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Abstract

Background: The Baum-Welch learning procedure for Hidden Markov Models (HMMs) provides a powerful tool

for tailoring HMM topologies to data for use in knowledge discovery and clustering. A linear memory procedure

recently proposed by Miklós, I. and Meyer, I.M. describes a memory sparse version of the Baum-Welch algorithm

with modifications to the original probabilistic table topologies to make memory use independent of sequence

length (and linearly dependent on state number). The original description of the technique has some errors that

we amend. We then compare the corrected implementation on a variety of data sets with conventional and

checkpointing implementations.

Results: We provide a correct recurrence relation for the emission parameter estimate and extend it to

parameter estimates of the Normal distribution. To accelerate estimation of the prior state probabilities, and

decrease memory use, we reverse the originally proposed forward sweep. We describe different scaling strategies

necessary in all real implementations of the algorithm to prevent underflow. In this paper we also describe our

approach to a linear memory implementation of the Viterbi decoding algorithm (with linearity in the sequence

length, while memory use is approximately independent of state number). We demonstrate the use of the linear

memory implementation on an extended Duration Hidden Markov Model (DHMM) and on an HMM with a

spike detection topology. Comparing the various implementations of the Baum-Welch procedure we find that

the checkpointing algorithm produces the best overall tradeoff between memory use and speed. In cases where

sequence length is very large (for Baum-Welch), or state number is very large (for Viterbi), the linear memory
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methods outlined may offer some utility.

Conclusions: Our performance-optimized Java implementations of Baum-Welch algorithm are available at

http://logos.cs.uno.edu/∼achurban. The described method and implementations will aid sequence alignment,

gene structure prediction, HMM profile training, nanopore ionic flow blockades analysis and many other domains

that require efficient HMM training with EM.

Background

HMMs (Hidden Markov Models) are a widely accepted modeling tool [1] used in various domains, such as

speech recognition [2] and bioinformatics [3]. An HMM can be described as a stochastic finite state

machine where each transition between hidden states ends with a symbol emission. The HMM can be

represented as a directed graph with N states where each state can emit either a discrete character or a

continuous value drawn from a Probability Density Function (PDF).

We are interested in an distributed HMM analysis of the channel current blockade signal caused by a single

DNA hairpin molecule held in a nanopore detector [4, 5]. The molecules examined frequently produce

consistent toggles for thousands of milliseconds. With a sampling rate of 20 µs, processing even a modest

blockade signal of 200 ms duration (10,000 sample points) becomes problematic, mostly because of the size

of dynamic programming tables required in the conventional implementations of the HMM’s Baum-Welch

and Viterbi decoding algorithms. Since we are also trying to model durations [6] and spike phenomena [7],

by increasing the number of HMM states, conventional HMM implementations are found to be

prohibitively expensive in terms of memory use.

The Baum-Welch algorithm is an Expectation Maximization (EM) algorithm invented by Leonard E.

Baum and Lloyd R. Welch [8]. A later refinement, Hirschberg’s algorithm for an HMM [9], reduces the

memory footprint by recursively halving the pairwise alignment dynamic programming table for sequences

of comparable size. In our application domain, the length of the observed emission sequence (in the case of

nanopore ionic flow blockade analysis or gene structure prediction) is prohibitively long compared to the

number of HMM states. Futher, Baum-Welch requires multiple paths instead of the most likely one,

making this strategy less than optimal.
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The checkpointing algorithm [10–12] implements the Baum-Welch algorithm in O(
√

TN) memory and in

O(TNQmax + T (Q + E)) processor time, where T is the length of the observed sequence, Qmax is the

maximum HMM node out-degree, E is the number of free emission parameters and Q is the number of free

transition parameters. It divides the input sequence into
√

T blocks of
√

T symbols each, and, during the

forward pass, retains the first column of the forward probability table for each block. When the reverse

sweep starts, the forward values for each block are sequentually re-evaluated, beginning with their

corresponding checkpoints, to update the parameter estimates.

Further refinement to the algorithm, as described in [13] and amended here, has rendered the memory

demands independent of the observed sequence length, with O(N(Q + ED)) memory usage and

O(TNQmax(Q + ED)) running time, where D is the dimensionality of a vector that stores statistics on the

emission PDF parameter estimates. Performance of the various algorithms is summarized in Table 1.

In this work, we also present a modification of one of the key HMM algorithms, the Viterbi algorithm,

improving the memory profile wihout affecting the execution time.

Methods and Results
HMM definition, EM learning and Viterbi decoding

The following parameters describe the conventional HMM implementation according to [14]:

• A set of states S = {S1, . . . , SN} with qt being the state visited at time t,

• A set of PDFs B = {b1(o), . . . , bN (o)}, describing the emission probabilities bj(ot) = p(ot|qt = Sj) for

1 ≤ j ≤ N , where ot is the observation at time-point t from the sequence of observations

O = {o1, . . . , oT },

• The state-transition probability matrix A = {ai,j} for 1 ≤ i, j ≤ N , where ai,j = p(qt+1 = Sj |qt = Si),

• The initial state distribution vector Π = {π1, . . . , πN}.

A set of parameters λ = (Π, A,B) completely specifies an HMM. Here we describe the HMM parameter

update rules for the EM learning algorithm rigorously derived in [15]. The Viterbi algorithm, as shown in

Table 3, is a dynamic programming algorithm that runs an HMM to find the most likely sequence of

hidden states, called the Viterbi path, that result in an observed sequence. When training the HMM using

the Baum-Welch algorithm (an Expectation Maximization procedure), first we need to find the expected

probabilities of being at a certain state at a certain time-point using the forward-backward procedure as

shown in Table 3. The forward, backward, and Viterbi algorithms take O(TNQmax) time to execute.
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Let us define ξt(i, j) as the probability of being in state i at time t, and state j at time t + 1, given the

model and the observation sequence

ξt(i, j) = p(qt = Si, qt+1 = Sj |O, λ) =
αt(i) ai,j bj(ot+1) βt+1(j)

p(O|λ)
, (1)

and γt(i) as the probability of being in state i at time t, given the observation sequence and the model

γt(i) = p(qt = Si|O, λ) =
αt(i)βt(i)∑N
i=1 αt(i) βt(i)

=
N∑

j=1

ξt(i, j). (2)

The HMM maximization step using these probabilities is shown in Table 3. The conventional EM

procedure for HMM [14] takes O(TN) memory and O(TNQmax + T (Q + E)) processor time. An HMM

containing empty internal states (see for example [3]) and Hierarchical HMM (HHMM) could be converted

into canonical HMM form through stack transformation as discussed in [16].

Forward sweep strategy explained

We begin with simple analytical computations of the estimates of the transition probabilites of the HMM,

and further introduce more formal notation for our model.

Figure 1 outlines initial, simple transition probability calculations for all possible paths through an HMM.

For example, to estimate the probability of transition from state 1 to state 2 (1 → 2) we have to estimate

the probability of transition utilization at time intervals 1-2 and 2-3

p(Making transition 1 → 2 at time 1-2) = α1(1)× a1,2 × b2(o2)× β2(2),

p(Making transition 1 → 2 at time 2-3) = α2(1)× a1,2 × b2(o3)× β3(2).

In particular, to estimate the probability of transition 1 → 2 at time interval 1-2 we calculate the sum of

probabilities of all possible paths that lead to state 1 at time-point 1 (forward probability α1(1)). Then we

multiply this probability of being in state 1 by the transition a1,2 and emission b2(o2) probabilities.

Further multiplication by the sum of probabilities of all possible paths from state 2 at time 2 until the end

of the emission sequence (backward probability β2(2)), is the expected probability of transition use. The

sum of these estimates at time-points 1-2 and 2-3 is equivalent to the transition probability estimate in

Table 3 (prior to normalization).

According to [13] ti,j(t, m) is the weighted sum of probabilities of all possible state paths that emit

subsequence o1, . . . , ot and finish in state m, taking an i → j transition at least once where the weight of
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each state path is the number of i → j transitions taken. Processing of the entire ti,j(t,m) recurrence takes

memory proportional to O(NQ) and processor time O(TNQQmax).

Initially, since no transitions have been made ti,j(1,m) = 0. After initialization we make the following

recurrence steps:

ti,j(t,m) = αt−1(i) ai,m bm(ot) δ(m = j) (3)

+
N∑

n=1

ti,j(t− 1, n) an,m bm(ot). (4)

Here and further δ(m = j) =
{

1, if m = j
0, otherwise . Following equation (1), at a certain time-point t we need

to score the evidence supporting transition between nodes i and j, which is the sum of probabilities of all

possible state paths that emit subsequence o1, . . . , ot−1 and finish in state i (forward probability αt−1(i)),

multiplied by transition ai,j and emission bj(ot) probabilities upon arrival to ot. We extend weighted paths

containing evidence of i → j transitions made at previous time-points 1, . . . , t− 1 further down the trellis

in subequation (4).

Finally, by the end of the recurrence we marginalize the final state m out of probability ti,j(T, m) to get a

weighted sum of state paths taking transition i → j at various time-points that is equivalent to the

numerator in the transition probability estimate shown in Table 3. Thus, we estimate transition utilization

using:

tEND
i,j =

N∑
m=1

ti,j(T, m), ai,j =
tEND
i,j∑

j∈out(Si)
tEND
i,j

,

where out(Si) is the set of nodes connected by edges from Si.

According to [13] ei(γ, t,m) is the weighted sum of probabilities of all possible state paths that emit

subsequence o1, . . . , ot and finish in state m, for which state i emits observation γ at least once where the

weight of each state path is the number of γ emissions that it makes from state i.

The following algorithm updates parameters for the set of discrete symbol probability distributions:

Initialization step ei(γ, 1, m) = α1(m) δ(i = m) δ(γ = o1).

After initialization we make the recurrence steps, where we correct the emission recurrence presented

in [13] [see Additional File 1]

ei(γ, t, m) = αt(m) δ(i = m) δ(γ = ot) (5)

+
N∑

n=1

ei(γ, t− 1, n) an,m bm(ot). (6)
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Finally, by the end of the recurrence we marginalize the final state m out of ei(γ, T,m) and estimate the

emission parameters through normalization

eEND
i (γ) =

N∑
m=1

ei(γ, T,m), b̂j(γ) =
eEND
j (γ)

∑D
γ=1 eEND

j (γ)
.

The algorithm for discrete emission parameters estimate B = {b1(o), . . . , bN (o)} takes in O(NED) memory

and O(TNEDQmax) time. As discussed [see Subsection HMM definition, EM learning and Viterbi

decoding] the forward sweep takes O(TNQmax) time, where only the values of αt−1(i) for 1 ≤ i ≤ N are

needed to evaluate αt(i), thus reducing the memory requirement to O(N) for the forward algorithm.

Computing ei(γ, t,m) takes O(NED) previous probabilities of ei(γ, t− 1,m) for 1 ≤ m ≤ N , 1 ≤ i ≤ E,

1 ≤ γ ≤ D. Recurrent updating of each ei(γ, t,m) probability elements takes O(Qmax) summations,

totalling O(TNEDQmax).

Theorem 1 ei(γ, t,m) is always the weighted sum of probabilities of all possible state paths that emit

subsequence o1, . . . , ot and finish in state m, for which state i emits observation γ at least once.

Termination step is equivalent to discrete emission parameter estimates as shown in Table 3.

Proof

Initialization The only chance for a path at a time-point 1 to emit symbol γ at least once from state i

and finish in state m is α1(m) in case i = m and γ = o1. Therefore, initialization conditions satisfy

definition of ei(γ, t, m).

Induction Suppose ei(γ, t− 1,m) represents correct weighted sum of probabilities of all possible state

paths that emit subsequence o1, . . . , ot−1 and finish in state m, for which state i emits observation γ

at least once. We need to prove the above holds for time-point t. Following equation (1) in recurrence

part (5) we score the evidence of symbol ot emission from state i at time-point t, which will be

further propagated down the trellis in recurrence part (6). Chances of such event is αt(m), i.e. sum

of probabilities of all possible state paths finishing in state m at time-point t under conditions i = m

and γ = ot. The second part of the recurrence (6) extends the weighted paths containing evidence of

γ symbol emission from state i at previous time-points 1, . . . , t− 1 and finishing in state n further

down the trellis through available transitions an,m. Thus the definition of ei(γ, t, m) holds true for

the time-point t.
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Termination At the end of recurrence we marginalize the final state m out of probability ei(γ, T,m) to

get the weighted sum of all state paths making observation γ in state i at various time-points

equivalent to the numerator of the discrete emission parameter estimate in Table 3, which is a

weighted sum of all possible paths that score emissions evidence at certain time-points. By

normalizing these scores we estimate the emission parameters.

The forward sweep strategy was originally formulated in [13] for HMMs with silent Start/End states, and

automatically handles the prior probabilities estimates for the states as standard transitions connecting

Start with other non-silent states. The prior transition estimates aStart,i are naturally involved within

recurrent updates of ti,j(t, m), which takes an additional O(N2) memory if all N non-silent states have

non-zero priors with time cost O(TN2Qmax). In order to compute the prior estimates in the conventional

HMM formulation we need to know the backward probability at time-point 1, which requires calculation of

the entire backward table. Therefore, in the next section we present a linear memory Baum-Welch

algorithm modification built around a backward sweep with scaling, which only involves calculation of

α1(i) for 1 ≤ i ≤ N to estimate priors in O(N) time and O(N) memory.

Linear memory Baum-Welch using a backward sweep with scaling

The objective of the algorithm presented in this section is equivalent to that discussed previously [see

Section Forward sweep strategy explained] based on forward probabilities of state occupation. However, by

using the backward probabilities of state occupation we are able to estimate initial HMM state

probabilities much more quickly. In the description that follows we introduce a new set of probabilities:

Ei(γ, t, m) - weighted sum of probabilities of all possible state paths that emit subsequence ot, . . . , oT and

finish in state m, for which state i emits observation γ at least once where the weight of each state

path is the number of γ emissions that it makes from state i.

Ti,j(t, m) - weighted sum of probabilities of all possible state paths that emit subsequence ot, . . . , oT and

finish in state m, taking i → j transition at least once where the weight of each state path is the

number of i → j transitions that it takes.

All calculations are based on backward probability βt(i), but there is inevitably insufficient precision to

directly represent these values for significantly long emission sequences. Therefore we scale the backward

probability as we proceed in our calculations.
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The linear memory Baum-Welch implementation is shown in Figure 2, where E is a set of nodes with free

emission parameters and T is a set of nodes with free emanating transitions. Scaling relationships used at

every iteration are rigorously proven [see Appendix A]. An alternative to scaling is relation (7) presented

in [17] showing how to efficiently add log probabilities

log

(
N−1∑

i=0

pi

)
= log p0 + log

(
1 +

N−1∑

i=1

elog pi−log p0

)
. (7)

The scoring functions used for the emissions updates are shown in Table 4. With discrete emission we sum

all the backward probabilities of state occupation given discrete symbol emission at certain time-points and

later we normalize these counts in (8). In the case of a normally distributed continuous PDF we sum

emissions and emission deviation from state i mean squared scaled by backward probability of state

occupation along with unitary scaled sum. We use these counts to estimate the emission mean (9) and

variance (10) for a given state.

Parameters update

We estimate the initial probability according to equations presented in Table 3, where D1 is defined in

Appendix A

π̂i =
α1(i) β̃i(1)∑N
i=1 α1(i) β̃i(1)

=
α1(i) D1 β1(i)∑N
i=1 α1(i)D1 β1(i)

=
α1(i)β1(i)∑N
i=1 α1(i) β1(i)

.

The emissions estimate for the discrete case are

b̂j(γ) =
ẼEND

j (γ)
∑D

γ=1 ẼEND
j (γ)

=
D1 EEND

j (γ)

D1

∑D
γ=1 EEND

j (γ)
=

EEND
j (γ)

∑D
γ=1 EEND

j (γ)
. (8)

For normally distributed continuous observation PDF

b̂j(o) → µ =
ẼEND

j (1)

ẼEND
j (3)

=
D1 EEND

j (1)
D1 EEND

j (3)
=

EEND
j (1)

EEND
j (3)

, (9)

b̂j(o) → σ2 =
ẼEND

j (2)

ẼEND
j (3)

=
D1 EEND

j (2)
D1 EEND

j (3)
=

EEND
j (2)

EEND
j (3)

. (10)

The transition estimate is calculated as following

ai,j =
T̃END

i,j∑
j∈out(Si)

T̃END
i,j

=
D1 TEND

i,j

D1

∑
j∈out(Si)

TEND
i,j

=
TEND

i,j∑
j∈out(Si)

TEND
i,j

for i ∈ T .
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Viterbi decoding in linear memory

In this section we describe results when using a “linear memory” modification of the original Viterbi

algorithm that was introduced in [18] by Andrew J. Viterbi. As mentined previously, the Viterbi algorithm

is a dynamic programming algorithm for finding the most likely sequence of hidden states, called the

“Viterbi path”, corresponding to the sequence of observed events in the context of an HMM.

Viterbi checkpointing implementation introduced in [11] divides input sequence into
√

T blocks of
√

T

symbols each and during the first Viterbi pass keeps only the first column of the δ table for each block.

The reconstruction of the most probable state path starts with the last block, where we use the last

checkpointing column to initialize recovery of the last
√

T states of the most likely state path and so on,

until the entire sequence decoding is reconstructed. The algorithm requires memory space proportional to

O(N
√

T + T ) and takes computational time O(TNQmax), but twice as much as conventional

implementation would take because of multiple sweeps. Additional computations could be easily

ameliorated by the lower memory use, which in practice substantially improves the computational time.

Only two columns are needed for the δ array that stores maximum probability scores for a state at a given

time-point for the algorithm to run (referring to the relationship shown in Figure 2). We replace the ψ

array, needed to store the dynamic programming backtrack pointers, by a linked list. Our approximately

linear memory implementation follows the observation that the backtrack paths typically converge to the

most likely state path and travel all together to the beginning of the decoding table. Although the

approximate linearity depends on model structure and emission sequence decoded, and is not guaranteed,

this behavior is typical for the HMM topologies we use. The possibility of using O(N log(T )) space (in case

we write to disk the most likely path before the coalescence point, i.e. the first state on the backtrack path

where only a single candidate is left for the initial segment of the most probable state path) has only been

rigorously proven for simple symmetric two-state HMM [19].

The modified Viterbi algorithm is shown in Figure 3. It runs in the same O(TNQmax) time as a

conventional Viterbi decoder, but takes the amount of memory O(T ) as has been demonstrated by our

simulations [see Section Computational performance].

This approach has proven to be useful in decoding the explicit Duration Hidden Markov Model (DHMM)

topology introduced in [6], as can be seen in Figure 4. Although this implementation closely follows the

originally proposed non-parametric duration density [20] design, the advantage is that we no longer have to

use highly modified Forward-Backward and Viterbi algorithms [21]. This topology directly corresponds to

the Generalized Hidden Markov Model (GHMM) used in GENSCAN [22], one of the most accurate Ab initio
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gene structure prediction tools. The potential for a very large number of nodes in our proposed topology is

compensated by the introduced linear memory Viterbi and Baum-Welch implementations with unaltered

running time O(STM) where M is the maximum duration of an aggregate state and S is the number of

aggregate states. An example of backtracking path compression for such a topology with discrete emissions

can be seen in Figure 5, where the most likely trail of states quickly combines with all the alternative trails.

Another interesting topology used by our laboratory for “spike” detection is shown in Figure 6, where the

spikes are modelled as a mixture of two trajectories interconnected with an underlying set of ionic flow

blockade states. The Viterbi decoding trail for this topology, detecting two sequential spikes in samples

from the real continuous ionic flow blockade, is shown in Figure 7. Again, the backtracks quickly converge

to the most likely state sequence.

Our particular implementation takes advantage of the Java Garbage Collector (GC), which periodically

deletes all the linked list nodes allocated in the heap that are no longer referenced by the active program

stack as shaded in light gray color in Figures 5 and 7. On multiple core machines the GC runs in a thread

parallel to the main computational thread and does not obstruct execution of the method if scheduled to a

different core. In other languages “smart pointers” could be used to deallocate unused links when their

reference count drops to zero, which is in some ways even more efficient than Java’s garbage collection.

Computational performance

We conducted experiments on the HMM topologies mentioned above [see Section Viterbi decoding in linear

memory] with both artificial and real data sets, and evaluated performance of the various implementations

of the Viterbi and EM learning algorithms.

We describe the performance of the Java Virtual Machive (JVM) after the HotSpot Java byte code

optimizer burns-in, i.e. after it optimizes both memory use and execution time within EM cycles. The

linear memory, checkpointing and conventional algorithm implementations have been streamlined to avoid

an unfair comparison due to obvious performance bottlenecks.

For the DHMM topology shown in Figure 4 we have chosen to systematically alter the size of two

aggregate states from 50 to 500 learning on artificially generated sequence of 10,000 discrete symbols to see

how the number of free learning parameters affects the performance of the EM learning algorithms. In

Subfigures 8(a) - 8(c) we see that the running time of the linear implementation grows dramatically

compared to conventional and checkpointing implementations, making it a very slow alternative for such a

scenario. Although the linear implementation memory profile is low, as expected, for high values of D, the
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checkpointing algorithm claims the least memory. This is because the table sizes in the linear memory EM

implementation grow quickly as the number of states and transitions in the model increases. Garbage

collection for large D is the lowest for the checkpointing EM compared to other implementations.

In experiments on EM learning on a spike detection HMM topology, shown in Figure 6, we have

systematically varied the ionic flow duration from 1,000 ms to 64,000 ms. Although in Subfigures 8(d) -

8(f) duration of the time cycle of the linear memory implementation is not so inflated in this situation, it is

still many times higher than for conventional and checkpointing algorithms. Please note that conventional

and checkpointing algorithms spend almost identical time in a cycle. The conventional implementation still

takes the largest amount of memory and once again checkpointing takes less memory compared to the

linear memory implementation in the case of long signal duration. Garbage collection in the case of the

conventional implementation starts taking a substantial fraction of the CPU time for maximum signal

duration, which advocates against using the conventional implementation for the the analysis of long

signals.

Theoretically, for the linear memory algorithm to run faster than checkpointing alternative the following

condition should hold true 2TNQmax + T (Q + E) > TNQmax(Q + ED) which reduces to the condition,

unrealistic for any practical model 2 > Q + ED. Thus, the linear memory algorithm will always run slower

than checkpointing. The memory condition for the linear memory EM algorithm implementation to run in

less space is 2N
√

T > N(Q + ED), which reduces to 2
√

T > Q + ED condition - quite realistic for

sufficiently large values of T .

In both test scenarios shown in Figure 8 we see that conventional implementation of Baum-Welch

aggressively claims very large amounts of heap space, even for modestly sized problems (in some

applications, such as the JAHMM package [23], it allocates the probabilistic table ξ of size N2 × T ,

although we do it in N × T through progressive summation of forward-backward tables), where both

modified EM algorithm implementations have a very compact memory signature. Originally proposed

algorithm implemented based on forward sweep strategy with silent Start/End states runs slower and takes

more memory compared to the proposed backwards sweep strategy in case of DHMM topology, since prior

probabilities of the states are estimated as regular transitions from the Start state, thus substantially

increasing ti,j(t,m) table size and time required for a recurrent step.

In Tables 5 and 6 we list the ratio of memory used by the linked list nodes referenced from the active

program stack to the sequence length T that quickly becomes proportional to one in both spike detection

and the explicit DHMM topologies as decoded sequence length grows.
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Discussion and conclusion

We have discussed implementation of Baum-Welch and Viterbi algorithms in linear memory. We

successfully used these implementations in analysis of nanopore blockade signals with very large sample

sizes (more than 3,000 ms) where the main limitation becomes processing time rather than memory

overflow. We are currently working on efficient distributed implementation of the algorithms to facilitate

quicker, potentially ”real-time”, application of the algorithms.

In both test scenarios, the linear memory modification of the EM algorithm takes significantly more time

to execute compared to conventional and checkpointing implementations. Despite of being the fastest in

many realistic scenarios, the conventional implementation of the EM learning algorithm suffers from

substantial memory use. The checkpointing algorithm alleviates both of these extremes, sometimes running

even faster than the conventional algorithm due to lower memory management overhead. The algorithm

seems to provide an excellent tradeoff between memory use and speed, and will be the key ingredient in our

further efforts in building the HMM infrastructure. In the meantime, we are trying to understand if the

running time of our linear memory EM algorithm implementation can be constrained in a way similar to

the checkpointing algorithm. In our experiments we did not reach the condition where linear memory EM

algorithm starts taking substantially less memory compared to the checkpointing algorithm, although

theoretically such a condition is possible.

A demo program featuring the canonical, checkpointing and linear memory implementations of the EM

learning and the Viterbi decoding algorithms is available on our web site

http://logos.cs.uno.edu/∼achurban.
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Appendices
Appendix A - Proofs of scaling relationships

The scaling steps we make every recurrence shown in Figure 2 need additional rigorous justification. Our

proofs are partially inspired by recurrences presented in [24] with further clarifications.
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Theorem 2 β̃t(m) = dt β̄t(m)

Proof Let us define Dt = 1∑N
i=1 βt(i)

, dt = 1∑N
i=1 β̄t(i)

, β̃t(m) = Dt βt(m),

β̄t(m) =
N∑

j=1

am,j bj(ot+1) β̃t+1(j)

= Dt+1

N∑

j=1

am,j bj(ot+1)βt+1(j)

= Dt+1 βt(m),

dt =
1∑N

i=1 β̄t(i)
=

1

Dt+1

∑N
i=1 βt(i)

,

β̃t(m) = dt β̄t(m) = dt Dt+1 βt(m) =
1

Dt+1

∑N
i=1 βt(i)

Dt+1 βt(m) = Dt βt(m).

Here we observe useful relationships Dt = dt Dt+1 and β̄t(m) = Dt+1 βt(m) necessary in follow-up proves.

¤

Theorem 3 T̃i,j(t,m) = dt T̄i,j(t,m)

Proof Let us define T̃i,j(t,m) = Dt Ti,j(t,m),

T̃i,j(t,m) = dt T̄i,j(t, m)

= dt

[
β̃t+1(j) am,j bj(ot+1) δ(i = m) +

N∑
n=1

am,n T̃i,j(t + 1, n) bn(ot+1)

]

= dt

[
Dt+1 βt+1(j) am,j bj(ot+1) δ(i = m) + Dt+1

N∑
n=1

am,n Ti,j(t + 1, n) bn(ot+1)

]

= dt Dt+1

[
βt+1(j) am,j bj(ot+1) δ(i = m) +

N∑
n=1

am,n Ti,j(t + 1, n) bn(ot+1)

]

= dt Dt+1 Ti,j(t,m)

= Dt Ti,j(t,m).

¤

Theorem 4 Ẽi(γ, t, m) = dt Ēi(γ, t, m)

Proof Let us define Ẽi(γ, t,m) = Dt Ei(γ, t, m),
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Ẽi(γ, t,m) = dt Ēi(γ, t, m)

= dt

[
N∑

n=1

bn(ot+1) am,n Ẽi(γ, t + 1, n) + β̄t(m)Score(ot, γ) δ(m = i)

]

= dt

[
Dt+1

N∑
n=1

bn(ot+1) am,n Ei(γ, t + 1, n) + Dt+1 βt(m)Score(ot, γ) δ(m = i)

]

= dt Dt+1

[
N∑

n=1

bn(ot+1) am,n Ei(γ, t + 1, n) + βt(m)Score(ot, γ) δ(m = i)

]

= dt Dt+1 Ei(γ, t, m)

= Dt Ei(γ, t,m).

¤
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Figures
Figure 1 - Time trellis for simple model where possible emissions of 0 and 1 are shown above and
below trellis. Probabilities of emissions that happen after each transition are shown in bold and
transitions of interest taken at certain time-point are underlined.
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Figure 2 - The linear memory implementation of Baum-Welch learning algorithm for HMM. This
algorithm takes set of HMM parameters λ and sequence of symbols O. Expected HMM parameters
are calculated according to formulas [see Subsection Parameters update].

1 Initialization

2 for 1 ≤ m ≤ N

3 βT (m) = 1, DT = 1∑N
i=1 βT (i)

, β̃T (m) = DT βT (m)

4 for 1 ≤ i, j ≤ N where i ∈ T
5 T̃i,j(T, m) = 0

6 for 1 ≤ i ≤ N , 1 ≤ γ ≤ D

7 if (i ∈ E) Ẽm(γ, T,m) = β̃T (i)Score(oT , γ)

8 else Ẽi(γ, T, m) = β̃T (i)Score(oT , γ)

9 Recurrence

10 for t = T − 1, . . . , 1

11 for 1 ≤ m ≤ N

12 β̄t(m) =
∑N

j=1 am,j bj(ot+1) β̃t+1(j)

13 dt = 1∑N
i=1 β̄t(i)

14 for 1 ≤ m ≤ N

15 for 1 ≤ i, j ≤ N where i ∈ T
16 T̄i,j(t,m) = β̃t+1(j) am,j bj(ot+1) δ(i = m) +

∑N
n=1 am,n T̃i,j(t + 1, n) bn(ot+1)

17 T̃i,j(t,m) = dt T̄i,j(t,m)

18 for i ∈ E
19 for 1 ≤ γ ≤ D

20 Ēi(γ, t,m) =
∑N

n=1 bn(ot+1) am,n Ẽi(γ, t + 1, n) + β̄t(m)Score(ot, γ, i) δ(m = i)

21 Ẽi(γ, t,m) = dt Ēi(γ, t,m)

22 β̃t(m) = dt β̄t(m)

23 Termination

24 ẼEND
i (γ) =

∑N
m=1 Ẽi(γ, 1, m)πm bm(o1)

25 T̃END
i,j =

∑N
m=1 T̃i,j(1,m) πm bm(o1)

26 for 1 ≤ i ≤ N

27 α1(i) = πi bi(o1)
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Figure 3 - Viterbi algorithm implementation with linked list. Here ψt+1(q∗t+1) → prev is reference to
the previous node.

1. Initially δ1(i) = πi bi(o1), ψ1(i) = 0 for 1 ≤ i ≤ N ,

2. δt(j) = max
1≤i≤N

[δt−1(i) ai,j ] bj(ot),

ψt(j) → prev = ψt−1(argmax
1≤i≤N

[δt−1(i) ai,j ]) for t = 2, . . . , T and 1 ≤ j ≤ N ,

3. Finally q∗T = argmax
1≤i≤N

[δT (i)], trace back q∗t = ψt+1(q∗t+1) → prev for t = T − 1, T − 2, . . . , 1

with optimal decoding Q∗ = {q∗1 , q∗2 , . . . , q∗T }.

Figure 4 - Explicit DHMM topology. Here the first aggregate state emits 0 with probability 0.75 and 1
with probability 0.25 and the second aggregate state emits 0 with probability 0.25 and 1 with
probability 0.75. Duration histograms are shown for each aggregate state.
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Figure 5 - Explicit Duration HMM trellis for the observation string shown below. The most likely
sequence of states for the observation string shown below is shaded. The lightly grayed states will be
deallocated by garbage collector.
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Figure 7 - Trellis for loopy topology used for spikes detection where shallow spike (states 1-6) and
deep spike (states 7-17) are consequently decoded. The most likely sequence of states for the
sequence of observed ionic flow current blockades (in pA) shown below is shaded. The lightly grayed
states will be deallocated by garbage collector.
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Figure 8 - In subfigures 8(a) - 8(c) performance of Baum-Welch used on DHMM topology with two
aggregate states of various maximum duration D. In subfigures 8(d) - 8(f) performance of
Baum-Welch algorithm used on spike topology for various ionic flow durations is shown.

0 100 200 300 400 500
0

500

1000

1500

2000

2500

Aggregate state size

S
ec

on
ds

Duration of one EM learning cycle

 

 
Checkpointing
Linear memory
Linear memory with empty
Conventional

(a) Duration time cycle

0 100 200 300 400 500
0

500

1000

1500

2000

2500

3000

Aggregate state size

M
b

Used Heap size

 

 
Checkpointing
Linear memory
Linear memory with empty
Conventional

(b) Duration memory use

0 100 200 300 400 500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Aggregate state size

(%
)

Percentage of time spent by Garbage Collector

 

 

Checkpointing
Linear memory
Linear memory with empty
Conventional

(c) Duration garbage collection

0 1 2 3 4 5 6 7

x 10
4

0

50

100

150

200

250

Signal duration (msec)

S
ec

on
ds

Duration of one EM learning cycle

 

 
Checkpointing
Linear memory
Linear memory with empty
Conventional

(d) Spikes time cycle

0 1 2 3 4 5 6 7

x 10
4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Signal duration (msec)

M
b

Used Heap size

 

 

Checkpointing
Linear memory
Linear memory with empty
Conventional

(e) Spikes memory use

0 1 2 3 4 5 6 7

x 10
4

0

5

10

15

20

25

Signal duration (msec)

(%
)

Percentage of time spent by Garbage Collector

 

 
Checkpointing
Linear memory
Linear memory with empty
Conventional

(f) Spikes garbage collection

21



Tables
Table 1 - Performance of the algorithms for HMM.

Algorith Canonical Checkpointing Linear

Viterbi
Time O(TNQmax) Time O(TNQmax) Time O(TNQmax)

Space O(TN) Space O(
√

TN + T ) Space O(T )

Baum-Welch
Time O(TNQmax + T (Q + E)) Time O(TNQmax + T (Q + E)) Time O(TNQmax(Q + ED))

Space O(TN) Space O(
√

TN) Space O(N(Q + ED))

Table 2 - Viterbi decoding, forward and backward procedures.

Forward procedure Backward procedure Viterbi algorithm

αt(i) ≡ p(o1, . . . , ot|qt = Si, λ) βt(i) ≡ p(ot+1, . . . , oT |qt = Si, λ) • Initially δ1(i) = πi bi(o1),
ψ1(i) = 0 for 1 ≤ i ≤ N ,

• Initially α1(i) = πi bi(o1) • Initially βT (i) = 1 • δt(j) = max
1≤i≤N

[δt−1(i) ai,j ] bj(ot),

for 1 ≤ i ≤ N , for 1 ≤ i ≤ N , ψt(j) = argmax
1≤i≤N

[δt−1(i) ai,j ]

• αt(j) =
[∑N

i=1 αt−1(i) ai,j

]
bj(ot) • βt(i) =

∑N
j=1 ai,j bj(ot+1) βt+1(j) for t = 2, . . . , T and 1 ≤ j ≤ N ,

for t = 2,3,. . . ,T and 1 ≤ j ≤ N , for t = T − 1, . . . , 1 and 1 ≤ i ≤ N , • Finally q∗T = argmax
1≤i≤N

[δT (i)],

• Finally p(O|λ) =
∑N

i=1 αT (i) • Finally p(O|λ) =
∑N

i=1 πi bi(o1) β1(i). q∗t = ψt+1(q∗t+1) for t = T − 1, . . . , 1
is the sequence likelihood. with optimal path Q∗ = {q∗1 , . . . , q∗T }.

Table 3 - Maximization step in HMM learning.

Initial probability Transition probability Emission parameters
estimate estimate estimate

• Gaussian emission

b̂j(o) → µ =
∑T

t=1 ot γt(j)∑T
t=1 γt(j)

,

π̂i = γ1(i), âi,j =
∑T−1

t=1 ξt(i,j)∑T−1
t=1 γt(i)

, b̂j(o) → σ2 =
∑T

t=1(ot−µ̂j)
2 γt(j)∑T

t=1 γt(j)
,

for 1 ≤ i ≤ N. for 1 ≤ i, j ≤ N. for 1 ≤ j ≤ N ,
• Discrete emission

b̂j(k) =
∑T

t=1 δ(ot=vk) γt(j)∑T
t=1 γt(j)

,
for 1 ≤ j ≤ N and 1 ≤ k ≤ K,
where v1, . . . , vK is the set of
possible discrete observations.

Table 4 - Scoring functions for discrete and continuous emissions.

Discrete emission Continuous Gaussian emission
Score (ot, γ, i) Score (ot, γ, i)

return δ(ot = γ) if (γ = 1) return ot,
if (γ = 2) return [ot − (bi(o) → µ)]2,
if (γ = 3) return 1.
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Table 5 - Memory use for Viterbi decoding on spike topology with loop sizes 6 and 11.

Ionic flow samples Ratio of number of referenced links to number of samples
819 1.1173
10,319 1.0084
26,233 1.0042
51,233 1.0017
101,233 1.0015
151,232 1.0007

Table 6 - Memory use for Viterbi decoding on explicit DHMM with D = 60 and two aggregate states.

Observation sequence size Ratio of number of referenced links to sequence size
1,000 2.565
10,000 1.134
50,000 1.032
100,000 1.017
200,000 1.007

Additional Files
Additional file 1 — Supplementary materials

Contains previously derived recurrences for linear memory HMM implementation with forward sweep and

empty start/end states along with corrected recurrences.
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