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We perform a Hamiltonian reduction of spherically symmetric Einstein gravity with a thin dust shell of
positive rest mass. Three spatial topologies are considered: Euclidean (R3), Kruskal (S23R), and the spatial
topology of a diametrically identified Kruskal (RP3\ $a point at infinity%). For the Kruskal andRP3 topologies
the reduced phase space is four dimensional, with one canonical pair associated with the shell and the other
with the geometry; the latter pair disappears if one prescribes the value of the Schwarzschild mass at an
asymptopia or at a throat. For the Euclidean topology the reduced phase space is necessarily two dimensional,
with only the canonical pair associated with the shell surviving. A time reparametrization on a two-dimensional
phase space is introduced and used to bring the shell Hamiltonians to a simpler~and known! form associated
with the proper time of the shell. An alternative reparametrization yields a square-root Hamiltonian that
generalizes the Hamiltonian of a test shell in Minkowski space with respect to Minkowski time. Quantization
is briefly discussed. The discrete mass spectrum that characterizes natural minisuperspace quantizations of
vacuum wormholes andRP3 geons appears to persist as the geometrical part of the mass spectrum when the
additional matter degree of freedom is added.@S0556-2821~97!00724-8#

PACS number~s!: 04.20.Fy, 04.40.Nr, 04.60.Kz, 04.70.Dy

I. INTRODUCTION

In classical general relativity, every three-manifold occurs
as the spatial topology of a globally hyperbolic vacuum
spacetime. In a canonical approach to quantum gravity, the
spatial topology is frozen, and one can ask for ground states
corresponding to each topology.1

Spherically symmetric minisuperspaces provide simple
models for the quantization of geometries with non-
Euclidean topology. The spatial topologies consistent with
spherical symmetry and asymptotic flatness areR3, the
wormholeS23R of the Kruskal geometry with two asymp-
topias, and theRP3 geon, a manifold with a single asympto-
pia obtained by removing a point from the compact manifold

RP3. This last manifold is the space acquired from Kruskal
geometry by identifying diametrically opposite points on an
U1V5const slice, withU and V the usual Kruskal null
coordinates@1#.

A reduced phase space formalism for spherically symmet-
ric vacuum Einstein gravity in four spacetime dimensions
has been considered by several authors@2–12#.2 In the
present paper we add to spherically symmetric Einstein grav-
ity an idealized, infinitesimally thin dust shell of positive rest
mass. The equations of motion for such a shell follow easily
from Israel’s junction condition formalism@32–35#, and a
number of workers have proposed actions from which these
equations can be derived@36–42#. Our main purpose is to
find an action for this system by an explicit Hamiltonian
reduction, treating both the geometry and the shell as dy-
namical, and retaining the full dynamics allowed by the
choice of the spatial topology.

Two issues require particular care. First, as general rela-
tivity is a nonlinear theory, introducing a distributional
source faces well-known subtleties@34#. The special case of
a source concentrated on a hypersurface of codimension 1 is
fortunate, as Einstein’s equations can then be given an un-
ambiguous distributional interpretation, and this interpreta-
tion reduces to Israel’s junction conditions when the source
is a pured function on the surface@34#. However, we wish to
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1Even in a theory that permits topology change, topologies

threaded by electric or magnetic flux in source-free Einstein-
Maxwell theory ~or in higher-dimensional gravity with Kaluza-
Klein asymptotic behavior! cannot evolve to Euclidean space, if
they have a net asymptotic charge. If there is a nonsingular quantum
theory of such a system, it must allow a ground state with nonzero
asymptotic charge and non-Euclidean topology. Topological geons
with half-integral angular momentum in a quantum theory of grav-
ity would similarly be unable to settle down to Euclidean topology.

2For extensions to related theories, including spherically symmet-
ric Einstein-Maxwell theory and lower-dimensional dilatonic theo-
ries, see Refs.@10,13–21#. For discussions within the Euclidean
context, see, for example, Refs.@22–31# and the references therein.
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go further and write anaction principlefrom which the field
equations would arise as variational equations. In such an
action principle one presumably needs to be able to vary the
action with respect to both the metric and the shell variables,
with the variations remaining independent in some suitable
sense. This brings in not only the regularity properties of the
spacetime at the shell, but also the regularity properties of
the coordinates in which the action is written.

We will not find an action principle whose variational
equations would be fully distributionally consistent at the
shell. However, the ambiguity in our variational equations
will be localized into the single equation that results from
varying the action with respect to the shell position coordi-
nate. When the ambiguous contribution to this equation is
interpreted as the average of its values on the two sides of the
shell, as is necessitated by consistency with the rest of the
equations, we correctly reproduce the content of Israel’s
junction condition formalism. At a somewhat formal level,
our action will be manifestly invariant under the Hamiltonian
version of spacetime coordinate transformations preserving
spherical symmetry.

Second, one needs to choose the falloff and boundary
conditions at the asymptopias. We shall set the asymptotic
momenta to zero, but the values of the Schwarzschild masses
at the asymptopias will be left free to emerge from the dy-
namics. Our spacelike hypersurfaces will not be asymptotic
to hypersurfaces of constant Minkowski time, but the folia-
tion is nevertheless asymptotically Minkowski in the relevant
sense. In particular, the generator of unit time translations at
the infinity is the Schwarzschild mass.

We shall find that the reduced phase space is four dimen-
sional with the Kruskal andRP3 topologies, and two dimen-
sional with theR3 topology. With each topology, one ca-
nonical pair is associated with the shell motion, but with the
Kruskal andRP3 topologies there is also a second canonical
pair, associated with the dynamics of the geometry. In the
limit where the shell is removed, this reproduces results pre-
viously obtained in the Hamiltonian vacuum theories with
the Kruskal andRP3 topologies@6,7#.

For the non-Euclidean topologies, the canonical pair as-
sociated with the geometry disappears if one prescribes by
hand the mass at one infinity in the Kruskal topology, and
the mass at the wormhole throat in theRP3 topology. All
three reduced phase spaces then become two dimensional,
and they can be treated on an essentially equal footing.

We next introduce a formalism for reparametrizing time
in a Hamiltonian theory with a two-dimensional phase space.
Applying this formalism to our two-dimensional phase
spaces, we redefine the coordinate time to coincide with the
proper time of the shell and thereby obtain a Hamiltonian
that can be given in terms of elementary functions. This
Hamiltonian is known@37#, but the fact that it emerges from
a minisuperspace framework is new. An alternative choice
for the coordinate time yields a Hamiltonian that generalizes
to our self-gravitating shell the familiarAp21m2 Hamil-
tonian of a spherical test shell in Minkowski space.

The paper concludes with a discussion of the prospects
for quantization. Quantization of the vacuum case is revisited
to emphasize choices that lead to discrete or continuous mass
spectra. The additional degree of freedom provided by the
shell does not appear to qualitatively alter these choices.

Like the Jain-Schechter-Sorkin quantum-stabilized Skyrmion
@43#, the minisuperspace geons provide an example of field
configurations that have quantum, but not classical ground
states; both are field theory analogues of the quantum stabi-
lization of the hydrogen atom. Whether the ground state of
geons is an artifact of the reduction of the degrees of free-
dom is, of course, an open question, but the geometrical
ground state appears to persist when the shell’s degree of
freedom is added.

With one asymptotic or interior mass fixed, the implicit
Hamiltonian we obtain prior to time reparametrization was
found by Kraus and Wilczek@44,45# in the limit of a mass-
less shell, and it could easily be found from what they
present also for the massive case. A related reduction tech-
nique was used earlier by Fischleret al. @46# in a minisuper-
space treatment of a bubble wall, and recently generalized by
Kolitch and Eardley@47#. For a flat geometry interior to the
shell, our proper-time Hamiltonian has been considered clas-
sically in Ref. @36# and quantum mechanically in Ref.@38#.
For a flat geometry interior to the shell, quantization using
the square root Hamiltonian has been considered in Refs.
@39,41#.

Latin tensor indicesa,b, . . . indicate abstract spacetime
indices. We work in Planck units,\5c5G51.

II. HAMILTONIAN FORMULATION FOR SPHERICALLY
SYMMETRIC GEOMETRY WITH A DUST SHELL

In this section we set up a Hamiltonian formulation for
spherically symmetric gravity coupled to a thin dust shell.
We pay special attention to the smoothness of the gravita-
tional variables and to the global boundary conditions.

A. Bulk action

A spherically symmetric spacetime metric can be locally
written in the Arnowitt-Deser-Misner~ADM ! form

ds252N2dt21L2~dr1Nrdt!21R2dV2, ~2.1!

wheredV2 is the metric on the unit two-sphere, andN, Nr ,
L, andR are functions oft andr . Issues of smoothness and
global structure will be addressed below. We denote the de-
rivative with respect tot by overdot, and the derivative with
respect tor by prime.

The matter consists of a thin shell of dust, with a fixed
positive rest massm. We write the trajectory of the shell as
r 5r(t). Denoting byN̂(t), N̂r(t), L̂(t), andR̂(t) the values
of N, Nr , L, andR at r 5r,

R̂~ t !:5R„t,r~ t !…, etc., ~2.2!

the Hamiltonian action for the shell is@44,46#

Sshell5E dt~pṙ2N̂Ap2L̂221m21N̂rp!, ~2.3!

with p being the momentum conjugate tor. One can think of
the shell as a spherically symmetric cloud of massive rela-
tivistic point particles.

The Lagrangian gravitational action for the geometry
~2.1! is obtained by integrating the Lagrangian density
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(16p)21(3R2KabKab1K2)A2g over the two-sphere
@2,3,6,44,46,48#. After L̇ andṘ are replaced by their conju-
gate momenta,

pL52
R

N
~Ṙ2NrR8!, ~2.4a!

pR52
L

N
~Ṙ2NrR8!2

R

N
@L̇2~NrL!8#, ~2.4b!

the Hamiltonian bulk action for the coupled system reads

SS5E dtFpṙ1E dr~pLL̇1pRṘ2NH2NrHr !G ,
~2.5!

where the super-HamiltonianH and the supermomentumHr
are given by

H5
LpL

2

2R2 2
pLpR

R
1

RR9

L
2

RR8L8

L2 1
R82

2L
2

L

2

1Ap2L̂221m2 d~r 2r!, ~2.6a!

Hr5pRR82pL8 L2pd~r 2r!. ~2.6b!

We shall first discuss the smoothness of the gravitational
variables, and then the boundary terms to be added to the
bulk action.

B. Smoothness

In the presence of a smooth matter distribution, one can
assume the spacetime metric to be smooth (C`). In the ide-
alized case of an infinitesimally thin shell, the metric can be
chosen to be continuous but not, in general, differentiable
across the shell@32–35#. In the particular case of a spheri-
cally symmetric dust shell, Einstein’s equations imply that
the extrinsic curvature of the shell history is discontinuous
both in its angular components and in its component along
the shell four-velocity. If the metric is taken continuous, we
must therefore accommodate discontinuities inR8 and in at
least some3 of L8, N8, and (Nr)8. We would like both the
action ~2.5! and its local variations to be well defined, and
such that the resulting variational equations are equivalent to
Einstein’s equations with a dust shell.

To proceed, we assume that the gravitational variables are
smooth functions ofr , with the exception thatN8, (Nr)8, L8,
R8, pL , andpR may have finite discontinuities at isolated
values ofr , and that the coordinate loci of the discontinuities
may be smooth functions oft. It will be shown that the
resulting variational principle is satisfactory in the above
sense, provided one of the variational equations is interpreted

as the average of a discontinuous quantity over the two sides
of the shell.4 All the terms under ther integral in the action
~2.5! are well defined in the distributional sense. The most
singular contributions are the explicit matterd contributions
in the constraints, and the implicitd functions inR9 andpL8 .
All thesed functions are multiplied by continuous functions
of r . The remaining terms are at worst discontinuous inr .
The action is therefore well defined.

Local independent variations of the action with respect to
the gravitational and matter variables give the constraint
equations

H50, ~2.7a!

Hr50, ~2.7b!

and the dynamical equations

L̇5NS LpL

R2 2
pR

R D1~NrL!8, ~2.8a!

Ṙ52
NpL

R
1NrR8, ~2.8b!

ṗL5
N

2 F2
pL

2

R2
2S R8

L D 2

111
2p2d~r 2r!

L̂3Ap2L̂221m2
G

2
N8RR8

L2
1NrpL8 , ~2.8c!

ṗR5NFLpL
2

R3 2
pLpR

R2 2S R8

L D 8G2S N8R

L D 8
1~NrpR!8,

~2.8d!

ṙ5
N̂p

L̂2Ap2L̂221m2

2N̂r , ~2.8e!

ṗ5
N̂L̂8p2

L̂3Ap2L̂221m2

2N̂8Ap2L̂221m21p~Nr ! 8̂.

~2.8f!

With the exception of Eq.~2.8f!, all the equations~2.7! and
~2.8! are well defined in a distributional sense.5 What needs

3By continuity of the metric,R̂(t) is well defined for allt. Taking

the total time derivative of Eq.~2.2! shows thatDṘ52 ṙDR8,
whereD denotes the discontinuity across the shell. Similarly forL,
N, andNr . Continuity ofL8, N8, and (Nr)8 would therefore imply
that the extrinsic curvature of the shell history is discontinuous only
in its angular components.

4Because the constraint equations enforce smoothness of the met-
ric outside the shell, our differentiability assumptions can probably
be relaxed.

5The constraint Eqs.~2.7! contain explicitd functions inr from
the matter contribution and implicitd functions inR9 andpL8 . The
right-hand sides of Eqs.~2.8a! and ~2.8b! contain at worst finite
discontinuities, and the right-hand sides of Eqs.~2.8c! and ~2.8d!
contain at worstd functions. This is consistent with the left-hand
sides of Eqs.~2.8a!–~2.8d!, because the loci of nonsmoothness in
L, R, pL and pR may evolve smoothly int. Note that both the
explicit matterd functions and the implicitd functions inR9 and
pL8 are multiplied by continuous functions ofr .
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to be examined is the consistency and dynamical content of
the well-defined equations, and the interpretation of the
single troublesome equation~2.8f!.

As a preliminary, consider the variation of the matter ac-
tion Sshell ~2.3! with respect to the metric. From the definition
of the stress-energy tensor,

dgSshell5
1

2E A2g d4x Tab d~gab!, ~2.9!

and the equation of motion~2.8e!, we find that the surface
stress-energy tensor of the shell@Ref. @33#, Eq. ~21.163!#
takes the form

Sab5
m

4pR̂2
uaub, ~2.10!

whereua is the four-velocity of the shell, normalized in the
usual wayuaua521. This confirms that the shell indeed
consists of pressureless dust, with surface energy density
m/(4pR̂2) and total rest massm.

Also, recall that the full content of the Einstein equations
at the shell is encoded in Israel’s junction conditions@32,33#.
We shall refer to the two sides of the shell as the ‘‘right-hand
side’’ and the ‘‘left-hand side,’’ in view of the Penrose dia-
gram in which two partial Kruskal diagrams are joined to
each other along the shell trajectory. Israel’s junction condi-
tions then read

28p~Sab2 1
2 habS!5Kab

1 2Kab
2 , ~2.11!

wherena is the right-pointing unit normal to the shell his-
tory, hab5gab2nanb is the projector to this history,
Kab5hc

ahd
b¹cnd is the extrinsic curvature tensor, and the

signs6 refer, respectively, to the right and left sides of the
shell. With Eq. ~2.10!, and with Kruskal geometries of
massesM 6 on the two sides of the shell, the angular com-
ponents of Eq.~2.11! read

2
m

R̂
5e1AS dR̂

dt
D 2

112
2M 1

R̂
2e2AS dR̂

dt
D 2

112
2M 2

R̂
,

~2.12!

wheret is the shell’s proper time.e151 (e251) if, when
viewed from the geometry right~left! of the shell, the shell is
in the right-hand-side exterior region of the Kruskal diagram,
or if the shell is in the white-hole region and moving to the
right, or if the shell is in the black-hole region and moving to
the left. Otherwisee1521 (e2521). It can be verified
that the shell motion is completely determined by the single
equation ~2.12! and the vacuum Einstein equations away
from the shell. In particular, these equations imply that the
tangential component of Eq.~2.11! is satisfied. A more ex-
plicit discussion can be found in Ref.@42#.

Now, away from the shell, Eqs.~2.7! and ~2.8! are well
known to be equivalent to Einstein’s equations. At the shell,
the constraints~2.7! read

DR852
Ap21m2L̂2

R̂
, ~2.13a!

DpL52
p

L̂
, ~2.13b!

where we have adopted the notation~cf. footnote 3!

D f :5 lim
e→01

@ f ~r1e!2 f ~r2e!#, ~2.14!

identifying r .r (r ,r) as the right~left! side of the shell.
Using Eqs.~2.8e! and ~2.10!, one finds that Eq.~2.13a! is
equivalent to Eq.~2.12!. Our Hamiltonian equations away
from the shell and the Hamiltonian constraint Eq.~2.7a! at
the shell therefore form a system that is equivalent to the
correct dynamics for the shell. When these equations hold, it
can be verified that equation Eq.~2.13b! is proportional to
Eq. ~2.13a! by the nonsingular factorR̂( ṙ1N̂r)/N̂, and the
momentum constraint thus contains no new information.
Similarly, it can be verified that thed parts in Eqs.~2.8c! and
~2.8d! reduce to identities and contain no new information.
Finally, Eqs.~2.8a! and ~2.8b! contain nod functions, and
thus no new information, at the shell.

The single remaining equation of motion is Eq.~2.8f!. If
the geometry were smooth at the shell, Eqs.~2.8e! and~2.8f!
would by construction be equivalent to the geodesic equation
for the shell, as can indeed be explicitly verified. If the am-
biguous spatial derivative terms in Eq.~2.8f! are evaluated
on the left~right! side of the shell, Eq.~2.8f! thus implies the
geodesic equation for the shell in the geometry on the left
~right!. However, these two geodesic equations are mutually
inconsistent, and the shell motion implied by the rest of the
equations is not geodesic in either of the two geometries.
Instead, the rest of the equations imply that the left-hand side
of Eq. ~2.8f! is equal to theaverageof the right-hand side
over the two sides of the shell.~For the generalization of this
observation to nonspherical dust shells, see Exercise 21.26 in
Ref. @33#.! Therefore, if the ill-defined right-hand side of Eq.
~2.8f! is given this average interpretation, our Hamiltonian
formalism reproduces Einstein’s equations for the dust shell.

We are not aware of ana priori justification of the aver-
aged interpretation of the right-hand side of Eq.~2.8f!. This
interpretation is merely forced on us by the rest of the varia-
tional equations. In a strict sense, we therefore regard the
variational principle as inconsistent, and the averaged inter-
pretation of Eq.~2.8f! as put in by hand. Nevertheless, we
shall proceed with this variational principle. It will be seen in
Sec. III that the Hamiltonian reduction can be carried
through with no apparent inconsistency.

One check on the consistency of the formalism is that the
Poisson brackets of our constraints can be verified to obey
the radial hypersurface deformation algebra@49#, as in the
absence of the shell. If we denote byN(r ) andNr(r ) smooth
smearing functions of compact support, the algebra has the
form

H E dr N1H,E dr N2HJ 5E dr ~N1N282N2N18!L22Hr ,

~2.15a!

H E dr NrHr ,E dr NHJ 5E dr NrN8H, ~2.15b!

56 7677REDUCED PHASE SPACE FORMALISM FOR . . .



H E dr N1
rHr ,E dr N2

rHr J 5E dr @N1
r ~N2

r !8

2N2
r ~N1

r !8#Hr . ~2.15c!

C. Asymptopias and boundary terms

We now turn to the global properties of the geometry. In
this section we take the spatial topology to be that of the
extended Schwarzschild geometry,S23R5S3\ $two points%,
the omitted points being associated with asymptotically flat
asymptopias. The spatial topologiesRP3\ $a point at in-
finity% andR3 will be discussed, respectively, in Secs. V and
VI.

At a general level, restricting the asymptotic behavior of
an asymptotically flat system allows one to fix the momen-
tum, angular momentum, and mass at spatial infinity. In a
quantum theoretic context, to restrict in this way the
asymptotic behavior of the operator3ĝab and its conjugate
momentump̂ab is equivalent to restricting the state space to
an eigensubspace of fixed total momentum, angular momen-
tum, or mass. In our particular case of spherical symmetry,
the angular momentum is necessarily zero. It would be con-
sistent with spherical symmetry to allow a nonzero momen-
tum at infinity ~in the classical framework, this would mean
allowing boosted Schwarzschild solutions!, but for our pur-
poses this freedom does not appear significant, and we shall
set the momentum at infinity to zero. We shall, however,
retain the freedom associated with the system’s total mass.

We take the coordinater to have the range2`,r ,`.
At the asymptopiasr→6`, we introduce the falloff

L~ t,r !511O`~ ur u2 3/22b!, ~2.16a!

R~ t,r !5ur u1O`~ ur u2 1/22b!,
~2.16b!

pL~ t,r !5A2M 6ur u1O`~ ur u2b!,
~2.16c!

pR~ t,r !5AM 6

2ur u
1O`~ ur u212b!,

~2.16d!

N~ t,r !511O`~ ur u2b!, ~2.16e!

Nr~ t,r !56A2M 6

ur u
1O`~ ur u2 1/22b!,

~2.16f!

whereM 6(t) are positive-valued functions oft, andb is a
positive parameter that can be chosen at will.O` indicates a
quantity that is bounded at infinity by a constant times its
argument, with the corresponding behavior for its deriva-
tives.

It is straightforward to verify that the falloff~2.16! is
consistent with the constraints and preserved in time by the
dynamical equations. When the equations of motion hold,
M 6 are independent oft, and their values are just the

Schwarzschild masses at the two asymptopias. Using Eq.
~2.12!, it is easy to show that the existence of two asymp-
totically flat infinities implies that both asymptotic Schwarzs-
child masses in the classical solutions are necessarily posi-
tive. The assumptionM 6(t).0 in Eq. ~2.16! does therefore
not exclude any solutions.

The falloff ~2.16! is not consistent with the conventional
falloffs ~see, for example, Refs.@6,50#! in which the hyper-
surfaces of constantt are asymptotic to hypersurfaces of con-
stant Killing time when the equations of motion hold. In-
stead, the falloff~2.16! is asymptotic to the ingoing spatially
flat coordinates@51–53#, individually near each asymptopia.
When M 6 are constants and all theO`-terms vanish, Eq.
~2.16! yields the Schwarzschild metric in the ingoing spa-
tially flat coordinates, separately forr .0 andr ,0. Our rea-
son for adopting Eq.~2.16! is that the spatially flat gauge will
prove useful in the Hamiltonian reduction in Sec. III@44#.

In a variational principle that does not fix the values of
M 6 , the bulk action~2.5! must be amended by a boundary
action. With our falloff~2.16!, the spatial metric approaches
flatness atr→6` so fast that the variations ofR andL give
rise to no boundary terms from the infinities. The only non-
trivial boundary term arises from integrating by parts the
term *dt*dr NrL(dpL)8, associated with the momentum
constraint. This boundary term is canceled if we add to the
bulk action~2.5! the boundary action

S]S52E dt ~M 11M 2!. ~2.17!

The generator of unit time translations at the infinities is
therefore still the Schwarzschild mass, despite the unconven-
tional falloff.

III. REDUCED PHASE SPACE FORMULATION

In the absence of the shell, the Hamiltonian reduction of
our theory with a technically different but qualitatively simi-
lar falloff at the two asymptopias was discussed in Ref.@6#.
When the asymptotic masses are not fixed, it was found that
the reduced phase space is two dimensional, whereas if one
asymptotic mass is fixed, the reduced phase space has di-
mension zero. As the shell brings in one new canonical pair
but no new constraints, one expects that the reduced phase
space of our theory is four dimensional when the asymptotic
masses are not fixed, and two dimensional if one asymptotic
mass is fixed. In this section we shall verify this expectation
by an explicit Hamiltonian reduction.

A. Gauge transformations
and the Hamiltonian reduction formalism

In the Hamiltonian theory formulated in Sec. II, the vari-
ables (L,R,pL ,pR ,r,p) constitute a canonical chart on the
phase spaceS, while N and Nr act as Lagrange multipliers
enforcing the constraints. As the Poisson bracket algebra
~2.15! of the constraints closes, we have a first class con-
strained system@54#.

Let G denote the constraint hypersurface~2.7! in S. We
take gauge transformations to mean the transformations onG
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generated by the constraints.6 Denoting the smearing func-
tions by N(r ) and N r(r ) as in Eq. ~2.15!, the smeared
Hamiltonian constraint transforms an initial data set
(L,R,pL ,pR ,r,p)PG by the time evolution associated with
N, and the smeared momentum constraint transforms the ini-
tial data set by the spatial diffeomorphism associated with
N r . The smearing functions must fall off so fast that the
transformations become trivial at the infinities and the falloff
~2.16! is preserved.7

By definition, the reduced phase spaceḠ consists of the
equivalence classes inG under gauge transformations. The
symplectic formv on S,

v:5dp`dr1E dr~dpL`dL1dpR`dR!, ~3.1!

induces a symplectic formv̂ on Ḡ . Here, and from now on,
d denotes the exterior derivative on the~functional! spaces in
question.

We wish to implement this Hamiltonian reduction, finding

v̂ in an explicit symplectic chart onḠ . Our implementation
will consist of the following three steps.

~1! Consider firstG. At the shell, we have already seen
that the full content of the constraints is encoded in Eqs.
~2.13!. Away from the shell, the constraints can be solved
explicitly for the gravitational momenta as@44,46#

pL5RA~R8/L!22112M 6 /R, ~3.2a!

pR5
L@~R/L!~R8/L!81~R8/L!2211M 6 /R#

A~R8/L!22112M 6 /R
,

~3.2b!

with the upper~lower! signs holding respectively forr .r

(r ,r). We have chosen the sign of the square root in Eq.
~3.2! so as to agree with the falloff~2.16!. This choice will
lead to a reduction that will cover the black hole interior but
not the white hole interior.

~2! To pass fromG to Ḡ , we choose a gauge: we specify

in G a hypersurfaceH̄ that is transversal to the gauge orbits,

so that each point in~an open subset of! Ḡ has a unique

representative inH̄. This defines an isomorphism betweenH̄

and ~the open subset of! Ḡ . In order to choose the gauge in
practice, we note that away from the shell, a point
(L,R,pL ,pR ,r,p)PG is an initial data set for thevacuum
Einstein equations with spherical symmetry. Any vacuum
initial data set has a unique time evolution, and, by
Birkhoff’s theorem, the resulting subspacetimes left and
right of the shell are isometric to regions of two Kruskal
spacetimes with the respective massesM 2 and M 1 . A so-

lution to the constraint equations can thus be regarded as two
parametrized partial spacelike hypersurfaces in the two
Kruskal spacetimes, joining appropriately at the shell. In this
picture, a gauge choice means making a particular choice for
these two partial spacelike hypersurfaces in the two Kruskal
spacetimes, in a way that joins appropriately at the shell and
is compatible with the falloff at the infinities.

~3! To find the symplectic formv̂ on Ḡ , it is convenient
first to find the corresponding Liouville form. Recall that on
S, the Liouville form corresponding to our canonical chart
(L,R,pL ,pR ,r,p) is

u:5pdr1E dr~pLdL1pRdR!. ~3.3!

Pulling u back toH̄ yields onH̄ the Liouville form ûH ,̄ and

v̂H :̄5dûH
¯ is the symplectic form onH̄ that corresponds to

v̂ on ~the isomorphic open subset of! Ḡ .
In view of the description of the gauge choice in step~2!,

a technical point in step~3! arises from the fact that although
M 6 are constants in the time evolution of a given initial data

set, they are not constants as functions onH̄, and their exte-
rior derivatives may contribute to the pullback ofu ~3.3!. Put

differently, a generic path inḠ need not correspond to a
partial foliation of a single Kruskal geometry on either side
of the shell.

To complete steps~2! and ~3!, we need to specify the
gauge. This will be described next.

B. Gauge choice

Our gauge choice involves taking the intrinsic metric on
the spacelike hypersurface to be flat, with the exception of
certain transition regions that are eventually taken to be van-
ishingly narrow. The possible locations for the transition re-
gions depend on whether the shell trajectory is visible to the
right-hand-side future null infinity, the left-hand-side future
null infinity, or neither.8 We now make the simplifying as-
sumption that part of the shell trajectory is visible to one
future null infinity, and we take this infinity to be on the
right. This is arguably the situation of physical interest for an
observer in the asymptotically flat region.

Thus, fix an initial data set~a point inG), and consider the
classical spacetime that is its time evolution. We assume that
in this spacetime, the shell trajectory intersects the right-
hand-side exterior region in the Kruskal geometry right of
the shell. The shell equation of motion~2.12! then implies
M 1.M 2 , and the trajectory intersects the right-hand-side
exterior region also in the Kruskal geometry left of the shell.
It follows thate251 on all of the trajectory, wherease151

when R̂ is sufficiently large~in particular, whenR̂.2M 1)

but e1521 asR̂→0.

6See, for example, Ref.@55#. Note that this is distinct from, al-
though closely related to, the gauge transformations that act on the
histories on which the action is defined@54,56,57#.

7One could consider an extended phase space that containsN and
Nr as new coordinates and their conjugatespN and pNr as new
momenta. We shall, however, not need this extension.

8This last case occurs whene1521 and e251 in Eq. ~2.12!.
The spacetime has two bifurcation spheres, and the shell passes
between them, remaining at all times behind the white-hole and
black-hole horizons of each infinity@58#. We are grateful to Eric
Poisson for discussions on this case.
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On this spacetime, we introduce two local charts,C1 and
C2, as follows.

Suppressing the angles, let the coordinates in the chartC1
be (t1 ,r 1), with r 1.0. The metric reads

ds252dt1
21S dr11A2M 2

r 1
dt1D 2

1r 1
2dV2,

0,r 1<r2 l , ~3.4a!

ds252dt1
21S dr11A2M 1

r 1
dt1D 2

1r 1
2dV2, r<r 1 ,

~3.4b!

where l is a positive parameter. The two metrics shown in
Eq. ~3.4! are the ingoing right-hand-side spatially flat charts
in Kruskal manifolds with the respective massesM2 and
M 1 @51–53#. If taken individually for 0,r 1,` and
2`,t1,`, each of these two metrics would cover the up-
per right half ~that is, the right-hand-side exterior and the
black hole interior! in the respective full Kruskal diagrams.
With the domains indicated in Eq.~3.4!, the combined chart
is spatially flat with massM 2 for r 1<r2 l , and spatially flat
with massM 1 for r 1>r. The chart in the transition region
r2 l<r 1<r will be specified below.

Let the coordinates in the chartC2 be (t2 ,r 2), with r 2,0.
The metric reads

ds252dt2
21S 2dr21A2M 2

ur 2u
dt2D 2

1r 2
2dV2, r 2,0.

~3.5!

We identify C2 as the ingoing left-hand-side spatially flat
chart in a Kruskal manifold with massM 2 , with r 2→2`
giving the infinity on the left. If2`,t2,`, the metric~3.5!
covers the upper left half~that is, the left-hand-side exterior
and the black hole interior! in the Penrose diagram of this
Kruskal manifold. On our spacetime,C2 covers the corre-
sponding regions left of the shell.

Now, consider our initial data set as a parametrized space-
like hypersurfaceS0 in this spacetime. By the falloff~2.16!,
S0 is asymptotic atr→` to a constantt1 hypersurfaceS1 in
the chartC1, with r being asymptotic tor 1. Similarly, S0 is
asymptotic atr→2` to a constantt2 hypersurfaceS2 in the
chart C2, with r being asymptotic tor 2. Without loss of
generality, we can takeS1 and S2 to be, respectively, the
hypersurfacest150 andt250. We assume thatS1 andS2
intersect, and that they do so left of the shell, in the black
hole interior in the left-hand-side Kruskal geometry.9 The
value of R at the intersection~where R5r 152r 2) is de-
noted byr. Note thatr can be regarded as a piece of gauge-
invariant information in our initial data set.

Let Ŝ0 be the hypersurface consisting ofS1 for r 1>r and

S2 for r 2<2r. Ŝ0 is not smooth, but has a corner~a sharp
ridge! at r 152r 25r. We choose a positive parameterg,

and we takeg andl so small that (11g)r,min(2M2 ,r2 l ).

We now deformŜ0 in the regions2(11g)r<r 2<2r and
r<r 1<(11g)r, in a way specified below, so that the de-

formed hypersurfaceS̃0 becomes a smooth, parametrized
hypersurface, with a parameterr that coincides withr 1 for
r>(11g)r and with r 2 for r<2(11g)r. The canonical

data onS̃0 is by construction gauge equivalent to our origi-
nal initial data, and it becomes uniquely determined after we

specify S̃0 in the transition regionsur u<(11g)r and
r2 l<r<r. As our gauge choice, we take canonical data on

S̃0 as the representative from the gauge equivalence class of
our original initial data.

C. Liouville form and the reduced Hamiltonian theory

We now find the Liouville formûH
¯by pulling the Liou-

ville form u ~3.3! back to the transversal surfaceH̄. This
means that we need to evaluate the right-hand side of Eq.
~3.3! when the constraints and our gauge condition hold.

Outside the transition regionsur u<(11g)r and
r2 l<r<r, our gauge reads

R~r !5ur u, ~3.6a!

L~r !51, ~3.6b!

with the gravitational momenta given by Eq.~3.2!. With Eq.
~3.6!, dR anddL vanish. The only contributions to the inte-
gral in Eq.~3.3! therefore come from the transition regions.
We evaluate these contributions in Appendices A and B,
specifying the gauge in the transition regions and finally
passing to the limit where the parametersl and g vanish.
From Eqs.~A11! and ~B7!, we find

ûH5̄prdr1pdr, ~3.7!

where

pr :5r lnS A2M 21Ar

A2M 22Ar
D 22A2M 2r, ~3.8a!

p:5A2M 2r2A2M 1r

1r lnS r1p1Ap21m21A2M 1r

r1A2M 2r
D , ~3.8b!

with p being a solution to

M 12M 25Ap21m21
m2

2r
2pA2M 1

r
. ~3.9!

Equation ~3.9! has been obtained by eliminatingR28 from
Eqs.~B3! and ~B4!.

The reduction is thus complete. The functions (r,pr ,r,p)
provide a local canonical chart on the reduced phase space

Ḡ , and Eqs.~3.8! and~3.9! determineM 1 andM 2 as func-
tions in this canonical chart. The Hamiltonian, read off from
Eq. ~2.17!, is

9This assumption is a further restriction on the initial data. Quali-
tatively, it tells how ‘‘early’’ or ‘‘late’’ the asymptotic ends ofS0

may be with respect to each other and the shell trajectory.
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h:5M 11M 2 , ~3.10!

and the reduced action reads

S5E dt ~prṙ1pṙ2h!. ~3.11!

As anticipated,Ḡ has dimension four.

D. Dynamics in the reduced theory

For understanding the dynamical content of the reduced
theory, it is useful to introduce the new canonical chart
(M 2 ,P2 ,r,p), defined by Eq.~3.8a! and

P2 :54M 2lnS A2M 21Ar

A2M 22Ar
D 24A2M 2r. ~3.12!

The new action reads

S5E dt ~P2Ṁ 21pṙ2h!, ~3.13!

where the Hamiltonianh(r,p,M 2) is determined by Eqs.
~3.8b!–~3.10!. In this chart, it is immediate that bothM 2 and
M 1 are constants of motion. It is straightforward to verify
that the equations of motion for the shell variables are
equivalent to Eq.~2.12!, and thus yield the correct dynamics,
provided t is identified as the coordinatet1 in the spatially
flat chart~3.4b! right of the shell. The two solutions of Eq.
~3.9! for p correspond toe1561 in Eq. ~2.12!, whereas
e251 always by virtue of the global assumptions made
above. We shall provide the key steps of this calculation
below in Sec. IV.

What remains is the spacetime interpretation of the vari-
abler. Recall that on the initial data hypersurfaceS0 intro-
duced in Sec. III B,r is the value ofR at the sharp ridge
where the hypersurfacet150 in the chart C1 ~3.4!,
asymptotic toS0 at r→`, meets the hypersurfacet250 in
the chartC2 ~3.5!, asymptotic toS0 at r→2`. Recall also
that our Hamiltonian evolves the spacelike hypersurfaces so
that at the two infinities, covered, respectively, by the charts
C1 and C2, we havedt1 /dt51 anddt2 /dt51. One might
therefore have thought that as our initial data evolves,r(t)
would be the value ofR at the sharp ridge where the hyper-
surfacet15t in the chart~3.4a! meets the hypersurfacet25t
in the chart~3.5!. However, this does not hold. The reason is
that in the l→0 limit, the chartC1 does not reduce to a
consistent chart across the shell, not even if one were to
allow nondifferentiability: the intrinsic metric on the shell
history is unambiguous, but evaluating this intrinsic metric
from the l→0 limit of Eq. ~3.4a! and from Eq.~3.4b! leads
to mutually inconsistent expressions because the two masses
differ. This means that if one approaches the shell from the
two sides on the ‘‘same’’ constantt1 hypersurface, after hav-
ing first taken the limitl→0, one arrives at two different two
spheres on the shell history. Thel→0 limit of oneconstant
t1 hypersurface can be interpreted as a continuous hypersur-
face in the spacetime, and this is what we utilized in the
gauge choice and the evaluation of the Liouville form, but
one cannot maintain such an interpretation for a full foliation

where t1 takes values in an open interval. The spacetime
interpretation of the variabler must therefore be examined
more carefully.

Consider the chartC̃1
2 obtained as thel→0 limit of the

chartC1 left of the shell. Denoting the coordinates inC̃1
2 by

( t̃ 1 ,r 1), the metric reads

ds252d t̃ 1
21S dr11A2M 2

r 1
d t̃ 1D 2

1r 1
2dV2, 0,r 1<r.

~3.14!

If t is the proper time along the shell history, we have from
Eqs.~3.4b! and ~3.14! the relation

dt25dt1
22S dr1A2M 1

r
dt1D 2

5d t̃ 1
22S dr1A2M 2

r
d t̃ 1D 2

.

~3.15!

If we fix the hypersurfacet̃ 150 to coincide with thel→0
limit of the initial hypersurfacet150 for 0,r 1<r, the rela-

tion ~3.15! determinest̃ 1 as a function oft1 and the shell

motion, t̃ 15 t̂1(t1). It can now be verified thatr(t) is the
value of R at the sharp ridge where the hypersurface

t̃ 15 t̂1(t) in the chart~3.14! meets the hypersurfacet25t in
the chart~3.5!. The algebra involved in this calculation ap-
pears not to be particularly instructive, and it will not be
reproduced here.

E. Comments

As noted above, the details of our reduction relied on
certain qualitative assumptions about the shell motion. In
particular, we assumed the shell trajectory to intersect the
right-hand-side exterior region of the Kruskal geometry right
of the shell. Our gauge choice, involving theingoing spa-
tially flat coordinates, allows us to follow the shell trajecto-
ries into the black hole, but not into the white hole. A time-
reversed gauge choice, involving theoutgoingspatially flat
coordinates, would conversely allow us to follow the trajec-
tories into the white hole but not into the black hole.

In the reduced theory~3.13!, the value of the canonical
coordinateM 2 is a constant of motion. If we are only inter-
ested in the shell motion, we can reduce the theory further by

dropping the Liouville termP2Ṁ 2 and regardingM 2 as a
prescribed positive constant. This is arguably the theory of
physical interest for an observer who scrutinizes the shell
motion from one asymptotically flat infinity and regards the
‘‘interior’’ mass as fixed. The action then reads

S5E dt ~pṙ2h!, ~3.16!

where h(r,p,M 2) is determined by Eqs.~3.8b!–~3.10!. In
the limit m→0, this theory reduces to that obtained by Kraus
and Wilczek@44# by a less direct Hamiltonian reduction.

56 7681REDUCED PHASE SPACE FORMALISM FOR . . .



IV. TIME REPARAMETRIZATION

In this section we first present a general formalism for
reparametrizing time in a Hamiltonian system with a two-
dimensional phase space. We then apply this formalism to
the reduced Hamiltonian theory~3.16!.

A. General time-reparametrization formalism
for two-dimensional phase space

Consider a Hamiltonian system with a two-dimensional
phase spaceG:5$(q,p)% and a time-independent Hamil-
tonian h(q,p). With respect to a timet, Hamilton’s equa-
tions read

dq

dt
5

]h

]p
, ~4.1a!

dp

dt
52

]h

]q
. ~4.1b!

We wish to find a Hamiltonian system that generates the
equivalent dynamics with respect to a new parameter timeT,
related tot by

dT5Ndt, ~4.2!

whereN is a prescribed~positive! function of some suitable
set of dynamical variables. We further wish this time
reparametrization to preserve the value of the Hamiltonian
for each solution to the equations of motion~4.1!. We exam-
ine separately two cases:~1! N is a function onG, and~2! N
is a function ofq and the new velocityV:5dq/dT.

1. N5N„q,p…

Suppose thatN(q,p) is a prescribed function onG. We

replacep by a new momentumP:5 P̂(q,p), where

] P̂~q,p!

]p
5N~q,p!. ~4.3!

We assume thatP̂(q,p) is an invertible function ofp for

eachq, with the inversep̂(q,P). The new phase space is

Ĝ:5$(q,P)%, and we take the Hamiltonian onĜ to be

H~q,P!:5h„q,p̂~q,P!…. ~4.4!

Hamilton’s equations onĜ with respect to a timeT are then
easily seen to be equivalent to Eq.~4.1!, providedt andT are
related by Eq.~4.2!.

2. N5N„q,V…

Suppose next thatN(q,V) is a prescribed function ofq
and the new velocityV.

Recall that Eq.~4.1a! defines the velocityv:5dq/dt as a
function onG. We assume that this function can be inverted

for the momentum asp5 p̃(q,v). We can then define on the
velocity space the energy function

h̃~q,v !:5h„q, p̃~q,v !…. ~4.5!

The dynamics is now encoded in the statement thath̃(q,v)

is constant int. The value ofh̃(q,v) provides one constant
of integration, and expressingdq/dt in terms of this constant
andq yields the general solution in terms of a single quadra-
ture.

Consider now the time reparametrization~4.2! with
N5N(q,V). The velocitiesv5dq/dt andV5dq/dT are re-
lated by

v5N~q,V!V. ~4.6!

Using Eq.~4.6!, we can define on thenewvelocity space the
energy function

H̃~q,V!:5 h̃„q,N~q,V!V…. ~4.7!

Provided the relation~4.6! between the velocities is not de-
generate, the full dynamics is then encoded in the statement

that H̃(q,V) is constant inT.
We wish to find a HamiltonianH(q,P) from which

H̃(q,V) emerges as the energy function. IfL(q,V) is the
corresponding Lagrangian, we have

H̃~q,V!5V
]L~q,V!

]V
2L~q,V! ~4.8!

and

P~q,V!5
]L~q,V!

]V
. ~4.9!

Solving Eq.~4.8! for L(q,V), we find from Eq.~4.9! that the
general solution forP(q,V) is equivalent to

]P~q,V!

]V
5V21

]H̃~q,V!

]V
. ~4.10!

The HamiltonianH(q,P) is obtained by invertingP(q,V)

for V and substituting this inH̃(q,V).

3. Comments

Our time reparametrization preserves the value of the
Hamiltonian on each solution to the equations of motion. It
does not, however, preserve the value of the action, and it
cannot in general be thought of as a canonical transforma-
tion.

After N is specified, the solutions to Eqs.~4.3! and~4.10!
each contain an arbitrary additive function ofq. This arbi-
trariness corresponds to a canonical transformation that rede-
finesP by the addition of~the gradient of! an arbitrary func-
tion.

4. Example: relativistic particle
in (111)-dimensional Minkowski space

As a simple example, we apply this reparametrization for-
malism to the free relativistic particle in~111!-dimensional
Minkowski space.
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We start from the Hamiltonian

h5Ap21m2, ~4.11!

which evolves the particle in the Minkowski timet. We then
have

v5
]h

]p
5

p

Ap21m2
. ~4.12!

We wish to identify the new time parameterT as the proper
time of the particle. From Eqs.~4.2! and ~4.12! we then
obtain

N5A12v25
m

Ap21m2
. ~4.13!

We can thus use the above formalism with
N(q,p)5m(p21m2)21/2. As a solution to Eq.~4.3!, we

chooseP̂(q,p)5m arcsinh(p/m). This leads to the familiar
point particle proper time Hamiltonian

H~q,P!5m cosh~P/m!. ~4.14!

B. Proper-time Hamiltonian for the self-gravitating shell

We now apply the time-reparametrization formalism of
Sec. IV A to the Hamiltonian theory~3.16!. Our goal is to
obtain a Hamiltonian that evolves the shell with respect to its
proper time. We follow the route of Sec. IV A 2, specifying
the reparametrization in terms of the new velocity.M 2 will
be regarded as a prescribed constant throughout.

We first need the Hamiltonianh5M 11M 2 ~3.10! as a

function of the old velocityṙ. Using the implicit relations
~3.8b! and ~3.9! to evaluate]M 1 /]p, we find that Hamil-

ton’s equationṙ5]h/]p takes the form

ṙ5
p

Ap21m2
2A2M 1

r
, ~4.15!

where p is still implicitly given by Eq. ~3.9!. Solving Eq.
~4.15! for p and substituting in Eq.~3.9! yields

M 12M 2

m
2

m

2r
5

12~ ṙ1A2M 1 /r!A2M 1 /r

A12~ ṙ1A2M 1 /r!2

.

~4.16!

Equation~4.16! determinesM 1 , and henceh, as a function

of r and ṙ.
Let t denote the proper time of the shell. As the param-

eter time t coincides with the spatially flat timet1 in the
metric ~3.4b! right of the shell, we have

dt25dt22S dr1A2M 1

r
dtD 2

. ~4.17!

This can be solved fordt/dt as

dt

dt
5

A2M 1 /r ~dr/dt!1 ẽ 1A~dr/dt!21122M 1 /r

~122M 1 /r!
,

~4.18!

where the parameterẽ 1561 labels the two solutions. Us-

ing Eq.~4.18! to expressṙ in terms ofdr/dt, we can put Eq.
~4.16! in the form

M 12M 2

m
2

m

2r
5 ẽ 1A~dr/dt!21122M 1 /r.

~4.19!

As M 1 is a constant of motion, the shell motion is com-
pletely determined by Eq.~4.19!. Comparing Eq.~4.19! to
Eq. ~2.12! shows that our reduced Hamiltonian theory has
correctly reproduced the shell motion that arises from Isra-

el’s junction condition formalism, with the parameterẽ 1

coinciding with the parametere1 in Eq. ~2.12!. Equation
~4.19! results from squaring Eq.~2.12! once, in a way that
eliminates the parametere2 ; however, ase251 by our glo-
bal assumptions, the full information in Eq.~2.12! is con-
tained in Eq.~4.19!.

Solving Eq.~4.19! for M 1 yields

M 12M 2

m
1

m

2r
5A~dr/dt!21122M 2 /r. ~4.20!

As M 1.M 2 , only the positive sign for the square root in
Eq. ~4.20! can occur; in terms of Eq.~2.12!, this sign is equal
to e2 . From Eq. ~4.20!, the energy function on the new
velocity space reads

H̃~r,V!5M 1~r,V!1M 25mAV21122M 2 /r2
m2

2r

12M 2 , ~4.21!

where we have written, in the notation of Sec. IV A,
V:5dr/dt. As a particular solution to Eq.~4.10! we choose

P~r,V!5mln~V1AV21122M 2 /r!. ~4.22!

Inverting this forV and substituting in Eq.~4.21! gives the
new Hamiltonian

H~r,P!5m cosh~P/m!2
m2

2r
1M 2F22S m

r
Dexp~2P/m!G .

~4.23!

C. Minkowski-like Hamiltonian for the self-gravitating shell

We now consider a time reparametrization that makes the
shell Hamiltonian analogous to the Minkowski time point
particle Hamiltonian~4.11!, which is also the Minkowski
time Hamiltonian for a free spherical, nongravitating dust
shell in flat space. Starting from the shell proper-time Hamil-
tonian ~4.23!, we denote the new momentum byp, and we
run the formalism of Sec. IV A 1 backwards with the choice
N(r,p)5m(p21m2)21/2. As with the point particle example
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in Sec. IV A 4, we solve Eq. ~4.3! by P̂(r,p)
5msinh21(p/m). Denoting the counterpart ofh in Eq. ~4.4!
by h(r,p), we obtain

h~r,p!5Ap21m22
m2

2r
1M 2F22

1

r
~Ap21m22p!G .

~4.24!

V. RP3 GEON WITH A SELF-GRAVITATING SHELL

In this section we adapt the formalism to a shell in a
spacetime with theRP3 geon topology.

As mentioned in the Introduction, an asymptotically flat,
spherically symmetric spacetime (M ,g) with a single as-
ymptopia can have spatial topologyRP3\ $a point at infin-
ity%. We refer to an asymptotically flat spacetime with this
topology, or to an asymptotically flat initial data set in such a
spacetime, as anRP3 geon. The covering space of the space-
time then has the wormhole topology of the extended
Schwarzschild geometry.

In vacuum, one can obtain a spherically symmetricRP3

geon Einstein spacetime as the quotient of Kruskal manifold
under a freely and properly discontinuously acting involutive

isometry @1#. Let (M̄ , ḡ ) be Kruskal manifold, and let

( t̃ , x̃ ,u,f) be a chart in which t̃ and x̃ are the usual
Kruskal time and space coordinates~denoted, respectively,
by v andu in Ref. @33#!. The isometry in question is then

I :~ t̃ , x̃ ,u,f!°~ t̃ ,2 x̃ ,p2u,f1p!. ~5.1!

As I commutes with rotations, the quotient spacetime

(M ,g):5(M̄ , ḡ )/I is spherically symmetric. In (M̄ , ḡ ), the

constant t̃ hypersurfaces that do not hit a singularity have
topology S23R, with two asymptotically flat infinities, and

they have atx̃50 a wormhole throat at which the radius of
theS2 reaches its minimum value. In (M ,g), the correspond-

ing constantt̃ hypersurfaces have topologyRP3\ $a point at
infinity%, and the throat has become a ‘‘minimum radius’’
two-surface with topologyRP2. Away from the throat his-

tory, (M ,g) is indistinguishable from half~say, x̃.0) of

(M̄ , ḡ ). The Penrose diagram can be found in Ref.@1#. Note

that the throat history in (M̄ , ḡ ) is only defined with respect
to a given foliation, while the throat history in (M ,g) has a
coordinate invariant meaning as the trajectory of the ‘‘mini-
mum radius’’ RP2. The reason for this difference is thatI
does not commute with the Killing time translations on

(M̄ , ḡ ): these Killing time translations do not descend into
globally defined isometries of (M ,g).

Consider now a spherically symmetric spacetime that has
the RP3 geon topology and solves Einstein’s equations with
a spherical dust shell. Away from the shell, Birkhoff’s theo-
rem still guarantees that the spacetime is locally isometric to
Kruskal manifold. We assume that the spacetime right of the
shell is as in Sec. III: this part of the spacetime is part of
Kruskal geometry, containing the right-hand-side Kruskal in-
finity, and the shell trajectory intersects the right-hand-side

exterior region in this Kruskal geometry. The spacetime left
of the shell is assumed to be part of the vacuumRP3 geon
spacetime described above, and to contain the throat history.

If the shell passes through the throat, it needs to cross
itself there. We assume that such a crossing does not happen.

A Cauchy surface in this spacetime has only one infinity,
in the part right of the shell, whereas the part left of the shell
is compact. We can therefore unambiguously regard the left-
hand side of the shell as the interior and the right-hand side
as the exterior.

It is easy to adapt the Hamiltonian formalism of Sec. II to
theseRP3 boundary conditions. We takeN, L, R, pL , and
pR to be even inr and Nr odd in r , with the consequence
that M 15M 2 in the falloff ~2.16!. We assumer.0, add to
the system a second shell atr 52r, and finally take the
quotient of the spacetime under the isometry
(t,r ,u,f)°(t,2r ,p2u,f1p). The resulting Hamiltonian
theory is clearly consistent in the same sense as the Kruskal-
type theory of Sec. II. The action can be written as

S5SS1S]S , ~5.2!

whereSS is given by Eq.~2.5!, with ther integration extend-
ing from r 50 to r 5`, and

S]S52E dt M1 . ~5.3!

When the equations of motion hold, we recover the above
RP3 Einstein spacetimes with a dust shell. The throat is lo-
cated atr 50.

The Hamiltonian reduction proceeds in close analogy
with that in Sec. III. To choose the gauge, we introduce the
analogue of the chartC1 ~3.4!, with M 2.0 now denoting
the mass in the interior. The range ofr 1 is bounded below by
the t1-dependent throat radius, and it is the throat radius that
emerges as the parameterr. The transition region near the
throat is handled as in Appendix A, but because nowr .0 in
our action, the contribution to the Liouville form is only half
of that found in Appendix A. The transition region near the
shell is handled exactly as in Appendix B. The reduced ac-
tion is given by Eqs.~3.8!–~3.11!, with the exceptions that
the right-hand side in the counterpart of Eq.~3.8a! contains
the factor1

2, and Eq.~3.10! is replaced by

h:5M 1 . ~5.4!

From Sec. III it is clear that the reduced theory reproduces
the correct equations of motion. In the classical solutions,
r(t) is the value ofR at the throat in a foliation defined as
with the chart~3.14!.

A canonical transformation that replaces the pair (r,pr)
by (M 2 ,P2) leads to the action~3.13!, with Eq. ~3.10! re-

placed by~5.4!. Dropping the termP2Ṁ 2 gives a theory in
which the interior massM 2 is regarded as a prescribed posi-
tive constant. The time reparametrizations of Sec. IV clearly
carry through without change: the counterparts of the Hamil-
tonians ~4.23! and ~4.24! differ only in that the~constant!
additive term 2M 2 is replaced byM 2 .
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VI. SELF-GRAVITATING SHELL
WITH R3 SPATIAL TOPOLOGY

In this section we consider the spatial topologyR3.
We start directly from the action principle. In the bulk

action ~2.5!, we take 0,r ,`, with the falloff ~2.16! at
r→`. The total action is given by Eqs.~5.2! and ~5.3!. At
r→0, we introduce the falloff

L~ t,r !5L01O~r 2!, ~6.1a!

R~ t,r !5R1r 1O~r 3!, ~6.1b!

pL~ t,r !5pL2
r 21O~r 4!, ~6.1c!

pR~ t,r !5pR1
r 1O~r 3!, ~6.1d!

N~ t,r !5N01O~r 2!, ~6.1e!

Nr~ t,r !5N1
r r 1O~r 3!, ~6.1f!

where L0.0, R1.0, pL2
, pR1

, N0.0, andN1
r are func-

tions of t only. It is straightforward to verify that this falloff
is consistent with the constraints and preserved by the time
evolution, and no additional boundary terms in the action are
needed atr 50. From Eq.~3.2! we see that in the classical
solutions, the mass left of the shell must vanish, andr 50 is
just the coordinate singularity at the center of hyperspherical
coordinates in flat space. The classical solutions therefore
describe a self-gravitating shell with a flat interior. The spa-
tial topology isR3.

The reduction proceeds as above, using the analogue of
the chartC1 ~3.4! with M 250 and r 1.0. In the region
r 1,r2 l , the initial data hypersurfaceS0 extends smoothly
to r 150, and there is no counterpart of the parameterr of
the Kruskal andRP3-geon topologies. The only contribution
to the Liouville form comes from the shell transition region,
which is handled exactly as in Appendix B but withM 250.
The reduced action is given by Eqs.~3.16! and ~5.4!, where
M 1 is obtained from Eqs.~3.8b! and~3.9! with M 250. It is
again clear from Sec. III that this reduced theory reproduces
the correct dynamics. As expected, the reduced phase space
is two dimensional.

The time reparametrizations of Sec. IV carry through
without change. The counterparts of the Hamiltonians~4.23!
and Eq.~4.24! are obtained from these formulas by simply
setting M 250. In particular,~4.24! reduces to the Hamil-
tonian used in Refs.@39,41#.

VII. REMARKS ON QUANTIZATION

In this section we discuss the prospects for quantizing the
reduced theories. We first review the pure vacuum case, and
then turn to the coupled system.

A. Mass spectrum of spherically symmetric vacuum
wormholes andRP3 geons

In Secs. II–VI we considered the dynamics of a shell
coupled to spacetime geometry. However, the methods im-
mediately adapt to spherically symmetric vacuum gravity by
simply omitting the shell.

With the Kruskal topology, and no asymptotic masses
fixed, the constraints implyM 15M 2 :5M . With the gauge
choice of Sec. III, without the shell, the reduced action reads

S5E dt ~prṙ2h!, ~7.1!

where h52M , and M is obtained from Eq.~3.8a! with
M 25M . Geometrically,r(t) is the value ofR at the sharp
ridge in the foliation described in Sec. III B, without the
shell; this ridge evolves in the black hole interior along a
history of constant Killing time. At t→2`, we have
r(t)→2M as the ridge approaches the bifurcation two-
sphere, but in the future the gauge breaks down at a finite
value oft asr(t)→0. With theRP3-geon topology, the only
differences are thath5M , and the right-hand side of Eq.
~3.8a! contains an additional factor12. The reduced phase
space is two-dimensional in each case. These results agree
with those obtained by Kucharˇ’s reduction method@6,7# un-
der a falloff that is qualitatively similar but makes the con-
stantt hypersurfaces asymptotic to hypersurfaces of constant
Minkowski time.

If one chooses to fix the mass at one infinity with the
Kruskal topology, the reduced theory has no degrees of free-
dom. The same holds if one chooses to fix the mass at the
infinity or at the throat with theRP3 geon topology. With the
R3 topology, the reduced theory is always void.

Quantizing the reduced theories with a zero-dimensional
reduced phase space is of course trivial: the massM is a
prescribedc number. Quantizing the theories with a two-
dimensional reduced phases space offers, however, several
options.

One option is to perform first a canonical transformation
to the pair (M ,PM) as in Secs. III and V. One can then take
quantum states to be described by functionsC(M ) of the
positive-valued configuration variableM , adopt the inner

product ^C1uC2&5*0
`dM C1(M )̄C2(M ) ~or a similar in-

ner product with someM -dependent weight factor!, and pro-

moteM into the quantum operatorM̂ that acts in the Schro¨-
dinger picture as@4–6#

M̂C~M !5MC~M !. ~7.2!

The spectrum ofM̂ , and thus also that of the Hamiltonian

operatorĥ, is continuous and consists of the positive real
axis.

Another option is to take quantum states to be described
by functionsc(r) of the positive-valued ‘‘throat radius’’r,

adopt the inner product̂c1uc2&5*0
`m(r)dr c1(r )̄c2(r)

wherem(r) is some weight factor, and try to promote the
function M (r,pr) into an operator on this Hilbert space. As
our M (r,pr) is known only implicitly, we have not tried to
pursue this quantization, but there seems no obvious reason
to expect that the spectral properties of the resulting Hamil-

tonian operator would agree with those of the operatorM̂ in
Eq. ~7.2!.

Indeed, quantization of spherically symmetric vacuum
gravity was discussed in Ref.@12# in terms of a related
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‘‘wormhole throat’’ phase space (a,pa), on which the
Schwarzschild mass is given by

M ~a,pa!5
1

2S pa
2

a
1aD . ~7.3!

The configuration variablea has an interpretation as the ra-
dius of the wormhole throat, much as ourr, but with a time
parameter that is now identified with the proper time of the
throat history.10 If the Hilbert space is chosen as above with
the configuration variabler, with reasonable choices for the
weight factorm, the functionM (a,pa) can be promoted into
a self-adjoint operator whose spectrum is bounded below and
purely discrete@12#.

We regard as artificial the continuous mass spectrum aris-
ing from the quantization~7.2!, because one can similarly
obtain a continuous spectrum forany dynamical system
whose Hamiltonian is not explicitly time dependent. For any
function H with nonvanishing gradient on the phase space,
one can find a local canonical chart of the form
(H,q2 , . . . ,qn ,pH ,p2 , . . . ,pn), in which H is one of the
canonical coordinates. If the range ofH in this chart isR1 ,
one can adopt a Schro¨dinger representation with Hilbert
spaceL2(R1) ^ H, with H a Hilbert space for the remaining

q’s. The Hamiltonian operatorĤ can then be taken to act as
a multiplication operator,

Ĥc~H,q2 , . . . ,qn!5Hc~H,q2 , . . . ,qn!, ~7.4!

and its spectrum isR1 .
Ambiguities in canonical quantization are, of course, well

recognized@61–63#. One specific issue not addressed above
is in the global properties of the canonical transformations.
For example, the canonical transformation that takes the
phase space (a,pa) to Kuchař’s reduced phase space@6# is
not onto: the classical dynamics in Kucharˇ’s reduced phase
space is complete, but the classical dynamics in the phase
space (a,pa) is not @12#. One’s attitude to such classical
incompleteness in view of quantization may depend on what
one sees as the role of singularities in quantum gravity
@12,64–70#.

B. Quantization of shell coupled to geometry

We now turn to the coupled system. We restrict consid-
eration to the proper-time Hamiltonian~4.23!.

WhenM 250, the shell encloses a flat interior with trivial
topology, and the Hamiltonian~4.23! takes the form corre-
sponding to a relativistic particle in a Coulomb potential,

H~r,P!5m cosh~P/m!2
m2

2r
, ~7.5!

discussed by Ha´jı́ček @38#. One can adopt a Schro¨dinger rep-
resentation corresponding to configuration-space variable
rPR1 and Hilbert space

H:5L2~R1 ,r adr!, ~7.6!

wherea is a parameter. With the factor ordering

@cosh~P/m!̂5 lim
N→`

r2a/2(
n50

N
~21!n

~2n!!
Dnra/2, ~7.7!

where D5]r
2 , H becomes a self-adjoint operatorĤ with

domain@71#

D~Ĥ !5$ f u f ~2n!~0!50, f ~n!PL2 , all n%. ~7.8!

@Hájı́ček takesa521, but notes the unitary equivalence of

(H,Ĥ) for a different choice ofa.# For m,1.9, Ĥ is
bounded below, and its spectrum, like that of the nonrelativ-
istic Coulomb problem, has discrete and continuous parts.

When M 2.0, one expects that the Hamiltonian~4.23!
can be made into a self-adjoint operator in an analogous
manner, and one expects the spectrum then to be bounded
below and partly discrete for small values ofm. However,
there appears to be no reason to expect that the term propor-
tional to M 2 would allow the spectrum to have a lower
bound for large values ofm. Oharu and Winters-Hilt@71# are
currently examining a self-adjoint extension ofH on
L2(R1 ,dr), with factor ordering corresponding to the choice
~7.7! with a50:

Ĥ5m@cosh~P/m! #̂2
m2

2r
2M 2mr21/2@exp~2P/m! #̂r21/2

12M 2 . ~7.9!

Finally, recall that our time-reparametrization derivation
of the proper-time Hamiltonian~4.23! assumedM 2 to be a
prescribed, time-independent constant. WithR3 spatial topol-
ogy this assumption is automatically satisfied. With the
Kruskal andRP3-geon topologies, on the other hand, one
could ask whether it is still possible to carry out an analo-
gous time reparametrization whenM 2 is a dynamical vari-
able and the phase space is four dimensional. If the answer is
affirmative, one could presumably raise anew the issues re-

garding the spectrum ofM̂ 2 that were addressed in the con-
text of the vacuum theory in Sec. VII A. If, after the
reparametrization, the dynamics ofM 2 still decouples from
the dynamics of the shell as in Secs. III and V, one could
effectively separate variables by first considering the eigen-

value equation forM̂ 2 ,

M̂ 2c5M 2c. ~7.10!

10The HamiltonianM (a,pa) ~7.3! describing the proper-time evo-
lution of the throat was previously considered by Friedman, Red-
mount and Winters-Hilt@59,60# without a derivation by reduction
from spherically symmetric vacuum gravity. In Ref.@12#, this
Hamiltonian was derived from Kucharˇ’s reduced Hamiltonian
theory@6# by a canonical transformation. A similar derivation could
clearly be given from the canonical pair (M ,PM) of the present
paper, despite the technical differences in our falloff and that of
Ref. @6#.
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For each eigenspace ofM̂ 2 , the shell Hamiltonian would
then have the form~4.23! with a c-numberM 2 , and the
character of the total spectrum would depend on the spec-

trum of M̂ 2 .

VIII. SUMMARY AND DISCUSSION

In this paper we have considered the Hamiltonian dynam-
ics of spherically symmetric spacetimes that contain an ide-
alized, infinitesimally thin massive dust shell. We considered
the Kruskal-like spatial topologyS23R, the RP3-geon spa-
tial topology RP3\ $a point at infinity%, and the Euclidean
spatial topologyR3. The variational equations that arose
from the unreduced Hamiltonian action were not strictly con-
sistent in a distributional sense, but we were able to localize
the ambiguity into the single equation that arises by varying
the action with respect to the shell position. When the am-
biguous contribution to this equation was interpreted as the
average of its values on the two sides of the shell, we cor-
rectly reproduced the content of Israel’s junction condition
formalism.

We performed a Hamiltonian reduction by adopting a
gauge with piecewise flat spatial sections, and passing to the
limit in which the interpolating transition regions became
vanishingly narrow. The constraints could then be explicitly
solved. For the Kruskal andRP3 topologies the reduced
phase space was four dimensional, with one canonical pair
closely associated with the shell motion and the other pair
with the dynamics of the geometry. In the limit where the
shell is not present, this correctly reproduced previous results
for spherically symmetric vacuum geometries. Retaining the
shell but prescribing by hand one asymptotic mass for the
Kruskal topology, and the interior mass for theRP3 topol-
ogy, we recovered theories whose reduced phase space was
two dimensional, with just the canonical pair associated with
the shell motion surviving. For theR3 topology, the interior
mass necessarily vanishes, and we only obtained a two-
dimensional phase space, with the single canonical pair de-
scribing the shell motion.

For each of the three spatial topologies, we time-
reparametrized the dynamics in the two-dimensional phase
space that describes the shell motion with fixed interior
mass. With one choice for the reparametrization, we recov-
ered a previously known Hamiltonian that evolves the shell
with respect to its proper time. With another choice, we re-
covered a Hamiltonian analogous to the square-root Hamil-
tonian of a spherical test shell in Minkowski space. Finally,
we briefly discussed the spectra that would be expected to
emerge in different approaches of canonically quantizing the
theories.

Our results provide a robust description of the reduced
Hamiltonian dynamics of a spherically symmetric dust shell
coupled to gravity, in the region of the reduced phase space
that is covered by our piecewise spatially flat gauge. While
this gauge is not global, one can argue that this gauge and its
time-inverted counterpart cover the region of the reduced
phase space that is of interest to an observer who scrutinizes
the shell motion from one asymptotically flat infinity. What
remains open, however, is the global structure of the reduced
phase space. One would also like to describe the reduced

phase space in a way that is more geometrical and less tied to
a particular gauge. One possible avenue for this, currently
under investigation by Ha´jı́ček and Kijowski@72,73#, might
be to generalize to the massive shell the canonical transfor-
mations that Kucharˇ introduced to simplify the vacuum
theory @6#. Work on the analogous problem with a null-dust
shell is in progress@74#.

More ambitiously, one would like to consider systems
with matter that is more interesting than a dust shell. The
canonical formulation of Einstein gravity coupled to acon-
tinuous distribution of massive or null dust has been dis-
cussed, respectively, in Refs.@75,76#. For the canonical for-
mulation in the presence of other types of fluids, see, for
example, Ref.@77# and the references therein. A discussion
of the difficulties involved with spherically symmetric grav-
ity coupled to a scalar field is given in Refs.@78,79#. A
discussion in the context of a dilatonic black hole can be
found in Ref.@80#.
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APPENDIX A: RIDGE TRANSITION REGION

In this appendix we specify the gauge in the ridge transi-
tion regionur u<(11g)r, and evaluate the contribution from
this region to the integral on the right-hand side of Eq.~3.3!
in the limit g→0.

1. Gauge choice

To specify the gauge in the regionur u<(11g)r, we con-
sider the classical spacetime of Sec. III B, and the spacelike

hypersurfaceS̃0 in this spacetime. The partur u<(11g)r of

S̃0 lies in the black-hole region of the Kruskal spacetime left
of the shell.

Let h:R→R be a smooth function such that

h~x!5H 0, x<0

x2 1
2 , x>1,

~A1!

and d2h/dx2.0 for 0,x,1. We write h(n)(x)
:5dnh(x)/dxn.

For ur u<(11g)r, we seek a gauge in the form

L~r !5~12L0!h~1!S ur u2r

gr D1L0 , ~A2a!

R~r !5FghS ur u2r

gr D111 1
2 gGr, ~A2b!

whereL0 is a positive parameter. In the subregionur u<r,

the radius of the two-sphere is constant onS̃0,

R5(11 1
2 g)r, and the proper distance onS̃0 is L0dr. The
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subregionsr<ur u<(11g)r interpolate smoothly between
this constant radius gauge and the spatially flat gauge~3.6!.

Note thatL(r ).0, and (11 1
2 g)r<R<(11g)r.

Recall from Sec. III B that (11g)r,2M 2 . Equations
~3.2! thus yield a real-valued solution forpL andpR for all
of ur u<(11g)r. The gauge~A2! therefore specifies a space-
like hypersurface in an interior Kruskal geometry with mass
M 2 , with the ends atR5(11g)r. What remains is to
choose the parameterL0 in Eq. ~A2a! so that this hypersur-
face precisely fits between the pointsur u5(11g)r.

In the curvature coordinates (T,R) in the black-hole inte-
rior, the metric reads

ds252S 2M 2

R
21D 21

dR21S 2M 2

R
21DdT21R2dV2,

~A3!

where 0,R,2M 2 , R decreases to the future, and we take
T to increase to the right. The transformation from Eq.~A3!
to the chartC1 of Sec. III B reads

T5t122A2M 2r 122M 2lnS A2M 22Ar 1

A2M 21Ar 1
D 1 const,

~A4a!

R5r 1 . ~A4b!

As our ~prospective! deformation~A2! of Ŝ0 to S̃0 is sym-

metric aroundr 50, the value ofT at r 50 onS̃0 is the same

as the value ofT at the unsmoothed ridge onŜ0. On S̃0, we
thus have

Tr 5~11g!r2Tr 5052A2M 2r22A2M 2~11g!r12M 2lnF ~A2M 22Ar!~A2M 21A~11g!r!

~A2M 21Ar!~A2M 22A~11g!r!
G . ~A5!

On the other hand, from Eq.~80! of Ref. @6# we have

T85
LpL

2M 22R
. ~A6!

Integrating Eq.~A6! from r 50 to r 5(11g)r, with pL

given by Eq. ~3.2a!, and equating the result to Eq.~A5!,
gives a relation that implicitly determinesL0 in terms of

M 2 , r, and g. By the symmetry ofS̃0 aroundr 50, the
relation obtained by similarly comparingTr 52(11g)r to
Tr 50, using the chartC2, contains exactly the same informa-
tion. This completes the gauge choice.

We shall below be interested in the limit of smallg. In
this limit, the relation determiningL0 admits a power series
expansion ing. The result is

L05
g

2A12r/~2M !
1O~g2!, ~A7!

whereO stands for ag-dependent quantity that is bounded
by a constant times its argument.

2. Liouville form

We now evaluate the contribution to the integral in the
Liouville form ~3.3! from ur u<(11g)r, in the limit g→0.

As we have noted, the gauge~A2! for ur u<(11g)r joins
smoothly to the spatially flat gauge outside this interval, and
the expressions given in~A2! are in fact valid for all of
2`,r ,r2 l . The differentialsdL(r ) anddR(r ) therefore
contain nod functions inr at ur u5(11g)r, and it is suffi-
cient to consider the contributions fromur u,r and
r,ur u,(11g)r.

For ur u,r, we haveh5h(1)50. Equations~A2! and~A7!
yield dL5O(g) and dR5O(1), and Eqs. ~3.2! yield
pL5O(1) andpR5O(g). The contribution to Eq.~3.3! is
thereforeO(g).

Suppose thenr,r ,(11g)r. We now obtain

dL52
h~2!

gr
dr1O~1!, ~A8a!

dR5~12h~1!!dr1O~g!, ~A8b!

pL5rA~R8/L!22112M 2 /R1O~g!, ~A8c!

pR5
r~R8/L!8

A~R8/L!22112M 2 /R
1O~1!, ~A8d!

where the argument ofh and its derivatives is always
(r 2r)/gr. Note that the first term in Eq.~A8d! is O(g21).

For *dr pLdL, changing the integration variable fromr
to x:5(r 2r)/gr gives

E
r

~11g!r

dr pLdL52rdrE
0

1

dx h~2!~x!A~R8/L!22112M 2 /R1O~g!

52A2M 2r drE
0

1

dx h~2!~x!1o~1!
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52A2M 2r dr1o~1!, ~A9!

where o(1) stands for a g-dependent quantity that goes to zero asg→0. We have used the fact that
A(R8/L)22112M 2 /R→A2M 2 /r pointwise inx as g→0, and taken the limit under the integral by dominated conver-
gence.

For *dr pRdR, the assumptionh(2).0 allows us to change the integration variable fromr to u:5R8/L. We obtain

E
r

~11g!r

dr pRdR5r drE
r

~11g!r dr ~R8/L!8~12h~1!!

A~R8/L!22112M 2 /R
1O~g!

5r drE
0

1 du~12h~1!!

A~R8/L!22112M 2 /R
1O~g!

5r drE
0

1 du

Au22112M 2 /r

1o~1!

5
1

2
lnS A2M 21Ar

A2M 22Ar
D r dr1o~1!. ~A10!

We have used the facts thatA(R8/L)22112M 2 /R→Au22112M 2 /r andh(1)5uL0@12u(12L0)#21→0 pointwise inu
asg→0, and taken the limit under the integral by dominated convergence.

Adding the identical contributions from the region2(11g)r,r ,2r, we find that the total contribution to the Liouville
form ~3.3! from the ridge transition regionur u<(11g)r is

E
2~11g!r

~11g!r

dr ~pLdL1pRdR!5F r lnS A2M 21Ar

A2M 22Ar
D 22A2M 2rGdr1o~1!. ~A11!

APPENDIX B: SHELL TRANSITION REGION

In this appendix we specify the gauge in the shell transi-
tion region r2 l<r<r, and evaluate the contribution from
this region to the integral on the right-hand side of Eq.~3.3!
in the limit l→0.

1. Gauge choice

To specify the gauge in the regionr2 l<r<r, we again
consider the classical spacetime of Sec. III B, and the space-

like hypersurfaceS̃0 in this spacetime. The partr2 l<r<r

of S̃0 lies in the Kruskal spacetime left of the shell.
Let f :R→R be defined by

f ~x!:5H x e2x2/~12x2!, xP~0,1!,

0, x¹~0,1!.
~B1!

We write f (n)(x):5dnf (x)/dxn. f is continuous everywhere,
and smooth except atx50, with f (1)(x)→1 asx→01 and
f (1)(x)→0 asx→02 . Note thatf (2)(x)→0 asx→06 .

For (11g)r,r ,`, we choose the gauge

L51, ~B2a!

R5r 2
lAp21m2

r
f S r2r

l D . ~B2b!

Outside the shell transition regionr2 l<r<r, this clearly
agrees with the spatially flat gauge~3.6!. To show that the
gauge is admissible, we first note that forr2 l<r ,r, the
constraints are solved by the gravitational momenta given by
Eq. ~3.2!. At the shell, the Hamiltonian constraint~2.13a! is
identically satisfied. The momentum constraint~2.13b! at the
shell reads, using Eq.~3.2a!,

p5rA~R28 !22112M 2 /r2A2M 1r, ~B3!

where Eq.~B2b! gives

R28 5
11Ap21m2

r
. ~B4!

The constraints can therefore be solved both at the shell and
away from the shell, and the gauge is thus admissible. The
gauge is smooth everywhere except at the shell, and at the
shell it is consistent with the regularity assumptions of Sec.
II.

2. Liouville form

We now evaluate the contribution to the integral in the
Liouville form ~3.3! from r2 l<r<r, in the limit l→0.

As the gauge~B2! is smooth for (11g)r,r ,` except
at the shell, the differentialsdL(r ) anddR(r ) do not contain
d functions in r except possibly atr 5r. Equation ~B2a!
shows thatdL(r )50 everywhere. It is therefore sufficient to
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consider separatelypRdR for r2 l ,r ,r, and thed function
contribution topRdR at r 5r.

For r2 l ,r ,r, Eq. ~B2b! gives

R8511
Ap21m2

r
f ~1!, ~B5a!

R952
Ap21m2

l r
f ~2!, ~B5b!

dR5~12R8!dr1O~ l !, ~B5c!

where the argument off and its derivatives is (r2r )/ l . From
Eq. ~3.2b! we have

pR5
rR9

AR822112M 2 /r
1O~1!, ~B6!

where we have used the observationsR95O( l 21) and
R5r1O( l ). Note that the first term in Eq.~B6! is O( l 21).
We thus obtain, changing the integration variable fromr to
v:5R8,

E
r2 l

r

dr pRdR5rdrE
r2 l

r dr R9~12R8!

AR822112M 2 /r
1O~ l !

5rdrE
1

R28
dv ~12v !

Av22112M 2 /r
1O~ l !

5FA2M 2r2A2M 1r2p

1rlnS r1p1Ap21m21A2M 1r

r1A2M 2r
D Gdr1O~ l !, ~B7!

where we have used Eq.~B4! for R28 .
What remains is thed function in dR at r 5r. From Eq.

~B2b! we have

dR52
lAp21m2 dr

r
d~r 2r!

1 ~nondistributional function ofr !. ~B8!

From Eq.~3.2b!, we have

pR
15 1

2 A2M 1 /r, ~B9a!

pR
25

~p1A2M 1r!22M 2r

r~p1A2M 1r!
,

~B9b!

where we have used Eq.~B4! and the fact thatR29 50. AspR

is not continuous atr 5r, the productpRdR is not defined as
a distribution, and the contribution to the Liouville form is
ambiguous. However, aspR

6 are both of order 1, and thed
function in dR ~B8! is O( l ), we argue that the ambiguous
contribution can be taken to vanish in the limitl→0. It is
seen in the main text that this leads to a reduced Hamiltonian
system that reproduces the correct dynamics.

The ambiguity inpRdR appears to have the same origin
as the ambiguity of the equation of motion~2.8f! in the un-
reduced formalism: both involve varying the action with re-
spect tor. Note that if the functionf had been chosen so that
f (2)(x)→” 0 asx→01 , R29 and pR

2 would be nonvanishing
and proportional tol 21, and the above argument for the van-
ishing of the ambiguity in the limitl→0 would not apply.
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