
≥

−
3i

iiyy α ) 

                                                       ↑
                                    does not depend on 1α  or 2α  
                                    21 αγα s−=  
                               
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
20. 
 

),...;( 32 mL ααα      = ))(2)((
2
1)( 122222

2
211

2
222 skskkss αγαααγααγ −++−−+−  

)( 21 αγα s−=           +−−− 222112 )( vyvys ααγ [terms independent of { 21,αα }] 

0= 22111211122211
*

2
2

)2()1( vyvsykskskkksL
−+−+−+−−=

∂
∂ γγα
α

 

                                 Definition: 122211 2kkk −+=−η  
 
       new α , the optimization solution,               old  s'α
 

γαη )()1(*)( 12112 kkss −+−=− + )( 1222111112 kykyxy ααω −−⋅ vv  
                                                  )( 2222211122 kykyxy ααω −−⋅− vv  

22221212211221212112 )()()()()1(*)( ksksksksxxyss kk ααγααγωv v vγαη +−+−−−−⋅+−+−=−
 
                =( )+s−1 )]()([ 2122112 yyyxyxy −+−⋅−−⋅ ωω vv + )2( 1222112 kkk −+α  
                                                                                                          )( η−  
 

*2α = −2α ηωω )]([ 22112 yxyxy −⋅−−⋅ vv  
 
This gives an analytic calculation for the optimal new 2α . ( *2α ). 
The problem is that the solution to the optimum may take 2α out of range, i.e. C>2α not 
allowed. If such is indicated, then the procedure is to “clip” the 2α update to the boundary 
value ( C=2α ):     *2α → clipped|*2α  
                                             *1α = −+ 21 (αα s clipped|*2α ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



21. 
 
There are some subtleties in how to manage the clipping with constraints on both 1α and 

2α : 
 
Suppose varying { 1α , 2α }and 21 yy ≠ , and that *2α = 22 αα Δ+  

⇒=∑ φα iiy 21 αα Δ=Δ  
Maximum ( 2αΔ ) = CC =−+ )( 22 αα                      2αΔ = 2α−C covers rest of distance 
to 
                            or 
                            = 2α + ( 1α−C )= 12 αα −+C           C≤2α boundary 
For  21 yy ≠
Max ( 2αΔ ) =Min { 2α−C , 1α−C }                   1αΔ   = 1α−C covers rest of distance to   
Min ( 2αΔ ) =Max { 12 , αα −− }                            C≤1α boundary and since 1αΔ = 2αΔ  
                                                                            are tied together, this limits 2αΔ   = 1α−C                   
 
For 21 yy = ⇒ 1αΔ =- 2αΔ  
Max ( 2αΔ ) =Min { )( 2α−C , 1α } 
Min ( 2αΔ ) =Max { C−− 12 ,αα } 
 
SMO allows us to reduce the computational problem significantly due to the exact 
analytical solutions obtained. Further, subtleties arise upon implementing in actual code, 
as will be discussed in the cluster, Perl code comments to follow.  


