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Physical distinction among alternative vacuum states in flat spacetime geometries
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Even in flat spacetime, the states of a quantized field can be described via a variety of inequivalent Fock-
space representations, associated with different congruences of inertial or noninertial observers. But it appears
possible to distinguish among the possibilities on physical grounds: Field positive- and negative-frequency
eigenfunctions might be required to be well defined and regular throughout the spacetime, so that the states can
be attained by evolution from regular data in the remote past. This criterion distinguishes the familiar
Minkowski-coordinate construction from that corresponding to the diverging congruence of observers whose
world lines trace out a degenerate-Kasner subspace of Minkowski spacetime, for example. It also draws a
physical distinction between the Minkowski-coordinate Fock-space states and those associated with a congru-
ence of uniformly accelerated observers~Rindler observers!; the latter states cannot be represented as any
combinations of the former. This analysis of alternative descriptions of a quantized field may extend to more
general classes of observers, and to more general spacetime geometries as well.@S0556-2821~99!05822-1#

PACS number~s!: 04.62.1v, 03.70.1k
tim
ke
re
g
I
fl
c
t
g
d
t

m

t
c
ru
el
e

-
ul

t
om
s

still
ay

n
ip-
t a

e
es
ni-

n of
the

d

ord
n is
iar
es
ctor
e-
ie-

ng
fo-
a-

nes
nd

paces
er-
rily
I. INTRODUCTION

The Fock space of states central to ordinary flat-space
quantum field theory is determined by the global timeli
Killing vector field present in Minkowski spacetime. In mo
general spacetimes there are inequivalent vacua leadin
different Fock space representations for a quantum field.
deed, such Fock representations appear even in
Minkowski spacetime: they are associated with congruen
of observers other than those whose world lines delineate
familiar Minkowski coordinates. The problems of definin
vacuum states, Fock spaces, and particles have occupie
searchers in curved-spacetime quantum field theory since
inception of the subject@1–5#. The significance of these
problems even in flat spacetime was highlighted in the se
nal work of Fulling@2#, Hawking@3#, Davies@4#, and Unruh
@5#, since elaborated upon by many authors@6#.

In flat spacetime, however, it appears possible to selecon
physical groundsa particular vacuum state and Fock spa
from among those which can be defined by various cong
ences of observers. This might be done by requiring fi
positive- and negative-frequency eigenfunctions to be w
defined and regular~e.g., at leastC2) throughout the space
time, so that the states can be said to evolve from reg
data in the distant past. Note that this criterion is applied
the positive-frequency eigenfunctions obtained directly fr
the defining Lie-derivative eigenvalue equation. Superpo
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tions of these fundamental positive-frequency modes are
regarded as positive-frequency functions, though they m
not satisfy the regularity criterion~just as for Fourier series!.
As we show in detail in this work, such a regularity criterio
suffices, for example, to distinguish the field-theory descr
tion constructed by observers whose world lines trace ou
degenerate-Kasner@7,8# subspace of Minkowski spacetim
from that obtained in Minkowski coordinates. It also clarifi
the physical distinction between the vacuum-particle defi
tions associated with uniformly accelerated~Rindler! observ-
ers and those of inertial observers.

There are three common approaches to the constructio
Fock-space representations for quantized-field states in
general case: theC* algebra, complex structure, an
‘‘positive- and negative-frequency splitting’’ methods@9#.
The C* algebra and complex structure approaches aff
great generality, but require more elaborate formalism tha
called for here. Instead we shall rely on the more famil
positive- and negative-frequency splitting method. This giv
rise to a Fock-space representation by using a timelike ve
field and a foliation of space-time. On each folium positiv
and negative-frequency field modes are defined via a L
derivative eigenvalue equation, the Lie-derivative bei
taken along the given vector field and evaluated at the
lium. ~This is a well-known and straightforward generaliz
tion of the Minkowski-coordinate time derivative.! The field
decomposed into these modes on any given folium defi
creation and annihilation operators with which a vacuum a
Fock-space states are constructed as usual. The Fock s
obtained by implementing this procedure on different hyp
surfaces of a given foliation in general need not be unita
©1999 The American Physical Society17-1



ve
re
h
o

y
ce
ni
nt
e.
va
s
ic

ra
f
s
r

rd
ei
gr

an
fi
l
n
e
fo

ca
fie
,

fi
a

ne
in
te

up
he
u
he
rt
th
e
ci-
ac

n
ts

a
i

n
y
g
a

ow

ace-
flat
um
-
ird.

e

e

of

be-
con-

of
n

e
the

WINTERS-HILT, REDMOUNT, AND PARKER PHYSICAL REVIEW D60 124017
equivalent. However, if the congruence of observers mo
along the integral curves of a Killing vector field, then the
is a single vacuum and Fock space associated with the
persurfaces of the foliation. As the well-known example
Fulling shows@2#, in a region of spacetime with two linearl
independent Killing vector fields, the vacua and Fock spa
associated with these two Killing vector fields may be u
tarily inequivalent. The Fock spaces thus obtained are i
mately connected with the vector field and foliation, i.
with the congruence of observers involved. The inequi
lence of these representations for different congruence
observers constitutes an ambiguity in vacuum and part
definitions.

The observer congruences associated with the degene
Kasner @7,8# and the Rindler @10,11# subspaces o
Minkowski spacetime are convenient illustrations of the u
of our physical criterion to clarify the ambiguity. The forme
consists of all observers moving with uniform speeds in
single spatial direction, their trajectories filling the forwa
light cones of all points of the plane perpendicular to th
motion.~These Kasner observers do not move along inte
curves of a Killing vector field.! The latter consists of the
well-known congruence of observers moving with const
acceleration in a single spatial direction; their trajectories
the region~‘‘Rindler wedges’’! outside the light cones of al
points of a plane perpendicular to their direction of motio
The Killing-vector-field integral curves which constitute th
Rindler-observer trajectories make them a favorite choice
modeling noninertial observers.

Our analysis shows that while the Kasner observers
generate a Fock-space representation of a quantized
with vacuum different from the familiar Minkowski vacuum
our physical criterion will single out the Minkowski vacuum
in the degenerate-Kasner subspace, just as it does for a
theory on the full Minkowski spacetime. Likewise we find
clear distinction between the Fulling vacuum state obtai
via positive- and negative-frequency splitting using the R
dler congruence, and the ordinary Minkowski vacuum sta
The Fulling vacuum and associated states are based
positive-frequency field functions which are singular on t
Rindler horizon bifurcation event, and have discontinuo
first derivatives at the horizon—all regular events in t
complete spacetime. Hence our criterion selects the ine
Fock space as the appropriate physical framework for
field theory, even when accelerated or more general obs
ers are involved.~Of course the Fulling vacuum and asso
ated states remain of physical significance, e.g., in sp
times with boundaries imposed by accelerating mirrors@12#.!
Furthermore, our criterion might prove useful in more ge
eral spacetimes, where no timelike Killing vector field exis
~Related criteria are considered in Refs.@13,14#.!

The spacetime geometries, coordinate systems,
quantum-field-theory formalism we use here are outlined
Sec. II. Our analysis of field theory in the degenerate-Kas
subspace is described in Sec. III; Rindler-space theor
examined in Sec. IV. In Sec. V we summarize our findin
and discuss their application to more general observers
more general spacetime geometries.

Our general notation and sign conventions here foll
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those of Misner, Thorne, and Wheeler@15#. We use units
with \5c51 throughout.

II. GEOMETRIC AND FIELD-THEORETIC FORMALISM

A. The spacetimes

The geometries we consider are degenerate Kasner sp
time and Rindler spacetime, both subspaces of
Minkowski spacetime. The Kasner solutions of the vacu
Einstein equations@7,8# correspond to universes which ex
pand along two spatial directions and contract along a th
They have metric

ds252dt21t2p1dx21t2p2dc21t2p3dz2 ~2.1!

with t, x, c, andzP(2`,`), and are characterized by th
three numbersp1 , p2 , and p3 . In order to satisfy the
vacuum Einstein equations the exponents satisfy

p11p21p351 and p1
21p2

21p3
251. ~2.2!

The degenerate Kasner spacetime is the solution withp1
51 andp25p350, henceforth labeledK100. It is more eas-
ily treated in a different coordinate system, namely,

t5
1

g
ln~gt!, x5

1

g
x, y5c, and z5z. ~2.3!

The metric is then

ds25e2gt~2dt21dx2!1dy21dz2. ~2.4!

It is easily seen thatK100 is a region of Minkowski spacetime
~henceforthM4). The K100 coordinates are related to th
Minkowski coordinates by

X5g21egt sinh~gx!, T5g21egt cosh~gx!,

Y5y, and Z5z, ~2.5!

yielding the familiar metric

ds252dT21dX21dY21dZ2. ~2.6!

However, the transformation only maps into the region
M4 with T.uXu. If K100 is shown as a subsection ofM4

using the Penrose diagram representation, the difference
tween their Cauchy surfaces is seen to depend only on
tributions at sections of future null infinity~see Fig. 1!. The
form of the coordinate relation also shows that surfaces
constantt in K100 provide a foliation by hyperbolic sheets i
the upper wedge ofM4.

The regions of Minkowski spacetime complementingT
.uXu andT,2uXu ~‘‘time-reversed’’ K100) are the Rindler
wedges. SinceK100 and Rindler spacetime~henceforthR!
have trivial coordinate relations with Minkowski spacetim
in the Y-Z plane, those two dimensions are dropped in
remaining analysis. The Rindler wedges, in theX-T plane,
are covered by coordinateshP(2`,1`), jP(2`,1`),
7-2
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FIG. 1. The degenerate Kasner univer
shown as a subsection of Minkowski spacetim
A Cauchy surface inK100 is a partial Cauchy sur-
face in M4, requiring information at theIL

1 and
IR

1 portions of null infinity for completeness.
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and a discrete coordinateQ561 which distinguishes the
right and left wedges. These are related to the Minkow
coordinates via

T5g21egj sinh~gh!

X5Qg21egj cosh~gh!, ~2.7!

with g a constant~acceleration!. The Rindler metric is thus

ds25e2gj~2dh21dj2!, ~2.8!

in either wedge.
The Minkowski spacetime and its sections are maxima

symmetric, i.e., they have ten Killing vector fields@16#. Re-
stricted to theX-T plane, the three independent Killing ve
tor fields are the time translation

]

]T
5H e2gtS cosh~gx!

]

]t
2sinh~gx!

]

]xD in K100,

e2gjS cosh~gh!
]

]h
2sinh~gh!

]

]j D in R,

~2.9!

the spatial translation
12401
i

y

]

]X
5H e2gtS cosh~gx!

]

]x
2sinh~gx!

]

]t D in K100,

Qe2gjS cosh~gh!
]

]j
2sinh~gh!

]

]h D in R,

~2.10!

and

X
]

]T
1T

]

]X
5H ]

]x
in K100,

]

]h
in R,

~2.11!

a boost in theX direction.

B. Quantum field theory

We consider a real scalar field of massm with Lagrangian
density

L~x!52
A2g

2
@gmn]mw]nw1~m21jR!w2#, ~2.12!

whereR is the Ricci scalar andj the curvature-coupling con
stant~not to be confused with the Rindler spatial coordina
j; here the distinction will always be clear from contex!.
Flat spacetime hasR50; the field equation obtained from
this Lagrangian density is the familiar Klein-Gordon equ
7-3
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WINTERS-HILT, REDMOUNT, AND PARKER PHYSICAL REVIEW D60 124017
tion (h2m2)w50. A complete set of orthonormal mod
solutions, denoteduk(x), are used to describew:

w~x!5(
k

@akuk1ak
†uk* #. ~2.13!

Canonical quantization of the theory is implemented by i
posing the usual commutation relations,@ak ,ak8

†
#5dkk8 , etc.

The vacuum is defined byaku0&50 for all k. A different
complete set of solutions, distinguished by overbars, likew
yields

w~x!5(
q

@ āqūq1āq
†ūq* #, ~2.14!

for which the new vacuum is defined byāqu0̄&50.

III. VACUA IN DEGENERATE KASNER SPACETIME

Various timelike vector fields might be used to defi
positive-frequency modes, hence a vacuum, for a quant
field in the K100 subspace. Symmetry considerations imm
diately distinguish two choices—the Killing and conforma
Killing vector fields. To choose between these, or among
symmetric possibilities, we seek a physical criterion for
preferred vacuum state. Here we propose the requirem
that field positive-frequency eigenfunctions be well defin
and regular~at leastC2) throughout the complete spacetim
so that the resulting states can be obtained via evolution f
regular data in the remote past.

The conformal Killing vector field consists of the fou
velocities of observers moving on world lines of constant~x,
c, z! in the Kasner coordinate system. This vector field is
Killing, owing to thet dependence of the metric~2.1!, and it

FIG. 2. Congruences of the inertial Killing vector field inK100,
and their extension to the remainder of Minkowski spacetime. C
gruences of the conformal Killing vector field are also shown c
verging on the origin.
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has a caustic at the Kasner-coordinate origin. With t
choice of velocity field the vacua obtained via splitting
positive-negative frequencies will differ at different timest,
as shown in detail below. The positive-frequency modes
sociated with the conformal Killing vector field are irregul
at theK100 boundaries (X56T), where they display oscil-
latory singular behavior, as shown in Ref.@5#. Thus, the
conformal Killing vector field and associated vacuum sta
will not satisfy our criterion.

In constrast, an actual Killing vector field and correspon
ing Fock-space construction do satisfy our criterion, a
yield the same vacuum on all folia. The timelike Killin
vector fields onK100 can be described as the Minkows
time-translation vector field]/]T, and the vector fields ob
tained from this by uniform Lorentz boosts. These vec
fields extend smoothly from theK100 subspace to the entir
M4 spacetime, as do the positive-frequency modes they
fine ~see Fig. 2!.

Field quantization inK100 begins with separation of the
Klein-Gordon equation in the~t,x,y,z! Kasner coordinates
~2.3!. The separated mode functions can be expresse
terms of Hankel functions

uk5@ck
~2!HiK

~2!~s!1ck
~1!HiK

~1!~s!#eik•x ~3.1a!

or Bessel functions

uk5@dk
~1!JiK~s!1dk

~2!J2 iK~s!#eik•x. ~3.1b!

~The latter case, for massless fields, requires additional in
mation pertaining to thekx50 modes.! The argument of the
Hankel or Bessel functions iss(t)5g21(ky

21kz
21m2)1/2egt

and the order is6 iK 56 i ukxu/g. A prescription for choos-
ing positive-frequency modes would single out a particu
combination of the Hankel or Bessel functions. A corr
sponding combination of thec’s or d’s is then associated
with the annihilation operators~2.14! of the quantized field
theory, thus defining a vacuum state.

The choice of positive-frequency modes based on
four-velocities of the Kasner-coordinate comoving observ
is implemented by requiring the positive-frequency norm
mode functionsuj to be eigenfunctions of the Lie derivativ
with respect to proper time along the observers’ world lin
That is, the positive-frequency eigenfunctions are required
be at leastC2 ~i.e., ‘‘regular’’! functions satisfying

L]/]tuj52 iV juj . ~3.2!

~Superpositions of these fundamental positive-freque
eigenmodes might still be regarded as positive-freque
functions, though they might not satisfy the regularity crit
rion.! Since the Lie derivativeL]/]t does not commute with
the Klein-Gordon operator, the positive-frequency functio
selected by imposing this condition at different times a
different linear combinations of Hankel or Bessel function
giving rise to a distinct vacuum state on each constant-t hy-
persurface and consequent ‘‘particle production.’’ Such
havior has been studied in Refs.@17#, where positive-
frequency functions were chosen on the basis of asympt

-
-

7-4
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PHYSICAL DISTINCTION AMONG ALTERNATIVE . . . PHYSICAL REVIEW D 60 124017
behavior at early and late Kasner times, thus defining dist
‘‘in’’ and ‘‘out’’ vacuum states. But as noted above, neith
this choice of positive-frequency modes nor the conform
Killing vector field itself satisfies our criterion of extensibi
ity throughout the spacetime, suggesting that these va
may be classified as ‘‘unphysical.’’

Alternatively, the Minkowski time-translation Killing
vector field can be used. Then the positive-frequency L
derivative eigenvalue equation

L]/]Tūl
~1 !52 iv lūl

~1 ! ~3.3!

picks out functions of the form

ūl
~1 !5e2 iv lTl l~X,Y,Z!

5exp@2 iv lg
21egt cosh~gx!#

3l l@g21egt sinh~gx!,y,z#, ~3.4!

where ūl
(1) satisfies the Klein-Gordon equation (h

2m2)ūl
(1)50 with v l5( l X

21 l Y
21 l Z

21m2)1/2 and
l l(X,Y,Z)5exp(il XX1il YY1il ZZ). These positive-frequenc
normal modes are the familiar plane waves in Minkow
spacetime. They are regular throughout and clearly sat
our criterion. A suitable combination of these mode fun
tions can be written in terms of the Hankel or Bessel fu
tions of Eq. ~3.1!. Such a combination remains positiv
frequency; it serves to define the same vacuum state
modes~3.4!, but is expressed in Kasner coordinates. Exa
nation of the integral representation

HiK
~2!~s!5

2e2pK/2

ip E
2`

`

e2 is coshr2 iKrdr ~3.5!

reveals that theH (2) mode functions are the indicated supe
position of positive-frequency functions@18#, as defined by
Eq. ~3.3!. Recallings5g21(ky

21kz
21m2)1/2egt, and substi-

tuting r5gx2r8, we can rewrite this as

HiK
~2!~s!eik•x5

2e2pK/2

ip E
2`

`

dr8

3exp$2 i @~kz
21ky

21m2!1/2coshr8#

3@g21egt cosh~gx!#%

3exp$ i @~kz
21ky

21m2!1/2sinhr8#

3@g21egt sinh~gx!#1 iKr8%eikyy1 ikzz

5
e2pK/2

ip E
2`

`

dr8 exp$2 iv l~r8!T1 i l X~r8!X

1 iKr81 i l YY1 i l ZZ%, ~3.6!

with v l and l X parametrized byr8: v l(r8)5(kz
21ky

2

1m2)1/2cosh(r8), l X(r8)5(ky
21kz

21m2)1/2sinh(r8), l Y

5ky , and l Z5kz . This choice of positive frequency serve
to define the same vacuum state as the solutions of Eq.~3.3!
12401
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at all times, with no ‘‘particle production.’’ Although the
HiK

(2)(s) functions have oscillatory singular behavior~hence
no derivative! on the boundaries (X56T) of the K100 re-
gion, the fundamental definition of positive-frequency eige
functions in this instance derives from the normal mod
~3.4!, which are regular throughoutM4. The criterion is thus
satisfied, and the groupingHiK

(2)(s) represents a positive
frequency solution of the Klein-Gordon equation separa
in the Kasner coordinates.

Any other choice of timelike Killing vector field in the
Lie-derivative eigenvalue equation in theK100 region gives
the same result. In thex2t plane these Killing vector fields
are given by

]/]T85coshq]/]T1sinhq]/]X

5e2gtS cosh~gx2q!
]

]t
2sinh~gx2q!

]

]xD ,

~3.7!

with qP(2`,`) the usual boost parameter. Hence boost
from one vector fieldj to another is equivalent to replacin
the Kasner coordinatex by x2q/g. Such a transformation
multiplies each functionHiK

(2)(s)eik–x by a constant phase
consequently, these functions remain a basis of posit
frequency solutions. The vacuum state thus selected is
same for all values of the parameterq. This choice of
vacuum onK100 spacetime shares the Lorentz~boost! invari-
ance of the usual inertial vacuum defined on the fullM4

spacetime.
What does this preferred choice of vacuum state inK100,

as determined by our criterion, imply about the state of
quantum field in the full Minkowski spacetime? A Cauch
surface inK100 can be extended to a Cauchy surface forM4

by appending suitable portions ofI1 ~i.e.,IR
1 andIL

1 in Fig.
1!. Since for a massive field no physical quantity has supp
onI1, all inner products, quantum states, etc., defined on
M4 Cauchy surface will be identical to those on the Cauc
surface in theK100 subspace. For massless fields, owing
possible contributions fromI1, all the Cauchy data inM4 is
not determined by the Cauchy data inK100. However, the set
of states corresponding to the additional Cauchy data is
measure zero relative to the set of all states inM4. In com-
parison with two-dimensional Kasner spacetime, on the ot
hand, the additional set of states is not of measure zero.

IV. VACUA AND FOCK SPACES FOR ACCELERATED
OBSERVERS

The Rindler subspace traced out by a congruence of
formly accelerated observers provides an example in wh
different Killing vectors used in the definition of positiv
frequency give rise to inequivalent descriptions of the qu
tized field. The Rindler observers’ four-velocities are asso
ated with a timelike Killing vector field in theR region
~defined in Sec. II!, one which is distinct from that associate
with inertial ~Minkowski! observers but which cannot be e
tended smoothly to the entireM4 spacetime and remain bot
7-5
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WINTERS-HILT, REDMOUNT, AND PARKER PHYSICAL REVIEW D60 124017
timelike and Killing. There is of course an enormous liter
ture on quantum field theory in Rindler spacetim
@2,4,5,6,11#; several authors have pointed out distinctions
tween the Rindler- and Minkowski-spacetime Fock spa
and vacuum states@2,4,5#, which emerge despite appare
formal symmetry between the two treatments. Here th
distinctions can be interpreted in terms of the nonextens
ity of the Rindler construction, i.e., the absence of a smo
timelike and Killing extension of the Rindler timelike Killing
field, and the oscillatory singular behavior of the Rind
modes at the horizons.

Our regularity criterion selects the inertial-observ
positive-frequency modes over those identified via
Rindler-observer congruence. The timelike Killing vect
field ]/]h tangent to the world lines of the accelerated o
servers ~in two spacetime dimensions! yields positive-
frequency modes

uR,k5~4pv!21/2eikj2 ivh ~4.1a!

in the right wedgeR ~with zero support in wedgeL!, and

uL,k5~4pv!21/2eikj1 ivh ~4.1b!

in the left wedgeL ~with zero support in wedgeR!, where
v5uku is imposed by the Klein-Gordon equation for th
simple case of a massless field@11#. These modes have os
cillatory singularities on the Rindler horizons; they cannot
smoothly extended beyond the Rindler wedges and rem
positive-frequency mode functions associated with a time
vector field. Analyticity properties~in the Rindler coordi-
nates! @5,11# imply that the combinations

ūk
~1!5@2 sinh~pv/g!#21/2~e2pv/2guR,2k* 1epv/2guL,k!,

ūk
~2!5@2 sinh~pv/g!#21/2~epv/2guR,k1e2pv/2guL,2k* !,

~4.2!

are positive-frequency functions in the inertial~Minkowski!
description, i.e., these are superpositions of Minkows
spacetime positive-frequency solutions. As in the Kasner
ample, the regularity of those basic solutions over the wh
of M4 satisfies the criterion.

The requirement that states be obtainable from reg
data in the remote past differentiates the Minkowski vacu
and Fock-space structure from the ostensibly similar Rind
spacetime constructions. Physical consequences arise
the oscillatory singular behavior of the Rindler positiv
frequency mode functions, and the inextensibility of the R
dler congruence as a timelike Killing vector field, at the R
dler horizons. Quantities such as stress-energy expecta
values in Fulling-Rindler Fock-space states are diverg
there @19#. But these are ordinary points of theM4 space-
time. Hence regular evolution from regular data in the dist
past could not be expected to put a field into these states.
Minkowski vacuum and Fock-space states do not suffer fr
such drawbacks, and may thus be distinguished as the p
cal Hilbert space of the quantized field. Hence, for examp
in treating the interaction between a field and an observe
an arbitrary world line, it would be appropriate to represe
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the state of the field using the Fock space constructed wi
congruence of inertial~Minkowski! observers.

V. SUMMARY

These results show that the familiar Minkowsk
coordinate Fock-space representation of the states of a q
tized field stands out on simple physical grounds from
diverse array of alternative representations which can be c
structed even in flat spacetime. The Minkowski-coordin
timelike Killing vector field~time translation! used to define
positive- and negative-frequency normal modes extends o
the entire M4 manifold without singularity; the resulting
normal-mode functions are regular on the entire spaceti
renormalized stress-energy expectation values in the as
ated Fock-space states likewise exhibit no singularities a
where onM4. Hence these states of the quantized field c
be obtained by evolution from regular data in the rem
past. Alternative constructions of vacuum states and F
spaces may fail to satisfy one or more of these criteria.

The degenerate-Kasner geometry traced out by
conformal-Killing observers, moving with all possible ve
locities perpendicular to a fixed spacelike plane, admit
variety of choices of vacuum state and positive-frequen
modes for a quantized field. Inequivalent choices can
made at different ‘‘times,’’ giving rise to ‘‘particle produc
tion @17#.’’ But via the regularity criterion described here,
unique choice can be made corresponding to the Minkow
coordinate construction carried out on the full spacetim
Then no particles are produced, and the theory is—at le
for massive fields—exactly equivalent to the famili
Minkowski-spacetime theory.

The Fulling-Rindler vacuum and Fock space associa
with a congruence of uniformly accelerated observers ar
well-known example of an alternative representation o
quantized field. But this construction violates our regular
criterion, and the resulting field states exhibit a variety
pathologies@2,4,5#. In particular, since these states give ri
to stress-energy divergences on the light cones which are
horizons of the Rindler coordinates, they cannot arise
regular evolution from the remote past. Hence it is t
Minkowski Fock-space states—the construction of wh
satisfies our criterion—which should represent the phys
states of the field.

In general spacetimes, lacking the extensive isome
structure ofM4, choosing an appropriate vacuum state a
Fock space from the infinity of possibilities is problemat
But the criteria considered here of extensibility over the e
tire spacetime, of nonsingularity on the entire spacetime~ex-
cept, of course, at actual physical singularities of the geo
etry!, of evolution from the remote past~or initial
singularity!, may prove useful in these more general circu
stances as well.
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