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Physical distinction among alternative vacuum states in flat spacetime geometries
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Even in flat spacetime, the states of a quantized field can be described via a variety of inequivalent Fock-
space representations, associated with different congruences of inertial or noninertial observers. But it appears
possible to distinguish among the possibilities on physical grounds: Field positive- and negative-frequency
eigenfunctions might be required to be well defined and regular throughout the spacetime, so that the states can
be attained by evolution from regular data in the remote past. This criterion distinguishes the familiar
Minkowski-coordinate construction from that corresponding to the diverging congruence of observers whose
world lines trace out a degenerate-Kasner subspace of Minkowski spacetime, for example. It also draws a
physical distinction between the Minkowski-coordinate Fock-space states and those associated with a congru-
ence of uniformly accelerated observéRindler observels the latter states cannot be represented as any
combinations of the former. This analysis of alternative descriptions of a quantized field may extend to more
general classes of observers, and to more general spacetime geometries [80888-282199)05822-1

PACS numbd(s): 04.62+v, 03.70:+k

[. INTRODUCTION tions of these fundamental positive-frequency modes are still
regarded as positive-frequency functions, though they may
The Fock space of states central to ordinary flat-spacetimeot satisfy the regularity criteriofust as for Fourier serig¢s
quantum field theory is determined by the global timelike As we show in detail in this work, such a regularity criterion
Killing vector field present in Minkowski spacetime. In more suffices, for example, to distinguish the field-theory descrip-
general spacetimes there are inequivalent vacua leading tmn constructed by observers whose world lines trace out a
different Fock space representations for a quantum field. Indegenerate-Kasnéi7,8] subspace of Minkowski spacetime
deed, such Fock representations appear even in fldtom that obtained in Minkowski coordinates. It also clarifies
Minkowski spacetime: they are associated with congruenceghe physical distinction between the vacuum-particle defini-
of observers other than those whose world lines delineate thgyns associated with uniformly accelerat@indler observ-
familiar Minkowski coordinates. The problems of defining ers and those of inertial observers.
vacuum states, Fock spaces, and particles have occupied re-There are three common approaches to the construction of

searchers in curved-spacetime quantum field theory since th&,ck-space representations for quantized-field states in the
inception of the subjecf1-5]. The significance of these general case: theC* algebra, complex structure, and

problems even in flat spacetime was highlighted in the semia,_ ... ; L
. ) . positive- and negative-frequency splitting” method8].
nal work of Fulling[2], Hawking[3], Davies|4], and Unruh The C* algebra and complex structure approaches afford

5], since elaborated upon by many auth . . . )
[ ]In flat spacetime hoSvevery it apgears g)};sible to select great generality, but require more elaborate formalism than is
' X called for here. Instead we shall rely on the more familiar

physical groundsa particular vacuum state and Fock space™™ . . 2 o
from among those which can be defined by various Congru[;)osr[lve— and negative-frequency splitting method. This gives

ences of observers. This might be done by requiring fieldiSe to a Fock-space representation by using a timelike vector
positive- and negative-frequency eigenfunctions to be welfi€ld and a foliation of space-time. On each folium positive-
defined and regulae.g., at leasC?) throughout the space- and negative-frequency field modes are defined via a Lie-
time, so that the states can be said to evolve from reguldf€rivative eigenvalue equation, the Lie-derivative being
data in the distant past. Note that this criterion is applied tdaken along the given vector field and evaluated at the fo-
the positive-frequency eigenfunctions obtained directly fromlium. (This is a well-known and straightforward generaliza-
the defining Lie-derivative eigenvalue equation. Superposition of the Minkowski-coordinate time derivativeThe field
decomposed into these modes on any given folium defines
creation and annihilation operators with which a vacuum and

*Electronic address: winters@cse.ucsc.edu Fock-space states are constructed as usual. The Fock spaces
'Electronic address: redmount@hypatia.slu.edu obtained by implementing this procedure on different hyper-
*Electronic address: leonard@uwm.edu surfaces of a given foliation in general need not be unitarily
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equivalent. However, if the congruence of observers movethose of Misner, Thorne, and Wheelgl5]. We use units
along the integral curves of a Killing vector field, then therewith #=c=1 throughout.

is a single vacuum and Fock space associated with the hy-

persurfaces of the foliation. As the well-known example of ||. GEOMETRIC AND FIELD-THEORETIC FORMALISM
Fulling showd 2], in a region of spacetime with two linearly
independent Killing vector fields, the vacua and Fock spaces
associated with these two Killing vector fields may be uni- The geometries we consider are degenerate Kasner space-
tarily inequivalent. The Fock spaces thus obtained are intitime and Rindler spacetime, both subspaces of flat
mately connected with the vector field and foliation, i.e., Minkowski spacetime. The Kasner solutions of the vacuum
with the congruence of observers involved. The inequivaEinstein equation$7,8] correspond to universes which ex-
lence of these representations for different congruences ¢fand along two spatial directions and contract along a third.
observers constitutes an ambiguity in vacuum and particldhey have metric

definitions. 2, .2 2, .2 2. 2pg 2
The observer congruences associated with the degenerate- ds’= —dr?+ 2Pidy?+ r#Pady?+ 2Pd 2 (2.0)

Kasner [7,8] and the Rindler [10,11 subspaces of . .
Minkowski spacetime are convenient illustrations of the use¥ith 7. x, 4 and{e(—,), and are characterized by the
of our physical criterion to clarify the ambiguity. The former three numbers_pl, p2,_and P3. In order to .Sat'Sfy the
consists of all observers moving with uniform speeds in a/acuum Einstein equations the exponents satisfy

single spatial direction, their trajectories filling the forward
light cones of all points of the plane perpendicular to their
motion. (These Kasner observers do not move along integr
curves of a Killing vector field. The latter consists of the
well-known congruence of observers moving with constan
acceleration in a single spatial direction; their trajectories fill
the region(“Rindler wedges”) outside the light cones of all 1 1
points of a plane perpendicular to their direction of motion. t==In(g7r), X=-x, y=¢, andz=¢{. (2.3
The Killing-vector-field integral curves which constitute the g g

Rindler-observer trajectories make them a favorite choice for

A. The spacetimes

p1+p,+ps=1 andp?+ps+pi=1. (2.2

a'|'he degenerate Kasner spacetime is the solution wjth
£1 andp,=p3;=0, henceforth labeleHl ;4y. It is more eas-
ily treated in a different coordinate system, namely,

modeling noninertial observers. The metric is then
Our analysis shows that while the Kasner observers can oot ) 5 5
generate a Fock-space representation of a quantized field ds’=e?'(—dt*+dx®) +dy*+dZ. (2.9

with vacuum different from the familiar Minkowski vacuum, ) ) ) _ ) )
our physical criterion will single out the Minkowski vacuum It is easily seen thaqis a region of Minkowski spacetime
in the degenerate-Kasner subspace, just as it does for a fig{genceforthM?). The Koo coordinates are related to the
theory on the full Minkowski spacetime. Likewise we find a Minkowski coordinates by

clear distinction between the Fulling vacuum state obtained

via positive- and negative-frequency splitting using the Rin- X=g 'eY'sinh(gx), T=g ‘e’ coshgx),
dler congruence, and the ordinary Minkowski vacuum state.
The Fulling vacuum and associated states are based upon Y=y, andZ=z, (2.9

positive-frequency field functions which are singular on the
Rindler horizon bifurcation event, and have discontinuougyielding the familiar metric
first derivatives at the horizon—all regular events in the
complete spacetime. Hence our criterion selects the inertial ds?=—dT?+dX?+dY2+dZ2 (2.6)
Fock space as the appropriate physical framework for the
field theory, even when accelerated or more general obser{dowever, the transformation only maps into the region of
ers are involved(Of course the Fulling vacuum and associ- M* with T>[X|. If Ko is shown as a subsection & *
ated states remain of physical significance, e.g., in spacaising the Penrose diagram representation, the difference be-
times with boundaries imposed by accelerating mirfégg.)  tween their Cauchy surfaces is seen to depend only on con-
Furthermore, our criterion might prove useful in more gen-tributions at sections of future null infinitfsee Fig. 1. The
eral spacetimes, where no timelike Killing vector field exists.form of the coordinate relation also shows that surfaces of
(Related criteria are considered in Refs3,14].) constant in Kqg provide a foliation by hyperbolic sheets in

The spacetime geometries, coordinate systems, arifie upper wedge of*.
quantum-field-theory formalism we use here are outlined in The regions of Minkowski spacetime complementifig
Sec. II. Our analysis of field theory in the degenerate-Kasner|X| and T< —|X| (“time-reversed” Koo are the Rindler
subspace is described in Sec. Ill; Rindler-space theory iwedges. Since;o, and Rindler spacetiméhenceforthR)
examined in Sec. IV. In Sec. V we summarize our findingshave trivial coordinate relations with Minkowski spacetime
and discuss their application to more general observers arid the Y-Z plane, those two dimensions are dropped in the
more general spacetime geometries. remaining analysis. The Rindler wedges, in €l plane,

Our general notation and sign conventions here followare covered by coordinatege (—o,+ ), e (—o,+ ),
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FIG. 1. The degenerate Kasner universe
shown as a subsection of Minkowski spacetime.
A Cauchy surface ik 1o is a partial Cauchy sur-
face inM*#, requiring information at thg," and
T portions of null infinity for completeness.

and a discrete coordinat®=*+1 which distinguishes the
right and left wedges. These are related to the Minkowski

1% J .
egt(cosr(gx)&— sinh(gx) E) in Koo,

- . Jd
coordinates via =
axX J . d .
Qe 9% cosign) ——sinh(gn) —| in R,
T=g te%sinhg7n) % In
g g7 (2.10
X=Qg *e% cosligy), (2.9 and
J .
with g a constanfacceleration The Rindler metric is thus 9 3 X in Koo,
X 5T +T X = P (2.11)
ds?=e?%¢(—dn?+dé?), (2.9 77 in R,
in either wedge. a boost in theX direction.
The Minkowski spacetime and its sections are maximally
symmetric, i.e., they have ten Killing vector fielfs6]. Re- B. Quantum field theory
stricted to theX-T plane, the three independent Killing vec- ) ) _ )
tor fields are the time translation We consider a real scalar field of massvith Lagrangian
density
J J , V-9
e‘9‘< coshgx) e sinh(gx) &_x) in Ko, L(X)=— T[g“”aﬂ¢ay<p+(m2+ ER)¢?%], (2.12
aT J a\ .
e 9 coshign) Fy sinh(g7) a_g in R, whereR is the Ricci scalar and the curvature-coupling con-
K 2.9 stant(not to be confused with the Rindler spatial coordinate
' & here the distinction will always be clear from context
Flat spacetime haR=0; the field equation obtained from
the spatial translation this Lagrangian density is the familiar Klein-Gordon equa-
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tion (O—m?)¢=0. A complete set of orthonormal mode has a caustic at the Kasner-coordinate origin. With this
solutions, denoted,(x), are used to describg: choice of velocity field the vacua obtained via splitting of
positive-negative frequencies will differ at different times
as shown in detail below. The positive-frequency modes as-
e(x)= > [aux+aguy]. (2.13  sociated with the conformal Killing vector field are irregular
: at theK oo boundaries X= =T), where they display oscil-
latory singular behavior, as shown in Ré¢B]. Thus, the
conformal Killing vector field and associated vacuum states
will not satisfy our criterion.
In constrast, an actual Killing vector field and correspond-
Fock-space construction do satisfy our criterion, and
yield the same vacuum on all folia. The timelike Killing
vector fields onK,qy can be described as the Minkowski
_ TR time-translation vector field/dT, and the vector fields ob-
qD(X)_zq: [BqUiq T aqliq ] 219 tained from this by uniform Lorentz boosts. These vector
fields extend smoothly from thi€,yy subspace to the entire
for which the new vacuum is defined @@:o_ M4 spacetime, as do the positive-frequency modes they de-
fine (see Fig. 2
Field quantization inK,qq begins with separation of the
Klein-Gordon equation in thet,x,y,2 Kasner coordinates

. L . . . (2.3). The separated mode functions can be expressed in
Various timelike vector fields might be used to def'netgrms of Hankel functions

positive-frequency modes, hence a vacuum, for a quantize
field in the Koo Subspace. Symmetry considerations imme- ERCINe) (1yy(1) iKex
diately distinguish two choices—the Killing and conformal- uk=[e" Hik' (s) T o Hi'(s)]e (313
Killing vector f|elld§.. '_I'o choose between these, or among Iesgr Bessel functions

symmetric possibilities, we seek a physical criterion for a
preferred vacuum state. Here we propose the requirement
that field positive-frequency eigenfunctions be well defined
and regularat leastC?) throughout the complete spacetime,
so that the resulting states can be obtained via evolution fro
regular data in the remote past.

Canonical quantization of the theory is implemented by im-
posing the usual commutation relatiohay ,al,]z Sk » etc.
The vacuum is defined bg,|0)=0 for all k. A different
cprlréplete set of solutions, distinguished by overbars, Iikewis<—?ng
yields

Ill. VACUA IN DEGENERATE KASNER SPACETIME

Ue=[dPJic(s) +diZI_ix (s) 1€ . (3.1b

n(]The latter case, for massless fields, requires additional infor-
mation pertaining to th&,=0 modes. The argument of the
=t . . ; 1) = o~ L2t 12 2y 1/24gt
The conformal Killing vector field consists of the four- Hankel or Bes;el_fuicﬂgns 5(t)=g (ky_+ I_<Z+m ) e
velocities of observers moving on world lines of constgpt ~ @nd the order istik = *ilky/g. A prescription for choos-

&, 0) in the Kasner coordinate system. This vector field is nof"d Positive-frequency modes would single out a particular

Killing, owing to the r dependence of the metri2.1), and it combination of the Hankel or Bessel functions. A corre-
' ' sponding combination of the's or d's is then associated

T with the annihilation operator&.14) of the quantized field
theory, thus defining a vacuum state.
A The choice of positive-frequency modes based on the

four-velocities of the Kasner-coordinate comoving observers

K is implemented by requiring the positive-frequency normal-
\ 100 / mode functionsy; to be eigenfunctions of the Lie derivative

\ / with respect to proper time along the observers’ world lines.

That is, the positive-frequency eigenfunctions are required to
be at leasC? (i.e., “regular”) functions satisfying

K,;/(;TUj:_inUj . (32)

(Superpositions of these fundamental positive-frequency
eigenmodes might still be regarded as positive-frequency
functions, though they might not satisfy the regularity crite-
rion.) Since the Lie derivativel,,, does not commute with
the Klein-Gordon operator, the positive-frequency functions
selected by imposing this condition at different times are
different linear combinations of Hankel or Bessel functions,
FIG. 2. Congruences of the inertial Killing vector fieldkny,  9iving rise to a distinct vacuum state on each constemy-

and their extension to the remainder of Minkowski spacetime. Conpersurface and consequent “particle production.” Such be-
gruences of the conformal Killing vector field are also shown con-havior has been studied in Reffl7], where positive-
verging on the origin. frequency functions were chosen on the basis of asymptotic
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behavior at early and late Kasner times, thus defining distincat all times, with no “particle production.” Although the
“in” and “out” vacuum states. But as noted above, neither H{?)(s) functions have oscillatory singular behavigrence
this choice of positive-frequency modes nor the conformalno derivativé on the boundariesX= *+T) of the K4, re-
Killing vector field itself satisfies our criterion of extensibil- gion, the fundamental definition of positive-frequency eigen-
ity throughout the spacetime, suggesting that these vacuanctions in this instance derives from the normal modes
may be classified as “unphysical.” (3.4), which are regular througho . The criterion is thus
Alterl_watively, the Minkowski time-trgnslation KiIIing_ satisfied, and the groupingli(,ﬁ)(s) represents a positive-
vector field can be used. Then the positive-frequency Liefrequency solution of the Klein-Gordon equation separated

derivative eigenvalue equation in the Kasner coordinates.

_ Any other choice of timelike Killing vector field in the
Lyt V=i (3.3 Lie-derivative eigenvalue equation in ti&, region gives
_ ) the same result. In the—t plane these Killing vector fields
picks out functions of the form are given by
uM=e"1T\(X,Y,2) ) -
I AT dl T =coshddl dT+ sinhdal 9X
=exd —iwg ted coshgx)]

Jd Jd
=e 9 cosigx—9¥) ——sinh(gx—9) — |,
X\ [g ™ ted sinh(gx),y,z], (3.9 g )7t g ) X
- . . 3.
where U{") satisfies the Klein-Gordon equationC]( 3.7
2\ t) = : — (124124124 m2\1/2 , .
mjui '=0  with = (x+Iy+Iz+m") and  yith 9 & (—,) the usual boost parameter. Hence boosting
M(X,Y,Z) =exp(lxX+ilyY+il .Z). These positive-frequency from one vector field to another is equivalent to replacing
normal modes are the familiar plane waves in Minkowskithe kasner coordinate by x— 9/g. Such a transformation
spacet'imtla. They are regular t_hrom_Jghout and clearly Satis%ultiplies each functiorHi(lz)(s)eik.x by a constant phase:
?ur cntenfk))n. A.t‘:u'ta.bl'i comblpﬁ?or:_'of I:hlese énOdelffunC'consequently, these functions remain a basis of positive-
lons can be written in terms of the Hankel or bessel _Unc'frequency solutions. The vacuum state thus selected is the
tions of Eqg.(3.1). Such a combination remains positive- same for all values of the parametéx This choice of

frequency; it serves to defiqe the same vacuum state g, m onK ;oo Spacetime shares the Loreriboos} invari-
modes(3.4), but is expressed in Kasner coordinates. Exam|-anCe of the usual inertial vacuum defined on the it

nation of the integral representation

spacetime.
CaKi2 What does this preferred choice of vacuum stat jgy,
H2)(s)= — j g iscosho—iKpg, (3.5 as determl_ned_by our criterion, |mp_ly aboufc the state of the
K i —w quantum field in the full Minkowski spacetime? A Cauchy

surface inK ;oo can be extended to a Cauchy surfaceNtt
reveals that théi(® mode functions are the indicated super- by appending suitable portions &t (i.e., 74 andZ in Fig.
position of positive-frequency functiorid8], as defined by 1). Since for a massive field no physical quantity has support
Eq. (3.3). Recallings=g~*(k;+kZ+m?)"%9", and substi- onZ", all inner products, quantum states, etc., defined on the
tuting p=gx—p’, we can rewrite this as M*# Cauchy surface will be identical to those on the Cauchy

surface in theK ;oo subspace. For massless fields, owing to

2 ikx "€ N possible contributions frord*, all the Cauchy data iM* is
Hik ()€™ =——"— fﬁmdp not determined by the Cauchy datakin,,. However, the set
of states corresponding to the additional Cauchy data is of
xexp{—i[ (K2+ k§+ m?)¥2coshp’] measure zero relative to the set of all statedlih In com-
parison with two-dimensional Kasner spacetime, on the other
X[g~ e coshgx) ]} hand, the additional set of states is not of measure zero.

x expli[(K2+k5+m?)Y2sinhp’]
e i IV. VACUA AND FOCK SPACES FOR ACCELERATED
X[g~re¥sinh(gx)]+iKp'}e Tz OBSERVERS

e 2 The Rindler subspace traced out by a congruence of uni-

- f,wdp, expl—iw(p")T+ilx(p")X formly accelerated observers provides an example in which
different Killing vectors used in the definition of positive
+iKp' +ilyY+il ;Z}, (3.6)  frequency give rise to inequivalent descriptions of the quan-
tized field. The Rindler observers’ four-velocities are associ-
with ; and Iy parametrized byp’: w(p’)=(K;+ki ated with a timelike Kiling vector field in theR region
+m?)Y2coshp’), Ix(p")=(K;+ki+m?) ?sinhp’), 1y  (defined in Sec. )l one which is distinct from that associated
=k, andlz=k,. This choice of positive frequency serves with inertial (Minkowski) observers but which cannot be ex-
to define the same vacuum state as the solutions ofEg).  tended smoothly to the entidd* spacetime and remain both
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timelike and Killing. There is of course an enormous litera-the state of the field using the Fock space constructed with a
ture on quantum field theory in Rindler spacetimecongruence of inertialMinkowski) observers.

[2,4,5,6,17; several authors have pointed out distinctions be-

tween the Rindler- and Minkowski-spacetime Fock spaces V. SUMMARY

and vacuum stateg?,4,5], which emerge despite apparent . . i
formal symmetry between the two treatments. Here those 'N€seé results show that the familiar Minkowski-
distinctions can be interpreted in terms of the nonextensibilcoordinate Fock-space representation of the states of a quan-
ity of the Rindler construction, i.e., the absence of a smootfized field stands out on simple physical grounds from the

timelike and Killing extension of the Rindler timelike Killing diverse array of alternative representations which can be con-
field, and the oscillatory singular behavior of the Rindler Structed even in flat spacetime. The Minkowski-coordinate

modes at the horizons. timelike Killing vector field(time translation used to define
Our regularity criterion selects the inertial-observerPOSitive- and4negat?ve—frequency normal modes extends over
positive-frequency modes over those identified via theh€ entireM® manifold without singularity; the resulting
Rindler-observer congruence. The timelike Killing vector Normal-mode functions are regular on the entire spacetime;
field d/ax tangent to the world lines of the accelerated ob-"énormalized stress-energy expectation values in the associ-
servers (in two spacetime dimensiopnsyields positive- ated Fock-space states likewise exhibit no singularities any-

frequency modes where o.nM“. Hence these states of the quantized field can
o be obtained by evolution from regular data in the remote
Up = (4mrw) ~ YoglkeTwm (4.1a  past. Alternative constructions of vacuum states and Fock
spaces may fail to satisfy one or more of these criteria.
in the right wedgeR (with zero support in wedge), and The degenerate-Kasher geometry traced out by the
uL,k=(47-rw)*1’2e”‘§““’” (4.1b conformal-Killing observers, moving with all possible ve-

locities perpendicular to a fixed spacelike plane, admits a
variety of choices of vacuum state and positive-frequency

o=|k| is imposed by the Klein-Gordon equation for the modes for_ a quarlt!zed f!elql._ InequwaIe“nt ch0|ces can be
made at different “times,” giving rise to “particle produc-

simple case of a massless fi¢ltll]. These modes have os- tion [17].” But via the regularity criterion described here, a

cillatory singularities on the Rindler horizons; they cannot be . . , . .
smoothly extended beyond the Rindler wedges and remaif " J4© choice can be made corresponding to the Minkowski

positive-frequency mode functions associated with atimelikecl:_oordim’lte construction carried out on the full spacetime.
vector field. Analyticity propertiegin the Rindler coordi- hen no particles are produced, and the theory is—at least

. S for massive fields—exactly equivalent to the familiar
nates [5,11] imply that the combinations Minkowski-spacetime theory.

The Fulling-Rindler vacuum and Fock space associated
with a congruence of uniformly accelerated observers are a
o) ) 12 amol2g ~rol2g, * well-k'nown' example c_)f an altern'ative' representation of a
U =[2sinf(mw/g)] (e ug te Ut~ quantized field. But this construction violates our regularity

(4.2) criterion, and the resulting field states exhibit a variety of
pathologieq2,4,5]. In particular, since these states give rise
to stress-energy divergences on the light cones which are the

descr|p_t|on, €., these are superpositions of Iv''nkOV"Sk"horizons of the Rindler coordinates, they cannot arise via
spacetime positive-frequency solutions. As in the Kasner exr'egular evolution from the remote past. Hence it is the

ample, the regularity of those basic solutions over the Who'?\/linkowski Fock-space states—the construction of which

4 . . . .
of M satisfies the criterion. . satisfies our criterion—which should represent the physical
The requirement that states be obtainable from regulal, .. < ot the field

da;aFln tEe remotet patst dlffferenttkllates tthe !\g:nkqwim \Ilqa.lczlum In general spacetimes, lacking the extensive isometry
and Fock-space structure from the ostensibly Similar RINArgy oy e of4, choosing an appropriate vacuum state and

fﬁacetqule tconst_ructlf)ns.bPﬁys_lcal (;otaseq;_er;?es arls_te_ froI'E'Z)ck space from the infinity of possibilities is problematic.
€ oscillatory singular behavior of theé Rincler positive-g, i e criteria considered here of extensibility over the en-
frequency mode functions, and the inextensibility of the Rln—,[ire spacetime, of nonsingularity on the entire spacetiexe

g:er %ongruence as a:_:!mehke ri]ﬂlllng tvector field, at the Fi":.' cept, of course, at actual physical singularities of the geom-
er horizons. Quantities such as stress-energy expecta "?ry), of evolution from the remote pastor initial

values in Fulling-Rindler Fo_ck-spacg states aze divergen ingularity), may prove useful in these more general circum-
there[19]. But these are ordinary points of thé" space- " ¢ S \well

time. Hence regular evolution from regular data in the distant
past could not be expected to put a field into these states. The
Minkowski vacuum and Fock-space states do not suffer from
such drawbacks, and may thus be distinguished as the physi- This research was supported in part by the National Sci-
cal Hilbert space of the quantized field. Hence, for exampleence Foundation under Grant No. PHY-9105935. S.W.-H.
in treating the interaction between a field and an observer oacknowledges his indebtedness to Nicolas J. Papastamatiou
anarbitrary world line, it would be appropriate to represent (now deceasedor many enlightening discussions.

in the left wedgel (with zero support in wedg®), where

u=[2 sinhmw/g)]” Y4 e m20u} _ +e™u ),

are positive-frequency functions in the inertidinkowski)
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