
Classification and Clustering using Generalized Support Vector Machines and Tuning
Metaheuristics

Stephen Winters-Hilt1,2,*

1 Dept. of Computer Science, University of New Orleans, 2000 Lakeshore Drive, New Orleans,
LA 70148, USA
2 Meta Logos Incorporated, 6218 Waldo Dr., New Orleans, LA 70122, USA

*email: winters@cs.uno.edu; winters@meta-logos.com

Abstract
Support Vector Machine (SVM) methods are described for data classification, data clustering,
and signal analysis. The SVM implementations described involve SVM algorithmic variants,
SVM kernel variants, and SVM chunking variants, as well as SVM tuning and clustering
metaheuristics. The SVM discussion is interwoven with application to efforts in biophysics, with
application to the ‘information flows’ associated with the nanopore transduction detector (NTD)
in particular. Analysis of the NTD signal is done using a generalized set of hidden Markov
model (HMM) and Support Vector Machine (SVM) based tools, the latter described here, as well
as metaheuristics for tuning and selection.

SVM training metaheuristics are also described that make use of the SVM’s confidence
parameter to bootstrap from a strong classification engine to a strong clustering engine via use of
label changes, and repeated SVM training processes with the new label information obtained.

mailto:winters@cs.uno.edu�
mailto:winters@meta-logos.com�

Introduction
A classifier is typically a simple rule whereby a class determination can be made, such as a
decision boundary (see Fig. 1). Learning the decision rule, or a sufficiently good decision rule,
especially if simple and elegant, is the implementation aspect of a classifier, and can be difficult
and time consuming. Even so, this is often manageable because at least there is data to ‘learn
from’, e.g., supervised learning, with instances and their classifications (or ‘labels’). Learning for
classification can be done very effectively using generalized Support Vector Machines (SVMs),
as will be described in what follows. With clustering efforts, or unsupervised learning, on the
other hand, we don’t have the label information during training. In what follows SVMs will also
be shown to be incredibly effective at clustering when used with metaheuristics to recover label
information in a bootstrap learning process. Also shown will be implementation details for
distributed SVM training, and other speedup optimizations, for practical deployment of the
generalized SVM classification and clustering methods in real-time operational situations (as
demonstrated in analysis in nanopore detector experiments).

The SVM-based clustering method that will be described here makes use of the SVM-classifier
convergence process. Single-convergence initialized clustering methods, involving label-flipping
between SVM convergence training runs, have been studied previously and will be described in
the Background Section. The single-convergence methods outperform other methods on the test
sets considered, but in examining the clustering failures (albeit fewer than with parameterized
methods), there appears to be room for improvement. Efforts to handle this with more
sophisticated tuning have met with initial success, as will be related in the Results. Before
proceeding with further discussion along these lines, however, there is one other form of SVM-
based clustering initialization to mention that may be adopted and modify the overall approach,
in many cases with significant improvement overall, as well as reduction in complexity. That
different approach is to initialize with information from multiple SVM convergences, with
selection on training data based on algorithmic methods that leverage the clustering groupings
indicated. This can be done to more effectively cluster, or cluster with less sophistication, and
initial efforts along these lines as described in the Discussion section.

In setting up an SVM Classifier, one must have training data in the form of feature vectors,
where all of the feature vectors are the same length. One typically needs to specify a choice of
kernel and kernel parameter (and possibly other parameters), and therein lies the rub. The SVM
may not converge with your specification. SVMs have a surprising amount of practical
functionality, however, as will be shown. It is fairly easy to tune SVMs, in many cases, by
simply using a default set of kernel’s and parameter ranges. There is more robust performance,
however, with more sophisticated tuning. In the SVM applications to bootstrap a clustering
solution, there is more sensitivity to kernel and kernel parameter overall, and more sophisticated
tuning methods are clearly helpful, as will be described further in the Discussion.

Use of SVMs for clustering (unsupervised learning) is possible in a number of different ways. As
with the multiclass SVM discriminator generalizations, the strong performance of the binary
SVM enables SVM-External as well as SVM-Internal approaches to clustering. Non-parametric
SVM-based clustering methods may allow for much improved performance over parametric
approaches, particularly since they can apparently be designed to inherit the strengths of their
supervised SVM counterparts as will be shown. The ‘external’ SVM clustering algorithm,

described in detail in the Methods and Results, clusters data vectors with no a priori knowledge
of each vector’s class.

In application to channel current signal analysis, also briefly described in what follows, there is
generally an abundance of experimental data available, if not, the experimenter can usually just
take more samples and make it so. In this situation it is appropriate to seek a method good at both
classifying data and evaluating a confidence in the classifications given. In this way, data that is
low confidence can simply be dropped. The structural risk minimization at the heart of the SVM
method’s robustness also provides a strong confidence measure. For this reason, SVM’s are the
classification method of choice for channel current analysis, as they have excellent performance
at 0% data drop, and as weak data is allowed to be dropped, the SVM-based approaches far
exceed the performance of most other methods.

The ability to do fast SVM training (with distributed chunking and, possibly, GPU
enhancements) means that online SVM learning can be managed in a brute-force fashion, with
re-tuning on kernels periodically, and directly re-training on a moving window of data. Note: the
applications of the SVM methods not only include classification and clustering, but also impact
feature extraction and identification in HMM-based methods, using an HMM/SVM
vectorization/classification boost [1], among other things.

Background
In Fig. 1 a decision boundary is shown as the solid line for a 2-D domain, where separating
hyperplane generalizations to planes in 3-D and hyperplanes in higher dimensional domains are
also possible (within any orientable hyperplane manifold). The notion of a separating hyperplane
is not unique to the SVM approach, but it is with use of further Structural Risk Minimization
(SRM) constraints via maximizing a margin around the decision hyperplane, where there are
constrained to be low numbers of training instances in the margin region (zero if fully separable).
The margin is shown as the region around the decision boundary in Fig. 1 that is between the
dotted lines on either side of the decision hypersurface. Generalizations to compact or multiple
decisions surfaces are also possible. In the case of the circle, this provides a method for (SVM
‘Internal’) clustering [29].

Kernel modeling
The so-called curse of dimensionality from statistics says that the difficulty of an estimation
problem increases drastically with the dimension N of the space, since in principle as N
increases, the number of required patterns to sample grows exponentially. This statement may
cast doubts on using higher dimensional feature vectors as input to learning machines. This must
be balanced with results from statistical learning theory [8], however, that show that the
likelihood of data separability by linear learning machines is proportional to (and improves with)
their dimensionality.

Thus, instead of working in the RN, one can design algorithms to work in feature space, F, where
the data has much higher dimension -- but with sufficiently small function class. This can be
described via the following mapping

Φ: RN → F ; x → Φ (x).

Consider the prior training description with data x1, . . . , xn ∈ RN is mapped into a potentially
much higher dimensional feature space F. For a given learning algorithm one now considers the
same algorithm in F instead of RN. Hence, the learning machine works with the following:

(Φ (x1), y1), . . . , (Φ (xn), yn) ∈ F × Y, Y = {±1},

where the kernel is Φ (xi)•Φ (xj) = K(xi, xj) = Kij. It is important to note that this mapping is also
implicitly done for (one hidden layer) neural networks, radial basis networks [9] and boosting
algorithms [10] where the input data is mapped to some representation given by the hidden layer,
the radial basis function (RBF) bumps or the hypotheses space, respectively.

Kernel tuning
It is conceivable to have a properly coded SVM but to initiate SVM training with model
parameters, such as the kernel or kernel parameter, that are so far out of the operational regime
that no convergence is obtained in training. So training must be repeated, with tuning on SVM
parameters, to optimize. For some feature vectors, such as probability vectors, this can partly be
done automatically with choice of kernel. Overall, in many situations the SVM tuning can be
done quickly, manually, and to some extent automatically, with simple range testing, where only
small, separated, subsets of the training data are used in the tuning tests, before performing SVM
training on the full dataset minus the tuning data. Sometimes more elaborate tuning procedures
are needed, however, and thus necessary for performance guarantees, and also for the SVM
applications in clustering that will be described in the Results and the Methods. Tuning is a form
of optimization, and excellent metaheuristics are known for identifying optimal solutions when a
scoring function (a fitness function) can be identified (such as for the SVM sensitivity and
specificity score). Metaheuristics optimization includes genetic algorithms, simulated annealing,
swarm intelligence, ACO, steepest ascent hill-climbing, among others. Applications of many of
these methods are shown in the results involving SVM-external clustering.

Kernel construction using polarization
The kernels used in the analysis are based on a family of previously developed kernels [11,12],
here referred to as ’Occam’s Razor’, or ‘Razor’ kernels. As will be seen, the Gaussian kernel is
included in the family of Razor kernels. All of the Razor kernels examined perform strongly on
the channel current data analyzed, with some regularly outperforming the Gaussian Kernel itself.
The kernels fall into two classes: regularized distance (squared) kernels; and regularized
information divergence kernels. The first set of kernels strongly models data with classic,
geometric, attributes or interpretation. The second set of kernels is constrained to operate on
(R+)N, the feature space of positive, non-zero, real-valued feature vector components. The space
of the latter kernels is often also restricted to feature vectors obeying an L1-norm = 1 constraint,
i.e., the feature vector is a discrete probability vector. For further details, see the Methods

Given any metric space (χ, d) one can build a positive-definite kernel of the form e−λd2

.
Conversely, any positive definite kernel with form e−λd2

 must have a ‘d’ that is a metric (this is
Mercer’s condition in another form). (It is important to note that the metric appears as a squared
entity in the argument, which is a mathematical entity that must, at least, satisfy the triangle
inequality. It so happens that there ia another set of entities, other than metrics squared, that
satisfy the triangle inequality, and these relate to the Bregman divergences, and the information

divergences such as relative entropy, in particular, where relative entropy is a fundamental
(simple) divergence, just as Euclideane distance is a fundamental (simple) metric. This suggests
that the ‘simplest’ kernel is the Gaussian kernel, since the ‘simplest’ distance, the Euclidean
distance, is used. Likewise, this suggests that the simplest that the simplest divergence-based
kernel would be the aforementioned entropic kernel.

The use of probability vectors, and L1-norm feature vectors in general (often in conjunction with
the entropic kernel), turns out to be a very general formulation, wherein feature extraction makes
use of signal decomposition into a complete set of separable states that can be interpreted or
represented as a probability vector (or normalized collection of such, or concatenation, then
normalization, etc.). A probability vector formulation also provides a straightforward hand-off to
the SVM classifiers since all feature vectors have the same length with such an approach. What
this means for the SVM, however, is that geometric notions of distance are no longer the best
measure for comparing feature vectors. For probability vectors (i.e., discrete distributions), the
best measures of similarity are the various information-theoretic divergences: Kullback–Leibler,
Renyi, etc. By symmetrizing over the arguments of those divergences, the entropic kernels are
obtained, where the (symmetrized) Kullbach-Leibler Diveregence is used in the entropic kernel
in [12-14] and in the Results that follow).

Methods
SVM Lagrangian formulation
The SVM approach encapsulates a key Structured Risk Minimization (SRM) criterion when it
seeks to obtain the separable solution for which “d” is the greatest. This is the solution for which
the separating hyperplane is the furthest distance possible from the positive & negative support
vectors (the nearest data points if separable), which permits a structured risk minimization.

In order to formulate the SVM Lagrangian, we first need multipliers for the collection of
separability constraints on solutions: yi(ω•x−b)−1≥0 ∀i. For SRM, we then need to maximize
d=2/||ω||, or minimize ||ω ||2, which is chosen due to simplifications in the formalism that follows
(i.e., if we max 2/||ω|by min on ||ω|, it could just as well be done with min on ||ω ||2). The
Lagrangian formulation then should have one multiplier constraint for each training instance,
where yi(ω•x−b)−1≥0, and minimize on ||ω ||2 overall, so:

L(αω ,,b)= 2||||
2
1 ω -]1)([−−∑ bxy ii

i
i ωα , 0≥iα

We seek to minimize L on { b,ω } and to extremize (maximize in this case) L on {α }, i.e., we
seek a minimization -- maximization saddle-point optimization for the solution.

The Wolfe Dual Calculations, with or without slack variable, have the form:

)(~ αL = jiji
ji

ji
i

i xxyy ⋅− ∑∑
,2

1 ααα , 0≥iα

where we want to find the s'α that maximize L(α). Similarly, for the σL Dual:

)(~ ασL = jiji
ji

ji
i

i xxyy ⋅− ∑∑
,2

1 ααα , C 0≥≥ iα

So, the duals are the same aside from the C iα≥ (max C≤)(α) constraint.

SVM Kernels and Algorithm Variants
Notice how in the Dual reduction the dependence on the training data only appears in the inner
product term. We can generalize from the simple inner product term in a number of ways, and in
doing so arrive at the SVM Kernel generalization. The choice of kernel eliminates the need for
refining a choice on feature vector mappings beyond a certain point, such as requiring some
consistent normalization on feature vectors, for example which is made consistent with choice of
kernel (e.g., one could take a discrete probability distribution as feature vector, with its L1-norm,
and its pairing with the entropic kernel). The SVM kernels used in the analysis are referred to as
’Occam’s Razor’, or ‘Razor’ kernels. All of the Razor kernels examined perform strongly on
channel current data, often outperforming the Gaussian Kernel. The kernels fall into two classes:
regularized distance (squared) kernels; and regularized information divergence kernels (both
distances squared and information divergences satisfy the triangle inequality – the triangle
inequality appears to be fundamental in information modeling in subtle ways). The first set of
kernels strongly models data with classic, geometric, attributes or interpretation. The second set
of kernels is constrained to operate on (R+)N, the feature space of positive, non-zero, real-valued
feature vector components. The space of the latter kernels is often also restricted to feature
vectors obeying an L1-norm = 1 constraint, i.e., the space of discrete probability vectors. In all of
the data-runs with the probability feature vector channel current data considered in (38), the two
best-performing kernels are the entropic and the indicator ‘Adbsdiff’ (or ‘Variational’) kernels,
with the Gaussian trailing in performance in general (but still outperforming other methods such
as polynomial and dot product). The L1-norm channel current feature vector components appear
to encapsulate a key constraint of a discrete probability vector via its domain selection and its
associated optimal kernel sets.

If the distance term in the Gaussian is denoted dG = xi−xj = √(∑k (xj

k−xi
k)2), the Gaussian

Kernel can be written as KG(xi,xj) = exp(−(dG)2/2σ2). In general, exponential regularization of a
metric on the feature vectors, as in the Gaussian, will provide a Kernel satisfying Mercer's
conditions. Since the "kernels" considered in what follows are an extension from those justified
by the geometric heuristic to those justified by an information-theoretic heuristic (the final
arbiter of performance being empirical results), the key property from the above, in obtaining
alternate kernels, will be the exponential regularization.

It is found that the other key property is a stability property that ties together the best performing
kernels from the various cases. For the Gaussian kernel, the stability property is exhibited when
the log Kernel variation on feature vector components is calculated:

∂ ln (KG(xi , xj)) / ∂xi
k = (xj

k−xi
k)/σ2,

where "xi
k" is the kth component of the ith feature vector and "stability" is indicated by the sign of

the difference term (xj
k−xi

k), e.g., for

)2||||exp(),(22 σzyzyKG
 −−= :

K

G

y
zyK

∂
∂),(ln

= 2)(σKK zy −

Clearly, the sign is important, as is a notion of difference. Suppose we generalize on this basis to
decouple the sign (stability in orientation) convention from the “notion of distance”, here
providing a new kernel expression, for the “variational kernel” by way of an integration factor:

K

G

y
zyK

∂
∂),(ln

=)
2

1(2σ
−)

||
)z-sign(y(kk

∑ −
k

kk zy

)2||exp(),(2σ∑ −−=
k

kkv zyzyK

The subscript "V" in KV is meant to denote "variational" kernel (sometimes referred to as
“indicator” kernel or “Absdiff” kernel). For suitable choice of tuning parameter σ, the variational
kernel offers the best performance on the data sets considered. The regularized distance in KV is
the square root of the “Variational” distance: V(xixj)=∑k xj

k−xi
k. It is found that the

variational kernel is usually the best performing kernel on the 1L normed data considered in the
channel current analysis (1L norm: |x|1=∑

k
kx || , a discrete prob. dist if 0>kx also). The

argument of the exponential in the variational kernel is a distance squared (which satisifies the
triangle inequality, etc.), with)2exp(22 σvv dK −= , thus the variational kernel automatically
satisfies Mercer’s conditions.

Consider now the case where the notion of difference is not arithmetic but multiplicative, i.e.,
based on (1-zk/yk) rather than (yk-zk) (for the Gaussian). In doing so, we must restrict to 0≠ky of
course. As before, the sign of (yk-zk) is information preserved in (1-zk/yk), but the latter is not
integrable. However,)ln(kk zy also provides sign info -- positive when kk zy > , etc., as before,
and also includes a ratio. Which to go with? A combination seems best as this is integrable:

K

G

y
zyK

∂
∂),(ln

=)
2

1(2σ
− [(1-

k

k

y
z

)+)]ln(
k

k

z
y

)2)]||()||([exp(),(2σσ yzDzyDzyK +−=

This is usually a close 2nd to the vK kernel, sometimes outperforming. This kernel relates feature
vectors via relative entropy terms:

∑=
k k

k
k z

y
yzyD)ln()||(

The doubly novel aspect of the entropic kernel is that it would be the very first guess if one
wanted to generalize from kernels based on exponentially regularized, square distances, to
exponentially regularized, symmetrized, divergences (beginning with the most fundamental,
symmetrized ”relative entropy” also known as the Kullback-Leibler information divergence) .

A comparison of some of the SVM Kernels of interest is shown in Fig. 2, with “regularized”
distances or divergences, where they are regularized if in the form of an exponential with
argument the negative of some distance-measure squared (d2(x,y)) or symmetrized divergence
measure (D(x,y)), the former if using a geometric heuristic for comparison of feature vectors, the

latter if using a information divergence heuristic. Results in Fig. 2 are shown for the Gaussian
Kernel: d2(x,y)=Σk(xk-yk)2; for the Absdiff or Variational Kernel d2(x,y)=(Σk|xk-yk|)1/2; and
for the Symmetrized Relative Entropy Kernel D(x,y)= D(x||y)+D(y||x), where D(x||y) is the
standard relative entropy.

The SVM algorithm variants that have been explored are minimally detailed here: in the standard
Platt SMO algorithm, η=2*K12-K11-K22, while speedup variations are described to avoid
calculation of this value entirely. A middle ground is obtained with the following definition η
=2*K12-2; If (η >=0) {η≥ −1;} (labeled WH SMO in Fig. 2, with underflow handling and other
details that differ slightly in the WH-SMO implementation as well).

SVM-Internal Multiclass
In the formulation in [24], there are ‘k’ classes and hence ‘k’ linear decision functions – a
description of that approach is given here, but with the decoupling modifications described in
[11].

For a given input ‘x’, the output vector corresponds to the output from each of these decision
functions. The class of the largest element of the output vector gives the class of ‘x’. Each
decision function is given by: fm(x) = wm.x + bm for all m = (1,2,…,k). If yi is the class of the
input xi, then for each input data point, the misclassification error is defined as follows:
maxm{fm(xi) + 1 – δi

m} - fyi(xi), where δi
m is 1 if m = yi and 0 if m ≠ yi. We add the slack variable

ζi where ζi ≥ 0 for all i that is proportional to the misclassification error: maxm{fm(xi) + 1 – δi
m} -

fyi(xi) = ζi, hence fyi(xi) - fm(xi) + δi
m ≥ 1 - ζi for all i, m. To minimize this classification error and

maximize the distance between the hyper-planes (Structural Risk Minimization) we have the
following formulation:

Minimize: ∑iζi + β(1/2)∑mwm
Twm + (1/2)∑mbm

2,
where β > 0 is defined as a regularization constant.

Constraint: wyi.xi + byi - wm.xi - bm - 1 + ζi + δi
m ≥ 0 for all i,m

Note: the term (1/2) ∑mbm

2 is added for de-coupling, 1/β = C, and m = yi in the above constraint
is consistent with ζi ≥ 0. The Lagrangian is:

L(w,b,ζ) = ∑iζi + β(1/2)∑mwm

Twm + (1/2)∑mbm
2 - ∑i∑mαi

m(wyi.xi+byi-wm.xi-bm-1+ζi+δi
m)

Where all αi

ms are positive Lagrange multipliers. Now taking partial derivatives of the
Lagrangian and equating them to zero (Saddle Point solution): ∂L/∂ζ i = 1 - ∑mαi

m = 0. This
implies that ∑mαi

m = 1 for all i. ∂L/∂bm = bm + ∑iαi
m - ∑iδi

m = 0 for all m. Hence bm = ∑i(δi
m –

αi
m). Similarly: ∂L/∂wm = βwm + ∑i αi

mxi - ∑i δi
mxi = 0 for all m. Hence wm = (1/ β)[∑i(δi

m -
αi

m)xi] Substituting the above equations into the Lagrangian and after simplification reduces into
the dual formalism:

Maximize: -½∑i,j∑m(δi
m - αi

m)(δj
m – αj

m)(Kij + β) - β∑i,mδi
mαi

m

Constraint: 0 ≤ αi
m, ∑mαi

m = 1, i = 1…l; m = 1…k,

where Kij = xi.xj is the Kernel generalization, see [11] for details.

SVM Speedup via differentiating BSVs and SVs
If we track the status of support vectors (SV’s) according to whether they are Boundary (penalty)
or not, and select accordingly, we can get speedup (even in the binary SVM, where choice of
C=100 usually good, but C≥10 typically usually okay too). For the multiclass-internal SVM, on
the other hand, the speedup with choice of C can be more significant, as shown in [11], where
C≥100 typically is needed.

Since the algorithm presented in [24] does not differentiate between SV and BSV, a lot of time is
spent in trying to adjust the weights of the BSV i.e. weak data. The weight of a BSV may range
from [0, 0.5) in their algorithm. In the modification to the algorithm in [11], as soon as we
identify a BSV, its weight is no longer adjusted. Hence faster convergence is achieved without
sacrificing accuracy.

Data-rejection heuristics
The SVM Decision Tree shown in Fig. 3 obtained nearly perfect sensitivity and specificity, with
a high data rejection rate, and a highly non-uniform class signal-calling throughput. In Fig. 4, the
Percentage Data Rejection vs SN+SP curves are shown for test data classification runs with a
binary classifier with one molecule (the positive, given by label) versus the rest (the negative).
Since the signal calling wasn’t passed through a Decision Tree, the way these curves were
generated, they don’t accurately reflect total throughput, and they don’t benefit from the
“shielding” shown in the Decision Tree in Fig. 3 prototype. In the SVM Decision Tree
implementation described in Fig. 3 [12], this is managed more comprehensively, to arrive at a
five-way signal-calling throughput at the furthest node of 16% (in Fig. 3, 9CG and 9AT have to
pass to the furthest node to be classified), while the best throughput, for signal calling on the
8GC molecules, is 75%.

The SVM Decision Tree classifier’s high, non-uniform, rejection can be managed by
generalizing to a collection of Decision Trees (with different species at the furthest node). The
problem is that tuning and optimizing a single decision tree is already a large task, even for five
species (as in [12]). With a collection of trees, this problem is seemingly compounded, but can
actually be lessened in some ways in that now each individual tree need not be so well-
tuned/optimized. Although more complicated to implement than an SVM-External method, the
SVM-Internal multiclass methods are not similarly fraught with tuning/optimization
complications. Fig. 5 shows the Percentage Data Rejection vs SN+SP curves on the same
train/test data splits as used for Fig. 4, except now the drop curves are to be understood as
simultaneous curves (not sequential application of such curves as in Fig. 4). Thus, comparable,
or better, performance is obtained with the multiclass-internal approach and with far less effort,
since there is no managing and tuning of Decision Trees. Another surprising, and even stronger
argument for the SVM-Internal approach to the problem, for many situations, is that a natural
drop zone is indicated by the margin.

Suppose we define the criteria for dropping weak data as the margin: For any data point xi; let
maxm{fm(xi)} = fyi, and Let fm = maxm{fm(xi)} for all m ≠ yi, then we define the margin as: (fyi -
fm), hence data point xi is dropped if (fyi - fm) ≤ Confidence Parameter. (For this data set using
Gaussian, AbsDiff & Sentropic kernel, a confidence parameter of at least (0.00001)*C was

required to achieve 100% accuracy.) Using the margin drop approach, there is even less tuning,
and there is improved throughput (approximately 75% for all species).

Single-convergence initialized SVM-clustering
The ‘External’ SVM Clustering algorithm works by first running a Binary SVM against a data
set, with each vector in the set randomly labeled (usually half positives and half negatives), until
the SVM converges (Fig. 6). Choice of an appropriate kernel and an acceptable sigma value will
affect convergence.
After the initial convergence is achieved, the (sensitivity + specificity) will be low. The
algorithm now improves this result by iteratively relabeling the worst misclassified vectors,
which have confidence factor values beyond some threshold, followed by rerunning the SVM on
the newly relabeled data set. This continues until no more progress can be made. Progress is
determined by an increasing value of (sensitivity + specificity). With sub-cluster identification
upon iterating the overall algorithm on the positive and negative clusters identified (until the
clusters are no longer separable into sub-clusters), this method provides a way to cluster data sets
without prior knowledge of the data’s clustering characteristics, or the number of clusters (by
iteration on clusters in the binary SVM or direct with merge of multiclass SVM with label
flipping algorithms, described in the Methods and Results, to directly model cluster number
without embedded recursion).

The algorithmic variants explored in [11] also explore modifications to tolerate an suitably low
number of KKT violators. This is done through running the SVM on the randomly labeled data
with different numbers of allowed violators until the number of violators allowed is near the
lower bound of violators needed for the SVM to converge on the particular data set. In practice,
the initialization step, that obtains the first SVM convergence, typically takes longer than all
subsequent partial re-labeling and SVM rerunning steps.

The single-convergence initialized SVM-based clustering algorithm [11] clusters data with no a
priori knowledge of input classes. The algorithm initializes by first running a binary SVM
classifier against a data set with each vector in the set randomly labelled, this is repeated until an
initial convergence occurs. The convergence sometimes has to be attempted several times (with
different randomized initializations) before a SVM solution is obtained. Once an SVM solution
is obtained, however, the strengths of the SVM classifier can be used to full advantage. SVMs
are ideal in this effort as they not only classify, but offer a confidence parameter with their
classification, and can do so in a generalized kernel space. Once a convergent solution is
obtained label-flipping (from positive to negative) can be done for low-confidence labels in an
iterative process, with SVM re-training after each round of weak-label changes. At each iteration
we can potentially have unequal numbers of positives and negatives changing their labels, thus,
asymmetrically sized clusters can be realized from a half-positive/half-negative initialization.
This iterative process continues until there is no longer a low-confidence classification by the
SVM, or until an external cluster validation, such as the sum-of-squared error (SSE) on each
cluster, remains relatively unchanged. There are numerous tuning parameters in the SVM-
classification process itself, as well as in the SVM-clustering halting specification, and even
tuning choices in the SVM chunk-training (that may be necessary for larger data sets). As shown
in Fig. 7, SVM-based clustering [11] often outperforms other methods.

Although convergence is always achieved with the single-convergence SVM-clustering method
in the label-flippings, after the initial convergence, convergence to a global optimum is not
guaranteed. Fig. 8 shows the Purity and Entropy (with the RBF kernel) as a function of Number
of Iterations, while Fig. 8 (right) shows the SSE as a function of Number of Iterations [37]. The
stopping criteria used for the algorithm is based on the unsupervised (external) SSE measure.
Comparison to fuzzy c-means and kernel k-means is shown on the same dataset (the solid blue
and black lines in Fig. 8 left and center).

The pathology of the single-convergence SVM initialization to get stuck in local minima
motivates the introduction of perturbations into the methods, as shown in Fig.s 9 & 10. It is
found that the result of the Re-labeler algorithm can be significantly improved by randomly
perturbing a weak clustering solution and repeating the SVM-external label-swapping iterations
as depicted in Fig. 10. To explore this further, a hybrid SVM-external approach to the above
problem is introduced to replace the initial random labeling step with k-means clustering or some
other fast clustering algorithm. The initial SVM-external clustering must then be slightly and
randomly perturbed to properly initialize the re-labeling step; otherwise the SVM clustering
tends to return to the original k-means clustering solution. A complication is the unknown
amount of perturbation of the k-means solution that is needed to initialize the SVM-clustering
well -- it is generally found that a weak clustering method does best for the initialization (or one
weakened by a sufficient amount of perturbation).

Distributed SVM Learning (Chunking Protocols)
Distributed learning on SVMs can be accomplished by breaking the training set into smaller
chunks, running separate SVM processes on each of those chunks, and pooling the information
that is ‘learned’, e.g., the support vectors identified as well as nearby (in terms of confidence
value) training data vectors and outliers. The reduced pool of data is randomly repartitioned into
another round of chunk processing. This is repeated until only a single chunk remains, whose
solution is then either the solution sought or close to it (other minor refinements could be
sought). There is a fundamental memory limit encountered with larger SVM training sets, such
that chunking is needed on training sets even if we aren’t interested in the distributed learning
speedup (e.g., we need to use a sequential process on a single machine). For this circumstance,
for sequential processing of chunks, we take the SV’s identified from the prior round of chunk
training and merge it with the next chunk to be trained, and iterate. In this way we never have a
pure SV training set. If multiple CPU’s are available, we can distribute the processing on chunks
amongst the machines, and pool their SV’s (i.e., pass their SV’s to the training pool for the next
round). The resulting ‘pure SV’ training sets, however, are often found to not converge, thus
requiring more care to avoid convergence pathologies.

Chunking the SVM learning process becomes a necessity when training (and classifying) large
datasets. The number and size of the chunks depends on the size of the dataset to be trained.
When training on an individual chunk is complete, the resulting trained feature vectors split into
distinct sets (support vectors, polarization set, penalty set, and KKT violator). If the SVM
learning is done well, the largest set consists of the support and polarization feature vectors. The
polarization set consists of the feature vectors that have been properly classified. These feature
vectors pass the KKT relations and have an alpha coefficient equal to zero. The penalty set
consists of the feature vectors which pass the KKT relations, and have alpha coefficients equal to
C (the max value). The KKT violators make up another set consisting of feature vectors that

violate one of the KKT relations. (The KKT violator set is usually zero at the end of the training
process, unless some minimal number of violators is allowed upon learning completion.) These
sets give the user different categories of feature vectors that they can pass to the next chunk(s).
To keep the SVM converging to a better solution on the next chunk run, however, support
vectors (and sometimes some of the polarization set) are passed to the next chunk(s). The
optimal pass-percentages of each feature vector set depend on which kernel is used and the
dataset.

There are different methods of extracting the feature vectors from the different sets. The
specified percentages of feature vectors are pseudo-randomly chosen from each of the sets
except for one. The support feature vectors extraction method differs since it extracts the
support vectors that are nearest to the decision hyperplane. We choose feature vectors whose
scores are closer to the hyperplane in order to pass a tighter hyperplane on to the next chunk(s),
and manage accumulation of outliers.

The chunk learning topology used in our distributed approach is slightly different from the
Binary Tree splitting described in the Cascade SVM presented in [35]. As discussed above, the
large dataset is broken into smaller chunks and the SVM is run on each separate chunk. Instead
of bringing the results of paired chunks together, all chunk results are brought together and re-
chunked as occurred in the first layer. This process occurs until the final chunk is calculated
which gives the trained result. At each training stage, the user has the option to tune the
percentage of support vectors and non support vectors to pass to the next set of chunks.
Additionally, passed support vectors can be chosen to satisfy some max value (approx. C/10 in
cases examined) to produce a tighter hyperplane to better distinguish the polarization sets and
eliminate outliers. We also incorporate SVR post-processing in some of the dataruns (method
below), where SVR runs as part of the core SVM learning task on each chunk. It uses a user-
defined alpha cutoff value for further tuning and can significantly reduce the number of support
vectors passed to the next set of chunks (with bias towards elimination of outliers and the large
non-boundary alphas). These additional steps reduce the size of the chunks, thus making the
algorithm run faster without loss of accuracy. The SVR post-processing also appears to offer
similar immunity to the convergence pathology (noted in cases involving 100% SV passing on
distributed learning topologies).

SVR Method
Support Vector Reduction (SVR) is a process that is run right after the SVM learning step is
complete. Instead of going on to testing data against the training results to get accuracy, we
further reduce the support vector set. One way to do this is to coerce some alphas to zero which
means they would now fall into the polarization set. Converting the smaller alphas to zeros
makes the most sense since a larger alpha indicates that the data point is stronger towards its
grouping (polarized sign). This is done using a user-defined alpha cut off value. All alpha values
that are under the cut off are pushed to zero. It is not entirely trivial since certain mathematical
constraints must be met. The constraint that must be met for this method is the linear equality
constraint:

0
1

=∑
=

N

i
iiyα

Therefore, the alpha values not meeting the cutoff cannot just be forced to zero unless the value
is retained somewhere else in the set. This is done by first sorting the alpha values of the support
vectors. Then for each alpha that does not meet the cut off value, the small left over value is
added to the largest alpha of the same polarity (further biases towards SVR). Since the list is
sorted it can loop through and evenly distribute the left over values through the larger alphas
starting with the largest. The reduction process can cut the number of support vectors
significantly, while not significantly diminishing the accuracy. Other observations have shown
that the easier the dataset to classify, the larger the reduction via this process.

Tuning Methods
Tuning is needed to optimize the choice of kernel & kernel-parameter used by the SVM. This is
often handled simply by ranging over a collection of roughly 10 kernel types and each at roughly
10 kernel parameter settings (where each is single-parameter kernel), and to do this only on
smaller test sets in the training data, where the time complexity of the SVM training is directly
tied to the training-kernel computation, which is quadratic in the number of training instances.
Although caching can modify the assumptions on time-complexity, there is generally an
approximately quadratic time-complexity in the size of the training instances regardless.
Chunking must be used to break past this, or more extensive use of GPU capabilities (where
there is still the need to do chunking). Chunking algorithms will be shown to be effective, but
susceptible to training-failure pathologies if certain safeguards aren’t observed, as will be
described in the Results.

Once the small test set is done on the initial kernel screening indicated above, a sub-set of kernel
will emerge as best, and these are considered again with larger training sets, eventually allowing
selection of a good choice of kernel and kernel parameter. More directed tuning paradigms
typically involve simulated annealing in this setting (to be shown later). Algorithmic and
implementation parameters can also be considered in the tuning, which means we now have a
collage of different parameter types in a coupled optimization task. For this type of
generalization, genetic algorithms have been applied with amazing success (but not shown in
what follows). These more sophisticated tuning methods may not always be necessary in the
SVM classification applications, but will allow for successful classifications in some situations
where simple methods do not. In the SVM-based clustering methods to be described in what
follows, these tuning methods generally play an important role.

Metaheuristics – Parameter Search and Tuning
Our ability to assess a score, or assign a fitness, allows for a collection of metaheuristics that
basically reduce to ‘look around and take the best way forward’ via a series of tweaks. This isn’t
possible for some problems, however, because the ‘looking around’ part isn’t that informative,
e.g., the fitness landscape has sections that are at a fixed level (with noise variations about that
level, for example). This is the larger problem of the simple globalization algorithm, via random
restart: if the fitness landscape or configuration space is too large random restart won’t offer a
solution (even if it can) in a reasonable amount of time. This is where more clever metaheuristics
must be drawn upon to extend to a global optimization algorithm.

One of the weaknesses of the brute force random restart approach mentioned is that the
parameter ‘tweak’ involved is with a bounded perturbative change, which may already exclude

the possibility of reaching the solution sought (given the computational resources and a
reasonable amount of time). So one generalization is to allow for tweaks that are unbounded, but
in some perturbatively stable way, such as with a Boltzmann factor for regularization, and in
doing this we arrive at the Simulated Annealing approach:

The global optimization metaheuristics mentioned thus far suggest more sophisticated
configuration selection at the component level, on the one hand, and at the population level, on
the other hand, especially as we work with the probabilistic simulated annealing approach and
the history-based taboo approach (from taboo learning), especially with the component-based
versions of the latter. This is because the population and history aspects point to a general
metaheuristics that operates on populations of configurations (or populations of ‘agents’ that
interact as intermediaries to determining a configuration selection). The notion of ‘history’ also
must address the conveyance of this information or ‘artifact’. In the case of ACO, described in
what follows, this will be via stygmergy.

A fixed-size (or size otherwise constrained) population of configurations can have a birth/death
cycle or be static. If it has a birth/death cycle, one popular method is the evolutionary
computation approach (Darwinian evolution; asexual reproduction):

Metaheuristic: Evolutionary Optimization
Starting population of parent configurations (“parents”) undergoes initial selection according to a
cut-off (truncation selection) that is chosen. Those surviving produce offspring, typically via a
simple configuration tweak mutation, and those child configurations (“children”) are then added
to the pool of the current population. Repeat.

Depending on algorithm, the parents may be selected against generationally also (such as for
salmon). The reproduction step can be done by the population all at once (generationally), as
described here, or individually, out-of-phase, as commonly done with the GA’s given next.

Metaheuristic: Genetic Algorithm
Starting population of parent configurations (“parents”) undergoes initial selection according to
cut-off (truncation selection) that is chosen. Those surviving produce offspring, typically via
both simple configuration tweak mutation and non-local configuration component-level
swapping, and those child configurations (“children”) are then added to the pool of the current
population. Repeat.

Once we consider that the configurations in a population may interact with one another, we have
a situation where different sub-populations may be given (and now not trivially de-couple), i.e.,
speciation is possible in the evolutionary population. From there whole ecologies of evolutionary
complexity can be developed.

With population-based interactions we can go further and have possible direct coordination
between agents: sexual reproduction providing cross-over mutation in GA’s, as mentioned
above, and swarm activity that provides global information to all agents with action defined
accordingly to desired local and global swarm behavior, as defined in what follows.

Metaheuristic: Particle swarm optimization (PSO)
Particle swarm optimization (PSO) also takes its cue from Biology, but not from evolutionary
model, but from a swarm model. Here the population is static (the other case than the birth/death
cycle case), and there is no selection of any kind. Now the configurations in the population are
themselves directly tweaked in response to new information obtained. This is a form of directed
mutation and is part of a Lamarckian evolutionary paradigm. The configurations are often
viewed as describing particles in a space and the configurations undergo directed mutation,
‘motion’, in the configuration space, with motion towards the best known configuration, where
three levels of knowledge are weighed in the balance: (i) the fittest configuration ascertained by
a particular during its history; (ii) the fittest configuration ascertained by the informants of a
particular particle (often just a randomly chosen set of particles); and (iii) the fittest configuration
discovered by any particle.

Results
Distributed SVM Processing (Chunking)
There are a variety of ways to avoid the pure SV training-set pathology. Since we are interested
in training set reduction overall, we consider the possibility of simply reducing the SV set. This
appears to work in preliminary tests on well-studied datasets of interest (see Table 1), where the
SV’s nearest to the decision hyperplane (most supporting the hyperplane) are retained. For the
channel current data examined in, with 150-component feature vectors, we find that 30% SV
passing is optimal on distributed learning topologies. The low SV-passing percentage that is
found to work in distributed chunking might fundamentally be an issue of outlier control during
distributed learning. Further reduction of SV passed is possible with dropping SV’s with
confidence values at the other extreme, near zero (i.e., those nearest and most strongly
supporting the hyperplane). This entails a additional Support Vector reduction (SVR) process
that is run right after the SVM learning step is complete, where we further reduce the support
vector set according to some confidence cut-off (actually imposed via cut-off on associated
Lagrange multiplier in the SVM/SMO implementation). By reducing the number of support
vectors propagated into the next round, we further accelerate the chunked processing. In this
way, a strongly performing distributed chunk-training process is possible, with speedup by ~10
in the example shown in the table shown in Table 1 (with no significant loss in accuracy). It
appears possible to automate the tuning & selection procedures. To achieve this, it is necessary
to examine the stability of the algorithmic parameters such as the pass percentages on the
different types of learned data (e.g., see Table 1 for pass percentages indicated).
SVM Method Sensitivity Specificity (SN+SP) / 2 Time (ms)

SMO (non-chunked) 0.87 0.84 0.86 47708
Sequential Chunking 0.84 0.86 0.85 27515
Multi-threaded Chunking 0.88 0.78 0.83 7855
SMO (non-chunked) with SV Reduction 0.91 0.81 0.86 43662
Sequential Chunking with SV Reduction 0.90 0.82 0.86 18479
Multi-threaded Chunking with SV Reduction 0.85 0.83 0.84 5232
Multi-threaded Dist. Chunking with SVR 0.85 0.83 0.84 5973
Table 1. Performance comparison table for the different SVM methods. The distributed chunking used three
identical networked machines. Dataset = 9GC9CG_9AT9TA (1600 feature vectors). SVM Parameters: Absdiff
kernel (a Razor Kernel, with sigma=.5, C = 10, Epsilon = .001, Tolerance = .001. For chunking methods: Pass 90%

of support vectors, Starting chunk size = 400, maxChunks = 2. For SV Reduction methods: Alpha cut off value =
0.15.

To further enhance processing speed, one can not only perform distributed processing as
indicated, but can also boost thread-processing speed on a given computer via use of GPU
processing. This has already been undertaken,where distributed chunks of SVM training data
were processed using a CPU/GPU that, at marginal added cost (a graphics card), provided as
much as a 32-fold speedup on the channel current blockade classification. Similar GPU speed
enhancements to the other machine learning algorithms are possible as well.

Stabilized, single-convergence intitialized, SVM-External Clustering
The External SVM Clustering data set is chosen to be an equal positives vs negatives sample of
200 8GC blockade signals and 200 9GC blockade signals (see [12] for details about these
molecules). Each feature vector is 150 dimensional and normalized to satisfy the L1 (norm = 1)
constraint. Features from the 8 and 9 base-pair blockade signals were extracted using Hidden
Markov Models (for details, see [12]). Although convergence was easily achieved with the
External SVM Clustering algorithm (see the Methods), convergence to a global optimum was not
guaranteed.

In [11], we see that a small value of Kernel-SSE (herein referred to as SSE) is shown to provide
us with a reliable cluster validation measure. The Exteranl SVM Clustering (SVM-Relabeler)
algorithm does not use an objective function, and the hope is that by running the algorithm in its
purest form, the resulting clusters are reliable solutions. However, running this algorithm in this
basic fashion does not consistently provide us with a satisfying clustering solution. In fact, the
solution space can be divided into three sets: successful, local-optimum, and unsuccessful.
Unsuccessful solutions and local optima solutions are undesirable and the objective is to find a
method to eliminate their usage by simply re-clustering for objectively improved clustering (via
SSE scoring, for example). Since, the solutions in the unsuccessful set are expected to be easily
identified in any experiment that calculates the SSE of a randomly labeled data set, they can be
simply eliminated by post-processing. In a control experiment we have randomly labeled the
dataset 5000 times and calculated the SSE distribution for the experiment. The resulting
distribution has a good fit to Johnson’s SB distribution and is illustrated in the histogram of Fig.
11. Using a fitted distribution one can calculate the p-value of a given SSE. For a SSE threshold
of 170.5 (accidentally very unlikely) we can directly eliminate the unsuccessful set.

To substantially reduce the local optimum solutions, however, thresholding does not scale well.
One solution is to use a simple hill climbing algorithm which is to run the algorithm for a
sufficiently long number of iterations to find the solution with the lowest SSE value. To do this,
the clustering algorithm is run repeatedly and randomly initialized every time. A solution is
accepted as the best solution if it has a lower SSE than the previously recorded value. This can
be a very slow learning process, and is a familiar scenario in statistical learning, and one of the
popular solutions in those situations works well here as well – simulated annealing.

It is observed that random perturbation by flipping each label at some probability, ppert, is often
sufficient to switch to another subspace where a better solution could be found. (Note that ppert =
0.50 has the effect of random reinitialization and ppert = 1 flips the entire labels.) The hope is that
perturbation with ppert ≤ 0.50 results in a faster convergence. Reliability can be achieved by

searching through the solution space. To do this efficiently, Monte Carlo Methods could be used
by taking advantage of perturbation to evaluate the neighboring configuration. The procedure
described next uses a modified version of Simulated Annealing to achieve this desired reliability.

As shown in Fig. 12 left, top panel, constant perturbation with ppert = 0.10 results in a local-
optimum solution that could be otherwise avoided by using a perturbation function depending on
the number of iterations of unchanged SSE (Fig. 12 right, top panel). These results were
produced using an exponential cooling function, Tk+1 = βkTk, with β = 0.96 and T0 = 10. The
initial temperature, T0 should be large enough to be comparable with the change of SSE, ∆SSE,
and therefore increase the randomness by making the Boltzman factor e − ∆SSE / T ≈ e0, while β (<
1) should be large enough to speed up the cooling effect.

In the effort shown in Fig.s 9 & 10 (see Methods), it was found that random perturbation and
hybridized methods (with more traditional clustering methods) could help stabilize the clustering
method, but often at significant cost to its performance edge over other clustering methods
(apparently due to getting stuck in local minima traps to which the other parametric clustering
methods are susceptible). The ‘pure’ SVM-external clustering method appears to offer very
strong solutions about half the time – which allows for optimization simply by repeated
clustering attempts and looking for the most tightly clustered (smallest SSE) solution.This
suggested a simulated annealing approach for greater computational efficiency, as shown in Fig.
12 (recent work with Genetic Algorithms, not shown, exhibit even stronger stability). Results of
this effort (Fig. 12) significantly improve and stabilize the SVM clustering process.

Given the wide variety of dissimilar tuning parameters in the SVM classification process alone,
tests on SVM classification with genetic algorithm (GA) based tuning seems optimal. The very
robust and rapid auto-tuning with the GA approach on SVM classification in initial tests strongly
suggests that this, or any swarm intelligence search/tuning paradigms, offer important refinement
to the SVM-classification efforts and critical refinement to the single-convergence initialization
SVM-clustering efforts. For details on the more informed (multiple-conversion initialized)
version of the process see the Discussion.

Projection Clustering – clustering in Decision space
Even without modifying the label information (partly informed clustering), there is often strong
clustering information in an SVM training solution. One such instance occurs when one set, the
positives, are a known signal species (or collection of species). If you have mixture data with
known and unknown signal species, and wish to identify (i.e., cluster) the unknown species, then
an SVM training attempt with the mixture taken as negatives leads to a cluster identification
method via an SVM “projection-score” histogram. (i.e., cluster partitioning in Decision Space).
Real channel blockade data has been examined in this way, biotinylated DNA hairpin blockades
comprised the positives, and scored as a sharp peak at around 1.0. The mixture signals seen after
introduction of streptavidin cluster with scores around 0.5, corresponding to (unbound)
biotinylated DNA hairpin signals, and signals that score < –1.0, corresponding to the
streptavidin-bound biotinylated DNA hairpins. SVM projection clustering can be a very
powerful clustering tool in and of itself, as found in the NTD cheminformatics application.

Discussion
Support Vector Machine methods are described for classification, clustering, as well as aiding
with signal analysis and pattern recognition on stochastic sequential data. Analysis tools for
stochastic sequential data, Markovian (or causal) data for example, have broad-ranging
application in that almost any device producing a sequence of measurements can be made more
sensitive, or “smarter,” by efficient learning of measured signal/pattern characteristics via
HMM/SVM methods. The SVM and HMM/SVM application areas described here include
cheminformatics, biophysics, and bioinformatics. The cheminformatics application examples
pertain to channel current analysis on the alpha-hemolysin nanopore detector.

Our objective is to establish an automated tuning solution for SVM classification over a variety
of novel kernel and algorithmic parameters. In Proof-of-Concept work, this has been done by
implementing a genetic algorithm tuning procedure, where SVM performance on training data is
used to define a fitness function. In initial efforts with genetic algorithm tuning (in analysis of
channel current data), the genetic algorithm tuning results were as good as or better than those
obtained by an expert manually, so there is a high degree of confidence that this method will
succeed. Alternative, easily distributed, tuning approaches will be considered as needed, and
include ACO, and other multi-agent distributed intelligence approaches.

Markov-based statistical profiles, in a log likelihood discriminator framework, can be used to
create a fixed-length feature vector for Support Vector Machine (SVM) based classification [1].
Part of the idea of the method is that whenever a log likelihood discriminator can be constructed
for classification on stochastic sequential data, an alternative discriminator can be constructed by
‘lifting’ the log likelihood components into a feature vector description for classification by
SVM. Thus, the feature vector uses the individual log likelihood components obtained in the
standard log likelihood classification effort, the individual-observation log odds ratios, and
‘vectorizes’ them rather than sums them. The individual-observation log odds ratios are
themselves constructed from positionally defined Markov Models (pMM’s), so what results is a
pMM/SVM sensor method. This method may have utility in a number of areas of stochastic
sequential analysis, including splice-site recognition and other types of gene-structure
identification, file recovery in computer forensics (‘file carving’), and speech recognition.

The Multiple-convergence initialized SVM-clustering approach to unsupervised learning
provides another non-parametric means to clustering. In preliminary work, it is found that the
SVM-based clustering method also offers prospects for inheriting the very strong performance of
standard SVMs from the supervised classification setting. This offers a remarkable prospect for
knowledge discovery and enhancing the scope of human cognition – the recognition of patterns
and clusters without the limitations imposed by assuming a parametric mode and ‘fitting’ to it,
where resolution of the identified clusters can be at an accuracy comparable to the supervised
setting (i.e., where cluster identities are already specified).

The new approach is to first obtain multiple SVM convergences at initialization (two might
suffice, for example, in many situations) and thereby obtain the confidence magnitudes on data
points, and their nearest neighbors (if repeatedly have the same neighbors, have high linkage to
them). This is used to inform a label-flipping process to arrive at an improved clustering solution
on further iterations and analysis. For example, one approach is to establish a high-linkage high-

confidence label set (labels retained or flipped accordingly) and a low-linkage, low-confidence,
label set (some, according to criteria, may be flipped as well, or dropped). The magnitude
comparison in the simplest ‘multiple’ convergence result would involve two convergences, with
the difference in confidence value for a particular training instance producing a line segment, and
for all the training instances, their two-convergent point-differences would provide a collection
of line-segments. The most stable part of the line-segment ‘field’, that of the high-linkage high-
confidence data instances, can then be used, for example, to provide indication of structure to
guide tuning efforts and label-flipping criteria.

Conclusions
SVMs are fast, easily trained, discriminators, for which strong discrimination is possible without
over-fitting complications. SVMs are firmly grounded as variational-calculus based optimization
methods that are constrained to have structural risk minimization (SRM), unlike neural net
classifiers, such that they provide noise tolerant solutions for pattern recognition. An SVM
determines a hyperplane that optimally separates one class from another, while the structural risk
minimization (SRM) criterion manifests as the hyperplane having a thickness, or “margin,” that
is made as large as possible in the process of seeking a separating hyperplane. The SVM
approach thereby encapsulates model fitting and discriminatory information in the choice of
kernel in the SVM, and a number of novel kernels have been shown here. SVMs are good at both
classifying data and evaluating a confidence in the classifications given, which leaves an opening
for use of metaheuristics to bootstrap into a clustering capability, as explored in a number of
algorithmic variations in this paper. SVM use in clustering appears to be a very robust platform
and, from initial results shown here, promises to be one of the best clustering approaches. In this
paper we have shown a number of SVM classification algorithms and new SVM/metaheuristics
bootstrap algorithms for clustering.

The SVM implementations described involve SVM algorithmic variants, kernel variants, and
chunking variants; SVM classification tuning metaheuristics; and SVM clustering
metaheuristics. The SVM training metaheuristics enable use of the SVM’s confidence parameter
to bootstrap from a strong classification engine to a strong clustering engine via use of label
changes, and repeated SVM training processes with the new label information obtained.

SVM Methods and Systems have a broad range of applications: sequential-structure
identification, pattern recognition, knowledge discovery, Bioinformatics, Nanopore Detector
Cheminformatics, the nanopore transduction detection Nanoscope, and computational
engineering with information flows using stochastic sequential analysis tools.

Acknowledgements
The author would like to thank lab technicians Amanda Alba and Eric Morales for help
performing the nanopore experiments and University of New Orleans students Anil Yelundur,
Ken Armond, and Sepehr Merat for help with the algorithmic implementations and the channel
current cheminformatics analysis. The author would like to thank the University of New Orleans,
NIH, NSF, NASA, and the Louisiana Board of Regents for research support.

Figures
Fig. 1. Decision boundary (solid line); with margin (region between dotted lines). Instances in
the ‘wrong’ place (double circles) are allowed but incur a penalty.

Fig. 2. Comparative results are shown on performance of Kernels and algorithmic variants. The
classification is between two DNA hairpins (in terms of features from the blockade signals they
produce when occluding ion flow through a nanometer-scale channel). Implementations: WH
SMO (W); Platt SMO (P); Keerthi1 (1); and Keerthi2 (2). Kernels: Absdiff (a); Entropic (e); and
Gaussian (g). The best algorithm/kernel on this and other channel blockade data studied has
consistently been the WH SMO variant and the Absdiff and Entropic Kernels. Another benefit of
the WH SMO variant is its significant speedup over the other methods (about half the time of
Platt SMO and one fourth the time of Keerthi 1 or 2).

Fig. 3. Nanopore Detector signal analysis architecture, with use of an SVM Decision Tree for
classification.

Fig. 4. The Percentage Data Rejection vs SN+SP curves are shown for test data classification
runs with a binary classifier with one molecule (the positive, given by label) versus the rest (the
negative). Since the signal calling wasn’t passed through a Decision Tree, it doesn’t accurately
reflect total throughput, and they don’t benefit from the “shielding” shown in the Decision Tree
in Fig. 3 prototype. The Relative Entropy Kernel is shown because it provided the best results
(over Gaussian and Absdiff).

Fig. 5. The Percentage Data Rejection vs SN+SP curves are shown for test data classification
runs with a multiclass discriminator. The following criterion is used for dropping weak data: for
any data point xi; if maxm{fm(xi)} ≤ Confidence Parameter, then the data point xi is dropped. For
this data set using AbsDiff kernel (σ2 = 0.2) performed best, and a confidence parameter of 0.8
achieve 100% accuracy.

Fig. 6. SVM-external Re-labeling procedure for clustering.

Fig. 7. Clustering performance comparisons: SVM-external clustering compared with explicit
objective function clustering methods. Nanopore detector blockade signal clustering resolution
from a study of blockades due to individual molecular capture-events with 9AT and 9CG DNA
hairpin molecules [11]. The SVM-external clustering method consistently out-performs the other
methods. The optimal drop percentage on weakly classified data differed for the different
methods for the scores shown: Our SVM relabel clustering with drop: 14.8%; Kernel K-means
with drop: 19.8%; Robust fuzzy with drop: 0% (no benefit); Vapnik’s Single-class SVM
(internal) clustering: 36.1%.

Fig. 8. SVM-external clustering results. (a) and (b) show the boost in Purity and Entropy as a
function of Number of Iterations of the SVM clustering algorithm. (c) shows that SSE, as an
unsupervised measure, provides a good indicator in that improvements in SSE correlate strongly
with improvements in purity and entropy. The blue and black lines are the result of running
fuzzy c-mean and kernel k-mean (respectively) on the same dataset. In clustering experiments in
[37], a data set consisting of 8GC and 9GC DNA hairpin data is examined (part of the data sets
used in [12]).

Fig. 9: The result of Re-labeler Algorithm with Perturbation. The top plots demonstrate the
various Purity and Entropy scores for each perturbed run. The spikes are drops followed by
recovery in the validity of the clusters as a result of random perturbation. The bottom plot is a

similar demonstration, by tracking the unsupervised quality of the clusters. Note that after 4 runs
of perturbation best solution is recovered.

Fig. 10: (a) and (b) represent the SSE and Purity evaluation of hybrid Re-labeler with
Perturbation on the same dataset. Data is initially clustered using k-means to initialize the Re-
labeler algorithm. The first segment of the plot (right before the spike at 16) is the result of Re-
labeler after 10% perturbation, while the second segment is the result after 30% perturbation.
Purity Number of Iterations.

Fig. 11. Nanopore feature vector data (in standard 150 component, L1-norm, format) is randomly
labeled 5000 times followed by evaluation of SSE values and production of a histogram of those
values as shown. The resulting distribution has a good fit to Johnson’s SB distribution.

Fig. 12. (left) Simulated annealing with constant perturbation, (right) Simulated annealing with
variable perturbation. As shown in left, top panel, simulated annealing with a 10% initial label-
flipping results in a local-optimum solution. In the right panel this is avoided by boosting the
perturbation function depending on the number of iterations of unchanged SSE (right, top panel).
These results were produced using an exponential cooling function, Tk+1 = βkTk, with β = 0.96
and T0 = 10.

References
1. Roux B and Winters-Hilt S. Hybrid SVM/MM Structural Sensors for Stochastic Sequential
Data. BMC Bioinf. 9 S9, S12 (2008).

2. Burgess CJC. A tutorial on support vector machines for pattern recognition. Knowledge
Discovery and Data Mining, 2(2):121–167, 1998.

3. V.N.Vapnik. The Nature of Statistical Learning Theory. New York: Springer- Verlag, 1995.

4. Girosi F and Poggio T. Regularization algorithms for learning that there are equivalent to
multilayer networks. Science, 247:978–982, 1990.

5. V.N.Vapnik. Statistical Learning Theory. New York: Wiley, 1998.

6. Scholkopf B, Williamson RC, Smola AJ. Regularization algorithms for learning that there are
equivalent to multilayer networks. Science, 247:978–982, 1990.

7. Doursat R, Geman S, and Bienenstock E. Neural network and bias/variance dilemma. Neural
Computation, 4(2):1–58, 1992.

8. Kleinberg J. An impossibility theorem for clustering. Proc. of the 16th conference on Neural
Information Processing Systems, (12), 2002.

9. Bishop CM. Neural Networks for Pattern Recognition. Oxford University Press, 1995.

10. Schapire RE and Freund Y. A decision-theoretic generalization of on-line learning and an
application to boosting. J. Comput. Syst. Sci., 55(1):119–139, 1997.

11. Winters-Hilt S, Yelundur A, McChesney C, Landry M: Support Vector Machine
Implementations for Classification & Clustering. BMC Bioinf. 7 Suppl 2: S4, 2006.

12. Winters-Hilt S, Vercoutere W, DeGuzman VS, Deamer DW, Akeson M, and Haussler D.
Highly Accurate Classification of Watson-Crick Basepairs on Termini of Single DNA
Molecules. Biophys. J. 84:967-976. 2003.

13. Crammer K and Singer Y: On the Algorithmic Implementation of Multiclass Kernel-based
Vector Machines. Journal of Machine Learning Research 2 (2001) 265-292

14. Kapur JN and Kesavan HK. Entropy optimization principles with applications. Academic
Press; 1992.

15. G.Ratsch K. Tsuda K. Muller, S. Mika and B. Schölkopf, An introduction to kernel-based
learning algorithms, IEEE Trans. Neural Netw. 12, 2001, no. 2, 181–201.

16. Jaynes E. 1997. Paradoxes of Probability Theory. Internet accessible book preprint:
http://omega.albany.edu:8008/JaynesBook.html.

17. Kullback S: Information Theory and Statistics. Dover; 1968.

18. Amari S; Dualistic Geometry of the Manifold of Higher-Order Neurons. Neural Networks,
Vol. 4(4), 1991:443-451.

19. Amari S: Information Geometry of the EM and em Algorithms for Neural Networks. Neural
Networks, Vol. 8(9), 1995:1379-1408.

20. Amari S and Nagaoka H: Methods of Information Geometry. 2000. Translations of
Mathematical Monographs Vol. 191.

http://omega.albany.edu:8008/JaynesBook.html�

21. J. Platt, Sequential Minimal Optimization: A Fast Algorith for Training Support Vector
Machines, Microsoft Research Tech. Rep. MSR-TR-98-14, 1998.

22. Osuna E; Freund R, and Girosi. F: An improved training algorithm for support vector
machines. In Neural Networks for Signal Processing VII. Edited by Principe J, Gile L, Morgan
N, and Wilson E. editors. IEEE, New York; 1997: 276-85.

23. Joachims T: Making large-scale SVM learning practical. In Advances in Kernel Methods --
Support Vector Learning. Edited by Scholkopf B, Burges CJC, and Smola AJ. MIT Press,
Cambridge, USA;. 1998: Ch. 11.

24. Crammer K and Singer Y: On the Algorithmic Implementation of Multiclass Kernel-based
Vector Machines. Journal of Machine Learning Research 2 (2001) 265-292

25. Hsu CW and Lin CJ: A Comparison of Methods for Multi-class Support Vector Machines.
IEEE Transactions on Neural Networks, 13; 2002:415-425

26. Lee Y, Lin Y and Wahba G: Multicategory Support Vector Machines. Technical Report
1043, Department of Statistics, University of Wisconsin, Madison, WI, 2001.
http://citeseer.ist.psu.edu/lee01multicategory.html

27. Duda RO, Hart PE and Stork DG, Pattern classification, Second Edition, John Wiley and
Sons, New York, 2001.

28. Keerthi SS, Shevade SK, Bhattacharyya C and Murthy KRK: Improvements to Platt's SMO
algorithm for SVM classifier design. Neural Computation, Vol. 13, 2001:637-649

29. Ben-Hur A, Horn D, Siegelmann HT, Vapnik V: Support Vector Clustering. Journal of
Machine Learning Research 2; 2001:125-137.

30. Scholkopf B, Platt JC, Shawe-Taylor, J Smola AJ, Williamson RC: Estimating the Support of
a High-Dimensional Distribution. Neural Computation, 13, 1999:1443—1472.

31. Yang J, Estivill-Castro V, Chalup SK: Support Vector Clustering Through Proximity Graph
Modeling. In Proceedings, 9th International Conference on Neural Information Processing
(ICONIP'02), 2002:898-903.

32. Fisher RA. The use of multiple measurements in taxonomic problems. Annals of Eugenics,
7:179–188, 1936.

33. R. Guigo M. Burset, Evaluation of gene structure prediction programs, Genomics 3 (1996),
no. 34, 353–367.

34. Winters-Hilt, S. and C. Baribault. A Meta-state HMM with application to gene structure
identification in eukaryotes. EURASIP Journal of Advances in Signal Processing, Special Issue
on Genomic Signal Processing, 2010.

35. Graf HP, Cosatto E, Bottou L, Durdanovic I, and Vapnik VN. Parallel Support Vector
Machines: The Cascade SVM, in proceedings NIPS, 2004.

36. Eppstein D and Bern M. Approximation algorithms for geometric problems, pages 296–345.
Approximation algorithms for NP-hard problems. PWS Publishing Co, 1996.

37. Winters-Hilt S and Merat S. SVM Clustering. BMC Bioinf. 8 S7, S18 (2007).

http://citeseer.ist.psu.edu/lee01multicategory.html�

FIGURES

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

 (a) (b)
Fig. 10.

Fig. 11.

Fig. 12.

