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Abstract 

In this paper a specific form of maximal information propagation is explored, from which 

the origins of , , and fractal reality are revealed.  

  

 

Introduction 

The new unification approach described here gives a precise derivation for the mysterious physics 

constant  (the fine-structure constant) from the mathematical physics formalism providing maximal 

information propagation, with  being the maximal perturbation amount. Furthermore, the new 

unification provides that the structure of the space of initial ‘propagation’ (with initial propagation being 

referred to as ‘emanation’) has a precise derivation, with a unit-norm perturbative limit that leads to an 

iterative-map-like computed  (a limit that is precisely related to the Feigenbaum bifurcation constant 

and thus fractal). The computed  can also, by a maximal information propagation argument, provide a 

derivation for the mathematical constant .  

 

The ideal constructs of planar geometry, and related such via complex analysis, give methods for 

calculation of  to incredibly high precision (trillions of digits), thereby providing an indirect derivation 

of  to similar precision. Propagation in 10 dimensions (chiral, fermionic) and 26 dimensions (bosonic) 

is indicated [1-3], in agreement with string theory. Furthermore a preliminary result showing a relation 

between the Feigenbaum bifurcation constant and , consistent with the hypercomplex algebras 

indicated in the Emanator Theory, suggest an individual object trajectory with 36=10+26 degrees of 

freedom (indicative of heterotic strings). The overall (any/all chirality) propagation degrees of freedom, 

78, are also in agreement with the number of generators in string gauge symmetries [4].  

 

In ‘Unified’ Propagator Theory, the form of propagation is itself emergent, and within that construct, 

there is then emergent the functional optimization that describes how the system behaves, e.g., the 

Lagrangian is part of that latter emergent step. Thus, Lagrangians originally introduced as a convenient 

mathematical constructs, and in later physics endowed with their own physicality, especially in 

conjunction with the path-integral description to properly capture topological features (the Aharanov-

Bohm experiments), are here seen as direct mathematical encapsulations of the fundamental emergent 

nature of the physical system.  

 

The number system, or algebra, used to describe a physical system is typically the real numbers, 

sometimes the complex numbers (to describe wavelike phase information), and, rarely, the quaternionic 

numbers (to describe rotation and EM interactions). In recent theoretical efforts, attention has also been 

paid to octonionic numbers to describe Quantum Electrodynamics (QED) and Quantum 

chromodynamics (QCD) interactions [5-11]. The algebras given by real, complex, quaternionic, 

octonionic, sedenionic, trigintaduonionic, …., are known as the Cayley-Graves algebras, whose 



dimensions double at each step, one dimension for real, two for complex, four for quaternionic, etc. 

Maximal unitary propagation occurs with the octonion algebra and no higher (thus ‘maximal’ 

propagation, seemingly, only in 8 dimensions). What is actually needed in physics ‘propagation’ is right 

multiplication with a unit-norm ‘propagator’, for example, giving rise to a unit-norm result (then 

iterating to create a path from the infinitesimal propagator steps). If this is sought instead, then a chiral 

extension can be made from the octonions into the sedenions, and then again into the trigintaduonions, 

giving rise to a maximal ‘propagation’, or projective emanation, in 10 dimensions within the 32 

dimensional trigintaduonions (as shown in [1-3] and summarized in the Appendix).  

 

For Real numbers unit norm propagation is trivial, consisting of multiplying by +1 or -1. For Complex 

numbers unit norm propagation involves multiplication by complex numbers on the classic unit circle in 

the complex plane, which reduces to simple phase addition according to rotations about the center of 

that circle (motions on S
1
). For quaternion numbers unit norm propagation is still straightforward since 

it’s still, in the end, a normed division algebra, where N(xy)=N(x)N(y). For the quaternions, instead of 

motion on S
1
, we now have motion on S

3
, the unit hypersphere in four dimensions. This still holds true 

for Octonions, with unit norm still directly maintained when multiplying unit norm objects in general. 

Now the motion is that of a point on a seven dimensional hypersphere S
7
.  Sedenions are not normed 

division algebras, lacking linear alternativity and the moufang loop identities (see Appendix), thus 

multiplication of unit norm objects for sedenions (points on S
15

) will not, generally, remain unit norm, 

i.e., will leave the S
15

 space.  

 

The question then arises is there is a sub-algebra or projection in the sedenions, that is not just trivially 

the octonions, that can still allow unit norm propagation? If this works for Sedenions, what about Bi-

sedenions and higher dimensional Cayley algebras? In [1] and the Appendix it is shown that there are 

two Sedenion subspaces where the unit norm property is retained. This is found again at the level of the 

Bi-Sedenions by a similar construction. The results were initially explored computationally [1], then 

later established in theoretical proofs [1-3]. In those proofs a key step fails when attempting to go to 

higher orders beyond the bi-sedenions and its sub-algebra propagation. (Propagation is taken to mean 

that a unit norm element of an algebra when multiplied by a unit norm element that can be propagated: 

(unit norm)*(unit norm subalgebra)=(unit norm), where the one-sided multiplication by the special 

subalgebra results in a product that remains unit norm.) 

 

In the RCHO(ST) hypothesis Physics unification was thought to directly entail propagation in terms of 

hypercomplex numbers [12] (from Reals thru Trigintaduonions in Cayley sequence), This hypothesis 

was  motivated by Maxwell, Feynman and Cayley, in hopes of being able to directly encode the standard 

model and statistical mechanics. But to get the 10D propagation formalism entails ‘projections’, not the 

more familiar mathematical objects directly giving rise to standard propagation (in a complex Hilbert 

space). Instead, the standard propagation is part of the emergent (with complex Hilbert space) 

description, as will described further in later sections. 

 

The Feynman-Cayley Path Integral proposed in [1,2] involved use of chiral bi-sedenions in an effort to 

identify a mathematical framework within which to have a unified propagator theory (and maximal 

information propagation was sought for such a hypothesized propagator). At its root, this is a hypothesis 

for an algebraic reality, with algebraic elements describing ‘reality’ and algebraic multiplicative 

processes underlying propagation. All of the different ‘paths’ of propagation are then brought together in 

a sum – where stationary phase is selected out and the variational calculus basis for much of physics 



then takes over to offer all of the familiar elegant solutions of classical physics. This is still thought to be 

the process, but two stages of emergence are indicated: (1) emergence of the emanation (projective) 

propagations followed by the (2) emergence of standard propagation in a complex Hilbert space. So, 

even though we start with RCHO(ST) with the emergence of emanation, we end with a framework for 

emergence of standard propagation where that propagation involves a complex Hilbert space in order to 

‘propagate’, and not any of the other algebras involved in RCHO(ST). 

So, if the Feynman-Cayley construction works on all algebras, it essentially allows a selection argument 

to be made for the highest order unit norm propagating algebra in devising theories to describe matter. 

The highest order propagating structure might, thus, be the ten dimensional (10D) unit-norm bi-sedenion 

elements, that are shown here, that are (chirally) extended sedenions that are themselves made from 

chirally extended octonions. The nine dimensional space “free” dimensionality when paired with the 

implicit time dimension provides a 10 dim (1,9) spacetime theory, in agreement with string theory. (If 

the time is augmented to be complex, then we get an 11-dim theory, with a fundamental role for 

Euclideanization related thermodynamics properties.)  

 

In the Results we begin with constructing the theoretical expression for a general element of the bi-

sedenion algebra after two chiral bi-sedenion multiplicative propagation steps. A simple analysis of the 

number of terms in this expression, when reduced to three-element algebraic ‘braid-level’, results in a 

count on algebraic braids of 137, plus a little extra (e.g. some lagniappe for the best ‘cooking’) of a 

contribution towards a 138
th

 braid. (The extra involves a complex-dimensional extension outside the 10-

dim propagation). Once this is done, the Results then show derivations for  and the Feignebaum 

bifurcation constant. To put the Results in their proper context, it will help to review some of the 

background and mystery associated with the famous parameters discussed, starting with the fine 

structure constant. 

 

Background 

 

The mystery of alpha 

The fine-structure constant, , has been a mystery confounding physicists for over a century. In early 

work on spectral analysis where it first appeared, Sommerfeld noted the almost cabbalistic 

underpinnings of the mathematics (in his book Atombau and Spektrallinien [13], Sommerfeld referred to 

the Rydberg top square equation as a ‘cabbalistic’ formula). Wolfgang Pauli, a student of Sommerfeld’s, 

shared his keen interest in the origins of  and turned it into a life-long obsession. So much so, that it 

practically drove him mad, to where he sought the help of famed psychoanalyst Carl Jung, with whom 

he eventually partnered to try to solve the mystery of  (the madness is contagious). From Pauli’s Nobel 

Prize Lecture:  

 

“From the view of logic my report on ‘Exclusion principle and quantum mechanics’ has 

no conclusion. I believe it will only be possible to write the conclusion if a theory will be 

established which will determine the value of the fine structure constant and will thus 

explain the atomistic of electric fields actually occurring in nature.” (emphasis mine) 

 

The obsession with  continued with the next generation of great Physicists as well, particularly 

Feynman, who said [14]: 



 

“There is a most profound and beautiful question associated with the observed 

coupling constant, e – the amplitude for a real electron to emit or absorb a real 

photon. It is a simple number that has been experimentally determined to be close to 

0.08542455. (My physicist friends won't recognize this number, because they like to 

remember it as the inverse of its square: about 137.03597 with about an uncertainty of 

about 2 in the last decimal place. It has been a mystery ever since it was discovered 

more than fifty years ago, and all good theoretical physicists put this number up on 

their wall and worry about it.) Immediately you would like to know where this 

number for a coupling comes from: is it related to pi or perhaps to the base of natural 

logarithms? Nobody knows. It's one of the greatest damn mysteries of physics: a 

magic number that comes to us with no understanding by man. You might say the 

"hand of God" wrote that number, and "we don't know how He pushed his pencil." 

We know what kind of a dance to do experimentally to measure this number very 

accurately, but we don't know what kind of dance to do on the computer to make this 

number come out, without putting it in secretly!” 

 

 

Fractal Reality 

Consider maximum “unit-norm” propagation (via right multiplications), e.g., a projection (or 

‘emanation’), where a hypercomplex ‘emanator’ has maximum propagation dimensionality ten, residing 

in a double-chiral 10dim subspace of the 32dim space of trigintaduonions. The maximum propagation 

perturbation allowed from the 10dim space into the embedded 32 dim space is given by the fraction  

for the non-10dim part, where this is taken as the definition of . Computational efforts to determine  

recover the known  from QED, as in [2].  

 

Exploration to high precision indicates a possible fractal limit (as noted in [2]), with possible pattern 

recurrences as in the Mandebroit Set on complex numbers (there a limit on complex numbers, here a 

limit on hypercomplex numbers, the trigintaduonions, operating in 32x2dim, x2 from complexation, 

instead of 2dim). A further complication is that the 32 dim hypercomplex trigintaduonion numbers have 

also become non-associative (but still retain octonionic sub-space ‘braid’ rules, which are critical in 

what follows). 

 

To see the fractal connection, consider the iterative mapping based on the function zn = (zn-1)
2
 + c. For 

choice c and initial z0=0, if z  , then that c is outside the set, otherwise, if remains bounded, then 

it’s in the (Mandelbroit) set. This is an example famous for its beautiful fractal images and mathematical 

properties. The largest c value (at the edge of chaos) is known as the bifurcation parameter and is c* = 

1.401155189…. The maximum allowable ‘perturbation’ for z (not z
2
) would then be (c*)

(1/2)
. In the 

trigintaduonion propagation we discover in what follows we have chiral propagation in the 32 dim 

trigintaduonion space, where the real dimension is fixed by the unit-norm property, leaving 31 ‘free’ 

imaginary dimension/parameters, two of which are selected for the chirality (and thereby fixed in their 

real component). If we allow the same maximal bifurcation parameter as a factor for each of the 29 free 

dimensions (and for the imaginary part in the other 3 dimensions), and allow maximal antiphase on the 

imaginary parts of the 2 chirally-fixed dimensions (a relation obtained in the more careful derivation to 

follow), we can estimate the max perturbation allowed for the trigintaduonion emanation to be 



Estimated 
1

 = (c*)
(1/2)(29+/36+/36)

 = (c*)
29/2+/36

 = (1.401155189…)
29/2+/36

 = 137.035….! 

 

A more precise relation is given in the Results. 

 

The emergence of Propagation: Part I 

Consider an infinite-order hypercomplex unit-norm Number giving rise to a propagating structure, with 

time and chirality selected, with QED and QCD gauge bundles emergent and their associated 22 

parameters fixed ( is fixed too). With the emergence have the 10dim propagation derived in what 

follows, with -perturbation into the full 32 dim. (The higher order Cayley-Graves algebras may have 

Planck-scale perturbations, but have zero-divisors acting as effective cutoffs.) Thus, have a 

hypercomplex Big Bang, and an ‘emergence’ where a construct for ‘receiving’ that emergence is found 

(the unit norm base state/word and the random propagation step that moves forward the universe on step 

at a time….). The receiving of the universal emanation results in emergent spacetime and chirality, 

perhaps akin to the emergence of Amman bars and orientation with a Penrose tiling once seeded [15]. 

Random addition from initial seed of Penrose tiling versus random initial norm1 state with random unit-

norm 10 dim chiral propagations (within a 32dim space), appears to have emergent structure as well.  

 

Once a 10dim propagation is emergent, there is likely an emergent semiclassical string theory. The 

emergence process also helps explain the validity of the various renormalization methods (dimensional 

regularization, in particular). In the latter regard, the dimensional regularization trick whereby a higher 

complex dimensional extension is invoked is here seen to actually be true. Similarly, string theory is an 

emergent construct, along with the manifold and the standard model, and Lagrangian encapsulations, 

etc. Thus, invoking a higher dimensional space, often through complexification of real variables, is 

natural in this emergent context, where such a higher dimensional complex embedding is already posited 

to exist in the emanation emergence process. The complex-extension method is critical in QED, 

Euclideanized path integral formulations, and thermal quantum field theory in general, where complex 

time relates to introducing a thermal background temperature for the system (thus the complex extension 

allows unification with thermal physics and emergent, Law of Large Numbers (LLN) based, statistical 

mechanics constructs). 

 

Consistency with the semiclassical first quantized string theory, allowing an alternative renormalization, 

also indicates the flat-space oddity of the seemingly general formalism of string theory (in other regards) 

having an odd flat spacetime reference. This is here understood as simple consistency with the 

maximum information propagation in the universal algebra formalism, where the 10 dimensions are 

resulting from the ‘free’ algebra parameters in the 32 D trigintaduonions, and as such have no other 

structure between them other than the implied ‘flat metric’ of the trigintaduonion algebra. This also 

demotes the string to being an artifact of the emergence, albeit on a higher level than the quantum field 

theory based on point particles descriptions usually sufficient. 

 

In [6], with split octonions alone it is possible to describe spacetime, EM-fields, and uncertainty 

relations… 

This is very promising as regards extracting the familiar standard model from the much larger, already 

chiral, 10D propagation (fermionic) with maximal perturbation  (and 22 parameters from the non-

propagating dimensionalities [3]). From this we get an achiral (4-chiral sum) subspace with 26Dim 

propagation for bosons. Get complete propagation with 78 generators (consistent with string theory, as is 



the 10dim and 26 dim). Also, we shall see that we have 137 tri-octonionic ‘braids’ of information 

flowing in the 10dim chiral propagation, this is critical in the derivation of  from  that follows. 

 

Results 

Trigintaduonion Emanation and Emergence of the Critical Parameters 78, 137, and  

Consider a general Norm=1 (32D) Trigintaduonion (Bi-Sedenion): (A,B), where A and B are sedenions 

(16D). 

Then have (A,B) = ( (a,b), (c,d) ), where {a,b,c,d} are octonions. 

 

Slightly different than a propagator, we have an ‘emanator’ with the following notation and properties: 

Emanator describes a 10D multiplicative step. The emanator is a chiral bi-sedenion: a trigintaduonion 

whose first sedenion half is itself a chiral bi-octonion, and the second sedenion half is a pure real (as is 

the second octonion half): (𝐴̃,), 𝐴̃ = (𝑎̃,), where the norm is 1,  is a real octonion, and  is a real 

sedenion. Thus: 

 

Emanator: (𝐴̃,) = ( (𝑎̃,), ). 

 

Note: 𝐴̃* = (𝑎̃*,). 

 

Let’s set up a description of the Universal ‘Emanation’ resulting from a few emanation steps. To begin, 

suppose we have already arrived at, or received, a unit norm trigintaduonion (32D) state ‘T’, and 

suppose our emanations are the result of right multiplication with a chiral bi-sedenion ‘step’, and 

suppose we consider one such path after just a few steps. Here’s the notation to begin: 

 

T = (A,B), a unit norm trigintaduonion. 

 =  (𝐴̃,) = ( (𝑎̃,), ), the ‘emanator’ above (so named to distinguish from a ‘propagator’). 

 

Universal Emanation from T on single path with three steps: 

 

( (T  1)  2)  3) … 

 

Consider the first emanation step:  

 

T  1 = (A,B)  (𝐴̃,) = ( [A𝐴̃*B] , [B𝐴̃*+A] ). (Standard Cayley algebra multiplication rules.) 

 

A𝐴̃ = (a,b)  (𝑎̃,) = ( [a𝑎̃*b] , [b𝑎̃*+a] ) 

 

B𝐴̃* = (c,d)  (𝑎̃*,) = ( [c𝑎̃*+*d] , [d𝑎̃c] ) 

 

Thus, 

T  1 = (A,B)  (𝐴̃,) = ( [ (a𝑎̃*bc) , (b𝑎̃*+ad) ] , [ (c𝑎̃*+*d+a) , (d𝑎̃c+b) ] ). 

 

At the lowest octonion level, that covers the pure real trigintaduonion, we have: 

 



 (a𝑎̃*bc)  8x8 + 8 + 8  2 = 64+14 = 78 independent octonion terms (78 independent 

generators of motion). The 2 comes from the unit norm constraints on T and . 

 

 

Now consider the second propagation step: 

 

(T  1)  2) = ( [ (a𝑎̃*bc) , (b𝑎̃*+ad) ] , [ (c𝑎̃*+*d+a) , (d𝑎̃c+b) ] )  (𝐴̃,), 

 

where  2 =  (𝐴̃,) = ( (𝑎̃,), ). 
 

Let (T  1)  2) = ( [Z11,Z12] , [Z21, Z22] ). 

 

Z11 = (a𝑎̃bc)𝑎̃  (b𝑎̃*+ad)   (c𝑎̃*+d+a). 

 

In Z11 we can replace the octonions with their unit component forms: 

 

a =a1e1 + a2e2 + … + a8e8 ,  

 

where {e1, e2, …, e8} are the unit octonions (one real, seven imaginary), while ‘’=e9 and ‘’=e17, 

originally, but in expressions, are reduced to just their real part. All expressions, thus, involve 10 

components: {e1, e2, …, e8, e9, e17}, and as the equations for Z11 shows, grouped in factors of three 

(three-element octonionic ‘braids’). We don’t have associativity but we do have alternativity and the 

braid rules on three-element octonionic products that allows their regrouping. Applying these rules to 

have only ordered eiejek products in a simplified expression, we will then have 10x9x8/3! = 120 

independent terms when the products involve different components. We have 8 independent terms when 

the first product are on the same component (equals 1), have 8 independent terms when the second 

product involves the same component, and have 1 independent term when the three-way product equals 

1. There are, thus, 137 independent terms in Z11, where each term has norm less than unity (since each 

octonionic component has norm less than one and the norm of a product of octonions is the product of 

their norms). The terms involving products with the same component, or with the components three-way 

product equal unity, are correspond to the ‘telescoping terms’ in what follows. 

 

When T=((a,b),(c,d))  ((T  1)  2)=((Z11,Z12),(Z21, Z22)).  we have aZ11 and the terms involving 

‘a’ in Z11 are referred to as ‘telescoping’ due to their simple math properties with further emanation 

steps. In particular, the terms involving ‘a’ are: 

 

Z11[a terms]= a𝑎̃𝑎̃  a  a. 

 

We can see that the original ‘a’ information is passed along three (telescoping) channels, one involving 

repeated full octonionic factors 𝑎̃, one involving repeated real-octonion  factors, and one involving 

repeated real-octonion  factors: 

 

(1) a  (a𝑎̃)𝑎̃ , if this product is continued indefinitely, then we have the random product of a 

collection of octonions, all of which have norm less than one (although their norms can be quite close to 

one). If their norms were perfectly equal to one, then the addition of their random ‘phases’ would tend to 



cancel to zero, giving only a real octonionic component (same argument for phase cancelation on S1 as 

on S7 or S15). What results is a ‘mostly’ real octonion, having some imaginary part. Note, we have 

reached a situation where we know there is unit-norm propagation, but where some bounded imaginary 

components can arise. Regardless, we have one independent component, and one, dependent, imaginary, 

component (so not counted) 

 

(2) a  a , if this product is continued indefinitely, ‘telescoped’ with repeated  products, we see 

that the original 8 independent terms arising from ‘a’ are passed forward with an overall real octonion 

product, giving rise to 8 independent terms. 

 

(3) a   a , as with (2), we have 8 independent terms. 

 

From the above, we see an alternative accounting of the extra 17 independent terms to go with the 120 

for a total of 137 independent terms in the propagation of the real octonionic sector of the universal 

propagations (the other octonionic sectors in the bi-sedenion emanation are surmised to have a similar 

137-term transmission channel by similar accounting). A benefit of the telescoping analysis is it clarifies 

how in (1) an imaginary component may arise, and in perturbation expansions it will then be natural to 

refer to an overall imaginary component. 

 

There are 137 terms in the dually chiral ‘emanation’, each with norm bounded by unity, with total bi-

sedenion norm equal to unity. In the analysis that led to the computational discovery of  [1,2], an 

imaginary (non 10D) component was added of growing magnitude until unit-norm propagation failed. In 

essence, a maximum perturbation, from propagation strictly in the 10D subspace of the 32D 

trigintaduonions, was sought. Now, once we purposefully allow imaginary perturbative contributions in 

the definition of the ‘emanator’, then all is the same in the above analysis, except now the imaginary 

component in (1) is independent, albeit bounded to significantly less magnitude than unity (we will find 

it is 137.035999-137=0.035999). 

 

In the next section we identify maximal perturbation by doing an independent ‘braid’ term analysis, and 

by adding a maximum perturbation term that implicitly identifies a definition of maximum antiphase. 

From this definition of maximum antiphase, there results the parameter , but here with an unexpected 

origin from emanation theory where maximum perturbation occurs at maximal antiphase. 

 

The emergence of  from  

In the relation of Gilson [16], to be derived and explained here, the key parameters are those indicated in 

the chiral subspace in the maximum perturbation definition for . Suppose we take  as a given, with 

maximal value, by consistency, related to subspace structures of the trigintaduonions, can we express a 

relation to the classic mathematical parameter ? The answer is yes, and that’s the derivation that 

follows. 

 

In what follows we will use the previously identified property that there are 137 independent tri-

octonionic braid propagations contributing to the  max-perturbation 10-dim propagation. When 

perturbations are allowed, where each braid has a small contribution in each of the trigintaduonion’s 32 

dimensions, minus the unit-norm constraint and two choices of chirality constraints eliminating 3 of 

those dimensions, leaving 29 dimensions free. The 137 independent (real) tri-octonionic braids each 

contribute a maximum magnitude 1 to the propagation (since they can have at most the entire unit-norm 



flow at any given moment), with total real magnitude of the braids being ‘137’. Now consider that there 

is an overall complex octonionic contribution, representing the perturbation contribution in its entirety 

(as alluded to in the previous section), whose magnitude is selected such that the overall magnitude is 

that providing the complex magnitude at maximal antiphase contribution to the real magnitude of 137. 

Let’s denote the first maxima of complex magnitude antiphase encountered, as phase is increased from 

zero, as being at phase = ‘’. In terms of the magnitudes we thus have the magnitude relation in Fig. 1: 

 

 

 

 

 

 

 

 

 

Fig. 1 The magnitude relation for effective braid count. First estimate based on magnitudes.  

 

We want H  1 at all times in order to not break the unit-norm property, where  is the maximum 

perturbation allowed. Thus we have max = 1/H for our initial estimate.  

 

As mentioned previously, for the propagation of any braid, given the unit norm and chiral-selection 

constraints, there are 29 possible dimensions of propagation, thus 29 imaginary components to consider 

in addition to the real contribution on that thread. Now imagine that the  (maximal antiphase amount) 

for maximal perturbative information flow (still unit norm) occurs with that antiphase contribution 

equally distributed amongst all 137 braids and their 29 dimensional propagations, thus have an 

imaginary contribution that we can calculate from the given overall magnitude, but now with respect to 

a phase angle of /(137  29) as shown in Fig. 2: 

 

 

 

 

 

 

 

Fig. 2. The magnitude-angle relation on effective transmission pathways (all with norm bounded by 1.0), 

where angle is for  in 137x29 subparts. 

 

Since the magnitude of our braid contributions must not exceed unity, lets rescale by H, to get Y = 

sin(). Consider what we have now, a description relating the relative amounts of the real and imaginary 

parts of the chiral propagation for each of the braid propagations into the 29 ‘free’ dimensions available. 

The imaginary part is now sin(/(13729)) for each of these contributions. If we were to arrive at a 

perfect antiphase arrangement of all (13729) of these components we’d have a total antiphase of 

(13729)sin(/(13729)), which isn’t simply ‘’ as desired. So lets consider a last triangle manipulation, 

where now a simple rescaling is done from sin(/(13729)) to (/(13729)), then a rescaling of the total 

braid magnitude (Fig 3): 

 



 

 

 

 

 

 

 

Fig. 3. The magnitude-angle-side relation on effective transmission pathways (all with norm bounded by 

1.0), where angle is for  in 137x29 subparts and imaginary side length is rescaled such that.it is 

/(13729), such that maximal antiphase from 137x29 contributions is . 

 

Thus, the maximum value of the real component of the propagation defines a limit on perturbation 

amount where (1/max) = H cos (/sin). We thus find a unique relation between  and : 

 

max = (1/137)(cos/cos)(sin/), where  = (/137) and  = /(137  29) 

 

max  (1/137)(0.9997370885/0.9999996874)(0.000790735547/0.000790735629) 

 

thus, 

 

1/max  137.0359998, 

where the last digit is uncertain given the precision used. 

 

Since  is a fundamental parameter that emerges for a maximal propagation, and we find here another 

relation on  that ties it to the maximal antiphase amount ‘’, we find that this is the origin of the 

fundamental parameter  from mathematics. Although the idealizations of planar geometry can be used 

to derive  (or modern variants from complex analysis involving the complex plane) it is interesting that 

we have here an origin of  via what leads to maximal anti-phase when computing max , where =max 

is selected for maximal information propagation. So  ‘came first’ (with the notion of antiphase) then 

the induced idealizations of planar geometry. In split octonionic representations O=(QL,QU), the lower 

quaternion QL, can separate as a set of spacetime coordinates obeying Lorentzian transformations, and 

whose spatial part has the 3-dimensional continuation of the implied planar geometry constructs (now 

identified as emergent via ), thus we have emergence of familiar geometry (and Lorentzian transforms 

are natural from the quaternionic sub-algebra). 

 

 

The relation of  to  (and thus ) 

The relation of  to the Feigenbaum bifurcation parameter , involves seeing the limit on maximum  

computation as related to the maximum stable value () on the one (complex) parameter iterated 

mapping (but now involving roughly 32 parameters for the 32D trigintaduonion). A more precise 

relation can now be given, using arguments similar to those employed in the previous section in showing 

the relation between  and , and we have: 

 

Theoretical 
1

 = (c*)

 = 137.035999…, 

where, 



 = (1/2)(29 + (/36)[ 1/(29x137x28) + 1/(29x137x2) + 2 ]). 

 

A preliminary description of where each term in the above expression comes from is as follows. 

Dimensional analysis on the iterative mapping has c*  (perturbation squared), thus (c*)
(1/2)

 for the 

amount of perturbation per dimension. There are 29 “free” dimensions for the chiral trigintaduonion 

perturbations, since one is dependent via the norm=1 relation and two are dependent via the real 

octonion and real sedenion constraints defining the two chiralities (e.g., 32-1-2=29). Thus, 29 factors of 

the square root of the Feigenbaum bifurcation parameter. Now consider the add-ons for each of the 

dimensionalites in their contribution via imaginary components. A preliminary theoretical form might 

have one term, maximal antiphase, associated with an overall imaginary contribution to the real 29 

dimensions, and two terms, maximal antiphase, associated with the real octonion and real sedenion each 

having an overall imaginary contribution at maximal antiphase, likewise the overall unit norm seen as 

real component with imaginary contribution also increased to maximal antiphase. All of the antiphase 

terms have a factor (/36) consistent with the (maximal)  phase partitioned according to the degrees of 

freedom of the information transmission object (having 36 dimensions, consistent with 36=10+26 in the 

heterotic string). For the two chiral transmissions, this completes the partitioning, thus the ‘2’. For the 

overall imaginary term at maximal antiphase associated with the 29 ‘free’ dimensions, there are forward 

threads of propagations according to each dimension (29), the number of independent tri-octionic 

transmission ‘braids’ (137), and the number of degrees of freedom of the overall flow according to 78 

generators of motion, minus 22 fixed parameters, halved for forward propagations only ((78-22)/2)=28), 

thus have the term ‘1/(29x137x28)’. For the overall imaginary with maximal antiphase associated with 

the real component of the trigintaduonion have flow into 29 dimensions, on 137 threads each, and with 

both forward moving in time and backward, thus a factor of two, to give rise to the factor 

‘1/(29x137x2)’. 

 

Thus, there appears to be a relation between the Feigenbaum (or Mandelbroit) bifurcation parameter and 

 and . Furthermore, the suspected fractal limit behavior of the (maximal)  computation (described in 

[2]) appears to be confirmed by this relation. We already saw that  is derivative from , and in the 

relation to the bifurcation parameter, reduces to an expression that can be made with just  (or just  -- 

where the relation to just  proves irrationality and transcendental for  and the Feigenbaum constants). 

The choice of 36 in the relation also has special significance, as it indicates 36 degrees of freedom for 

the propagation an individual fundamental object and this is consistent with heterotic string theory, 

where the strings have 10 degrees of freedom for fermionic plus 26 degrees of freedom for bosonic, for 

a total of 36 degrees of freedom [4]. 

 

 

Discussion 
The emergent trigintaduonion universal algebra and chiral emanation hypothesis 

Physics has a lengthy ‘love-hate’ relationship with hypercomplex numbers. One of the earliest 

formulations of electromagnetism by Maxwell involved quaternionic mathematics, and even at that time 

this relationship was off to a difficult start. As stated by Maxwell in a manuscript on the application to 

electromagnetism in November of 1870 [17]: “... The invention of the Calculus of Quaternions by 

Hamilton is a step towards the knowledge of quantities related to space which can only be compared for 

its importance with the invention of triple coordinates by Descartes. The limited use which has up to the 

present time been made of Quaternions must be attributed partly to the repugnance of most mature 

minds to new methods involving the expenditure of thought ...” (with emphasis mine). The enthusiasm of 



Maxwell for use of Quaternionic mathematics did not win over the great physicists of his day, Josiah 

Willard Gibbs and Oliver Heaviside in particular, who discarded the quaternionic mathematics in favor 

of a new mathematics (vector calculus) that they invented so as to avoid the ‘foreign’  hypercomplex 

mathematics. In a biography of Hamilton [18], in a quotation attributed to Gibbs: “My first acquaintance 

with quaternions was in reading Maxwell's E.&M. where Quaternion notations are considerably used. ... 

I saw, that although the methods were called quaternionic the idea of the quaternion was quite foreign to 

the subject.” 

 

The stigma associated with hypercomplex mathematics, and the higher-dimensional physics unification 

attempts of Maxwell and later Einstein, was still significant decades later when Feynman obtained an 

unusual proof of the homogeneous Maxwell equations [19-22] in a higher (than 3) dimensional space. 

Feynman was trying to see if any new theoretical theory would be indicated and the fact that he had 

obtained a novel new way to explain the existing Maxwell’s equations in higher dimensions was not 

interesting at the time. The inextricable problems of quantum gravity and the discovery of higher-

dimensional string theory, among other things, have changed the focus since that time almost 70 years 

ago.  

 

It has been shown in numerous papers that the (1,9) dimensional superstring has a natural 

parameterization in terms of octonions [23-25]. In [5,6] the Dirac and Maxwell equations (in vacuum) 

are derived using octonionic algebras. In [7] a quaternionic equation is described for electromagnetic 

fields in inhomogeneous media. In [8], the D4-D5-E6 model that includes the Standard Model plus 

Gravity is constructed using octonionic fermion creators and annihilators. In [9] octonionic 

constructions are shown to be consistent with the SU(3)C gauge symmetry of QCD. It would appear that 

there are a number of implementations involving hypercomplex numbers that are consistent with the 

Standard Model. But there is still the question of why bother? What is shown here is why the bother 

might be worth it as a critical new link to string theory is provided, that may explain what dimensional 

compactification will relate to what experiments involving the standard model, and the formalism also 

allows for an explanation for Dark matter, all in a mathematics that can be absorbed into a Lagrangian 

formulation that could be consistent with a theory of Gravity. 

 

To be more specific as regards the different strings. Type I superstring theory is an “open” string theory 

with critical dimension 10, with strings unoriented, and gauge SO(32). For closed string theories the left 

and right moving modes no longer have to be of the same type. If they are the same and don’t obey 

supersymmetry, then D=26 and there are tachyons. If they are the same and obey supersymmetry (Type 

II), then the critical dimension is 10 with no gauge but two supersymmetries. If they are a mix with D10 

‘right-movers’ and D26 ‘left-movers’ (with 36 degrees of freedom), they are known as ‘heterotic’. For 

heterotic strings with the two critical dimensionalities (D=10 and D=26), the 26 must compactify 16 as 

gauge degrees of freedom to reduce to 10. If compactification done with gauge E8xE8, spin(32)/Z2, or 

SO(16)xSO(16), then anomaly and tachyon free. Note, from [4]: “E6 is a subgroup of E8. E6 has 78 

generators that form a sub-algebra of E8. E6 has a maximal subgroup SU(3)xSU(3)xSU(3).” 

 

Often overlooked, but critical to the 8+2 emanator hypothesis, is that a relation between spinors and 

vectors is required in classical superstring theory, and this can only happen when the space of direction 

perpendicular to the string worldsheet forms a normed division algebra [26,27]. So, classical superstring 

theories must exist in 8+2=10 dimensions as well. 

 



 

Unit-norm propagation 

For physical description a unit norm object can be used to represent a system, and by repeated 

transformation to other unit norm objects, it thereby evolves. Mathematical objects that can effect this 

‘transformation’ simply by the rule of multiplication would be objects like division algebras, ideals, and 

what I’ll simply call projections or emanations. In the universal propagator we have a unit norm 

trigintaduonion (32D) and perform a right multiplication with a chiral (10D) unit norm ‘alpha-step’ 

(defined by a max perturbation  into the 29 free dimensions given by 32 minus one for each chiral 

choice, and one for the unit normalization overall). Consider multiplication of a given (starting) 

trigintaduonion from the right with a chiral bi-sedenion as a ‘projection’ through the (chiral) step 

indicated. The repeated application and repeated ‘chiral steps’ thereby arriving at a path describing a 

chiral propagation. The resulting universal propagation consists of a 32D unit norm trigintaduonion with 

propagation via right multiplication using a unit-norm, chiral bi-sedenion, with max- perturbation. 

Thus, we suggest a projection (or emanation) from an infinite space to an infinite-order Cayley-Graves 

algebraic space to a 32 dim trigintaduonion space to a 10 dim chiral ‘propagation’ space, where the 

parameter  arises in the limit of maximum information propagation, as does the familiar mathematical 

constant . 

 

We thereby arrive at a ‘Universe Propagator’ that takes on the parameters desired and imprints them 

onto the 10D (ten dimensional) evolution as seen from the ‘internal reference frame’ where we reference 

an object in the 4D spacetime with 6D gauge field, and where the standard Lagrangian emerges as the 

necessary ‘propagate-able’ structure (Hilbert space must be complex, not real, quaternionic or 

octonionic, etc. [28]). From maximum information flow with the constructs, and the required emergent 

complex Hilbert space (thus complex path integral, thus standard quantum operator formalism) we 

arrive back at the familiar results with justification of their core mathematical representations (e.g., 

complex Hilbert space), and now with justification of all parameters, all from the emanation hypothesis. 

This can also be said to allow for an emergent superstring representation, with lots of additional 

consistencies with the Universal propagator, at the level of generators (78) for example.  

 

Just from the propagation structure on one path we have already seen core emergent structure that results 

in a universal emanation with structural parameters 10,22,78,137 and perturbation maximum =~1/137. 

The central notion in the universal emanation hypothesis is that there should be maximal information 

flow, where this is accomplished by finding the highest theoretical dimensionality of unit-norm 

‘propagation’, here called an emanation, which turns out to be 10, then add the maximal perturbation 

that still allows unit-norm propagation, where that perturbation is into whatever space the 10D motion is 

embedded in, here a 32 dimensional (trigintaduonion algebra) space. 

 

Given maximum information flow, the universal emergence will arrive at the 10D propagation splitting 

(compaction) into spacetime geometry and matter gauge fields. The parameters and structure described 

are consistent with string theory and quantum field theory, where we fundamentally arrive at emergence 

of ‘propagation’ as conventionally known, with a complex Hilbert Space (not other hypercomplex). A 

complex Hilbert Space description is the only one with propagation [28], thus it is necessarily the 

emergent construct that must encapsulate the geometry/matter split/compaction, into the familiar 

Standard Model formulations. This ties into emergence of the standard formalisms of QED and QCD. 

Likewise for the emergence of elegant geometrically optimal solutions relating to General Relativity 

(GR). Where there was conflict between QED/QCD and GR, e.g. the question of Quantum Gravity 



(QG), it will be solved by considering the universal emanation of not just one path but all paths, summed 

with the usual phase cancelations down to a ‘classical path’ with stationary phase. The latter, in this 

context, is the emergence of standard propagator theory with standard model. So proposing here an 

earlier phase of universal evolution described by a theory of emanations, where mathematically invariant 

emergent structures appear. From this early phase, one of the emergent constructs is the familiar path 

integral based on standard (unitary) propagators in a complex Hilbert space. 

 

The implication of an emergent phase of universal evolution with standard propagators, etc., is not only 

a framework within which to answer the questions of quantum gravity, but also a framework where the 

emergent trajectory has emergent ‘time’ (and parameters ħ and kB, and euclideanization/thermality). In 

the end, the Black Hole (BH) conundrum in QG might reduce to a scattering calculation, where 

semiclassical string theory (at 1
st
 quantization as known) may suffice, once ‘boundary terms’ are 

understood. With reference to the originating ‘emanator’ construct, we have a higher level 2
nd

 Q but not 

based on standard propagators, but emanators. Full 2
nd

 Q might shift to a notation where the stringiness 

is no longer discernable, and the trigintaduonion (bi-sedenion) structure dominates. 

 

To recap: , 10,22,78,137, are parameters resulting from analysis on a single path construct, where the 

number 22 corresponds to the number of emergent parameters in the description of the propagating 

construct. In addition, the time choice is emergent via a multi-path construct, along with the propagator 

construct, and is coupled in both time step (by ħ) and imaginary time increment ( kB and with 

Euclideanization regularization ‘built in’). The formulation is inherently embedded in a higher 

dimensional complex space, thus all of the QFT complex analysis analyticity tricks are valid as the 

assumptions made are now part of the maximal information flow emergent construct. 

 

Maximal Information Propagation requires a complex Hilbert Space [28] 

As mentioned previously, according to [28], a complex Hilbert space is selected by the quantum 

deFinetti theorem, since it is required for information propagation (and thereby a restatement of the 

maximum information propagation concept). Because it’s a complex Hilbert space, this explains why 

the path integral operates in a complex space, even though the underlying universal algebraic construct 

from which it is emergent is hypercomplex. 

 

From Caves [28], where a quantum deFinetti Theorem requires amplitudes to be complex. Suppose f(n) 

is the number of real parameters to specify an n-dimensional mixed state. For real amplitudes 

f(n)=n(n+1)/2, for complex amplitudes f(n)=n^2, and for quaternionic f(n) = n(2n-1). For propagation, 

etc., need f(n1n2)=f(n1)f(n2), which only works for complex amplitudes. 

 

Objective Reduction 

A new mechanism for objective reduction [29.30] is also indicated by the way  enters the theory as a 

maximum anti-phase amount comprising part of the maximal perturbation propagation. Consider in the 

context where there is a ‘classical’ trigintaduonion path in a congruence of paths (a flow-line 

description). On the classical path in the congruences, we have  calculated using a + maximal anti-

phase, but this could also occur with – maximal anti-phase as well, thus a  phase toggle when a zero 

divisor is encountered in the 32D propagation may be indicated (given the perturbations extending 

outside the 10D somewhat into the entire 32D). The zero-divisor discontinuity requires the field to 

reformulate a new ‘consistency’ with the 32D algebraic propagation (and 64D and higher, as well), with 



the result that since the prior  phase had the discontinuity, then it must toggle to the other, negative, 

phase, e.g., objective reduction may occur as a zero-divisor phase-toggle event. 

 

Have zero divisors in the Bi-sed’s during interactions on perturbation extensions into 32D. Thus have 

zero divisor events that may be what has been argued in the case of objective wave collapse (or partial 

collapse). Thus, an objective reduction mechanism is indicated. The surrounding 32D perturbation 

‘field’ of values is non-zero, so what is suggested is that the + phase toggles to – phase and the field 

spawns a new propagation consistent with – phase. 

 

The emergence of 22 parameter theories and representations 

Recall that maximal information propagation occurs for a 10-dimensional doubly-chiral subspace of the 

32-dimensional trigintaduonions. The 22 ‘fixed’ dimensions then appear as 22 parameters that ‘imprint’ 

on any gauge theory that may emerge from the 10-dimensional propagation (4-dim for space time, 6-dim 

for a gauge). So, the propagating theory has 22 emergent parameters. Now consider that 10-dim 

propagation and allow a small perturbation into all dimensions of propagation (including the 22 

dimensions). The maximum magnitude of the overall perturbation allowed for unit-norm right (or left) 

propagation is =(1/137.0359998), where 137 independent tri-octonionic ‘braids’ comprise the flow of 

information within the doubly-chiral subspace of the trigintaduonions. These same numbers 

{10,22,32,137} appear in a number of ancient numerological systems, could it be that they’ve also 

identified this maximal information propagation construct in a text analytics setting. Further discussion 

along these lines is given at the end of [31]. 

 

Consider the 22 parameters involved in physics information propagation. From the standard model we 

see there are 19 parameters required, and their model has known discrepancies, most notably, it doesn’t 

account for the real (or effective) mass of neutrinos, and it doesn’t account for dark matter. Suppose we 

either throw in masses for the neutrinos (they have to be very small to have not been seen yet), or we 

throw in a new class of massive neutrinos that only interact with the other neutrinos via mix, endowing 

each with a mass thereby. Alternatively, another Higgs mechanism could be invoked for an effective 

mass effect to cloak the massless neutrinos that way. Whatever the case, let’s suppose the answer to how 

to complete the standard models falls within one of these cases, where we have the three neutrinos 

endowed with a mass, one way or another, with a four parameter set to describe neutrino oscillations 

(mixings), as was done with the quarks. So we now have 19+3+4=26 parameters. Let’s now account for 

the Koide relation found to exist on all the different families (quark and leptonic) of three masses, 

showing that one mass in a family can be determined once the other two are specified. It isn’t 

understood why the Koide relation should exist, and provide a constraint on the parameters in the 

extended standard model, but from the perspective of the emergent theory having 22 independent 

parameters, it makes sense that this would be the case as 26-4=22 results with these relations accounted 

for. How does  itself fit into this description? Clearly it is an (emergent) maximal limit on the allowed 

perturbation, so might be expected to appear in a coupling constant somewhere. (This is not necessary, 

however, as the emergent 22 parameters occur with or without the added perturbation.) It turns out in the 

standard model, however, there is a relation involving two of the coupling constants to . In other 

words, two of the parameters are dependent on each other if  is known ( = (1/4) (g1)
2
(g2)

2
/( 

(g1)
2
+(g2)

2
 ), where g1 and g2 are two coupling parameters from the Standard Model). Thus there is one 

less free parameter and we are at 22-1=21 parameters. The complete model hypothesized for all matter 

(light and dark) still doesn’t include the gravitational coupling constant ‘G’, so now back to 22, and we 

appear to be done. The key paramaters of the propagation, numbering 22, are now identified. There are 



still two central parameters from physics not on this list, however, Planck’s constant and Boltzmann’s 

constant. 

 

So, is our book-keeping on 22 propagation parameters working if Planck’s constant and Boltzmann’s 

constant are not accounted for? Returning to the mathematical object itself and the ‘process’ of the 

propagation construct (e.g., repeated right multiplication by a randomly generated unit norm doubly-

chiral ‘step’). In this picture the steps eventually comprise a path, with the ‘path’ itself emergent as a 10-

dim propagation with chirality. Clearly an internal perception of time in this construct (our perspective) 

is itself an emergent construct. Even so, there might still be artifacts of a notion of time, or a limit on 

‘time’ granularity, due to the process of the propagation construct. Perhaps, just as law divides into 

substantive law and procedural law, so too does physical law in the unified propagator theory. Consider 

that Planck’s constant relates to time directly, as the coupling constant relating energy to frequency (a la 

Einstein), as well as a measure of minimal quanta of angular momentum, and as the non-zero part of the 

commutation of two complementary quantum variables. Planck’s constant goes to the heart of the nature 

of quanta and the emergent coupling of time to energy. So, Planck’s constant pertains to emergent 

structure due to the right multiplication step with maximal perturbation allowing unit-norm, and how 

this is seen in the emergent construct. Or more precisely, the unchanging repeated application of the 

generative (‘receiving’) right-multiplication ‘step’ is perceived in the emergent geometry and gauge 

system as a limit on mimimum quanta for non-zero angular momentum, and other granularity, that is 

Planck’s constant. Similarly, Boltzmann’s constant relates (kinetic) energy to temperature. Complex 

time relates to an inverse temperature in quantum field theory, thus, Boltzmann’s constant, like Planck’s, 

may relate to parameters emerging due to the procedural multi-path aspect (and elaborations on 

emergent constructs in this regard may eventually explain why the theory should be “euclideanizable”, 

for now we will just assume this to be the case as an emergent aspect, although it should be provable on 

its own accord). Perhaps Plank’s constant can be thought of as playing a pivotal role in a “Big Bang” 

emergent phase where the right multiplication step eventually resolves into collections comprising ‘time 

steps’ and then, eventually, time ‘flow’ as a continuum. Likewise, perhaps Boltzmann’s constant can be 

seen as playing a key role in a thermally equilibrated cosmologically emergent process where 

Euclideanization is a valid (equilibration) relation. 

 

Counting dimensions involved in maximal propagation gives one set of numbers, while counting the 

degrees of freedom possible (functionally) given that dimensionality is a different matter. First to recap 

the dimensionalities arrived at, starting with the Cayley Algebra progression of dimensionalities, and 

partitions therein, during the process of arriving at maximal information propagation: 

 

  2

  2

5
=32 (the trigintaduonions)  32 = 10* + 22, 

 

where we have emergent 22 fixed parameters and chiral propagation in dim = 10* = 4* + 6, where the 

asterisk denotes the emergent, specific, spacetime reference within the emergent 10D propagation, e.g., 

we have 4D Lorentzian spacetime with 6D gauge. The 10D propagation is doubly-chiral in the 32 

dimensional space, first at the level of the 16 dimensional sedenion subspace, then on the entire 32 dim. 

trigintaduonion space.  The four chiralities of propagation share the same 22 fixed parameters and the 

same 4D Lorentzian reference frame, thus a ‘full’ (bosonic) propagation including all four chiralities 

would have the shared 22 and 4 dimensionalities (or parameters) but with freedom on 6 gauge 

dimensions for each of the four chiralities. With the discussion on a full propagation involving all 

chiralites the focus shifts from a counting on dimensions to a counting on functional degrees of freedom 



(for describing propagation) in that dimensional framework. Any function of a particular parameter 

(spacetime or gauge) will have independent forward or backward propagations, thus counting for two 

degrees of freedom each, together with the fixed 22 parameters this give as the number of degrees of 

freedom at: 

 

Dimensions: single chiral: 10* + 22  4* + 6 + 22 

Dimensions: full doubly-chiral set: 4* + 4(6) + 22 = 4(7) + 22 

Degrees-of-Freedom: full doubly-chiral set: 2(4)(7) + 22 = (4)(14) + 22 = 56 + 22 = 78 

 

 

Oddities of the non-integer part of 1/ – The 11
th

 Sefiroth 

In the Results a derivation is given of 137 ‘complete’ braid transmission channels for propagating 

information, and of a partial 138 braid channel (that is pure imaginary). If we take the experimental 

result from QED, we know the magnitude of the contribution from the 138
th

 channel to be 0.0359907. 

The appearance of a complex value in association with ‘time’ typically appears in thermodynamics and 

statistical mechanics, and is an underlying construct in thermal quantum field theory. So the appearance 

of a small complex contribution is no minor thing as it may provide the explanation for why the variety 

of euclideanization methods work, and may provide a better understanding of time (especially in 

quantum systems). A partial channel of transmission of information, perturbative, pure imaginary, thus 

not only occurs, but may play an integral role in tying time and thermality into the formalism. This 

might be thought of as a 11 dimension of transmission (akin to the 11 Sefiroth discussed in [31]). 

 

Conclusion 

Maximal information propagation as an emergent construct appears to require two from of propagation, 

an early hypercomplex ‘emanation’ that reduces to a chiral 10D propagation in a 32D trigintaduonion 

space, and standard propagation with complex propagators (consistent with the quantum deFinetti 

relation [28]) operating inside that 10D propagation of geometry and gauge field. From the ‘emanation’ 

stage we see the maximum dimensionality and fractal limits provide the fundamental constants that then 

imprints upon the emergent geometry and gauge field, including giving rise to the constants  and . 
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APPENDIX 

Background on Cayley Algebras 

The list representation for hypercomplex numbers will make things clearer in what follows so will be 

introduced here for the first seven Cayley algebras: 

 

Reals: X0   (X0) . 

Complex: (X0 + X1 i)  (X0 , X1 ) . 

Quaternions: (X0 + X1 i + X2 j + X3 k)   (X0 , X1 , X2 , X3)   (X0 , … , X3) . 

Octonions: (X0 , … , X7) with seven imaginary numbers. 

Sedenions: (X0 , … , X15) with fifteen imaginary numbers. 

Trigintaduonions (a.k.a Bi-Sedenions): (X0 , … , X31) with 31 imaginary numbers. 

Bi-Trigintaduonions: (X0 , … , X63) with 63 types of imaginary number. 

 

Consider how the familiar complex numbers can be generated from two real numbers with the 

introduction of a single imaginary number ‘i’, {X0 , X1}   (X0 + X1 i). This construction process can be 

iterated, using two complex numbers, {Z0 , Z1} , and a new imaginary number ‘j’: 

 

(Z0 + Z1 j) =  (A+Bi ) + (C+Di ) j  = A+Bi + Cj +Dij = A+Bi + Cj +Dk,  

 

where we have introduced a third imaginary number ‘k’ where ‘ij=k’. In list notation this appears as the 

simple rule ((A,B),(C,D)) = (A,B,C,D). This iterative construction process can be repeated, generating 

algebras doubling in dimensionality at each iteration, to generate the 1,2,4,8,16, 32, and 64 dimensional 

algebras listed above. The process continues indefinitely to higher orders beyond that, doubling in 

dimension at each iteration, but we will see that the main algebras of interest for physics are those with 

dimension 1,2,4,and 8, and sub-spaces of those with dimension 16 and 32 dimensional algebras. 

 

Addition of hypercomplex numbers is done component-wise, so is straightforward. For hypercomplex 

multiplication, list notation makes the freedom for group splittings more apparent, where any 

hypercomplex product ZxQ to be expressed as (U,V)x(R,S) by splitting Z=(U,V) and Q=(R,S). This is 

important because the product rule, generalized by Cayley, uses the splitting capability.  The Cayley 

algebra multiplication rule is: 

 

(A,B)(C,D) = ([ACD*B],[BC*+DA]), 

 

where conjugation of a hypercomplex number flips the signs of all of its imaginary components: 

(A,B)* = Conj(A,B) = (A*,B) 

The specification of new algebras, with addition and multiplication rules as indicated by the constructive 

process above, is known as the Cayley-Dickson construction, and this gives rise to what is referred to as 

the Cayley algebras in what follows. 

 

 

If you use the Cayley-Dickson procedure to double the octonions to get the sedenions, you retain the 

properties  

common to all Cayley-Dickson algebras [32]:   

  



centrality: if xy = yx for all y in the algebra A, then  x is in the base field of A, which is the real 

numbers R;  

simplicity: no ideal K other than {0} and the algebra A, or, equivalently, if for all x in K and for all y 

in A    xy and yx are in K, then  K = {0} or A;  

flexibility: (x,y,z) = (xy)z - x(yz) = -(z,y,x), or, equivalently, (xy)x = x(yx) = xyx;  

power-associativity: (xx)x = x(xx) and ((xx)x)x = (xx)(xx), or, equivalently, x^m x^n = x^(m+n);  

Jordan-admissibility: xoy = (1/2)(xy + yx) makes a Jordan algebra;  

degree two: xx - t(x)x + n(x) = 0, for some real numbers t(x) and n(x);  

derivation algebra G2 for octonions and beyond; and 

squares of basic units = -1. 

 

For sedenions, you lose the following properties:  

(1) the division algebra (over R) property xy = 0 only if x  0 and y  0.  

(A concrete example of zero divisors in terms of that basis is given by [33]:  

(e1 + e10)(e15 - e4)  =  -e14 - e5 + e5 + e14 = 0.).  

(2) linear alternativity: (x,y,z) = (xy)z - x(yz) = (-1)P(Px,Py,Pz), where P is a permutation of sign (-1)P. 

and  

(3) the Moufang identities: (xy)(zx) = x(yz)x; (xyx)z = x(y(xz)); z(xyx) = ((zx)y)x. 

  

  

For sedenions, you retain the following properties: 

(1) anticommutativity of basic units:  xy = -yx;  

and  

(2) nonlinear alternativity of basic units: (xx)y = x(xy) and (xy)y = x(yy).  

 

  

The Formulation of the Problem for Sedenion Propagation 

Further theoretical details on hypercomplex numbers can be found at [34,35]. In what follows 

multiplications involving unit norm Cayley numbers will be done at the various orders using the Cayley 

algebra multiplication rule described above, that reduces the order of hypercomplex complex 

multiplication, which when iterated allows all hypercomplex products to reduce to a collection of Real 

multiplications. Millions of repeated hypercomplex multiplications are done computationally to 

demonstrate unit norm propagation in the situations that follow, where B denotes a bisedenion, S 

denotes a sedenion, O a octonion, Q a quaternion, C for complex, and R for a real: 

 

Sedenions have two unit norm propagators of the form: 

 

S(unit norm)  S(unit norm propagator) = S(unit norm) 

S(unit norm) = S1(OLeft,ORight) = S1(OL,OR) = (O1L,O1R) 

 

If  S1 is unit norm, then norm(S1) = S1  S1* = 1, which for our notation means: 

1 = (O1L,O1R)(O1L*,O1R) = ( [O1LO1L*+O1R*O1R], [O1RO1L+O1RO1L] ) 

1 = ( [norm(O1L)+norm(O1R)], 0 ) 

1 = norm(O1L)+norm(O1R) 

 

http://xxx.lanl.gov/abs/q-alg/9710013


S(unit norm propagator) = S2(OLeft,OReal)  = (O2L, ) for the right octonion real, e.g., in list notation have 

OReal  = (,0,0,0,0,0,0,0), so have (O2L, (,0,0,0,0,0,0,0)) which is abbreviated as (O2L, )  where it is 

understood that  is real and is the real part of the purely real right octonion. There is another type of 

unit norm propagator where we have (OReal,ORight) where the same results hold, but the example that 

follows will use the (O2L, ) form. 

 

If S2 is unit norm, then norm(S2) = S2  S2* = 1, which for our notation means: 

1 = norm(O2L)+
2
 

 

So we can now ask the question,  

Does S(unit norm)  S(unit norm propagator), return a unit norm Sedenion when using the special class 

of unit norm propagators indicated? 

 

Proof that Norm(S1S2)=1 

(S1S2)=(O1L,O1R)(O2L, ) = ( [O1LO2L O1R], [O1L+O1RO2L*] )   

(S1S2)* = ( [O1LO2L O1R]*, [O1L+O1RO2L*] )   

 

norm(S1S2) = (S1S2)  (S1S2)*   

= ( [O1LO2L O1R]  [O1LO2L O1R]* +[O1L+O1RO2L*]*  [O1L+O1RO2L*], 

[O1L+O1RO2L*]  [O1LO2L O1R] + [O1L+O1RO2L*]  [O1LO2L O1R]) 

 

= ( norm(O1LO2L)+norm(O1RO2L*)+
2
 norm(O1R)+

2
 norm(O1L) 

  (O1LO2L)O1R*O1R(O1LO2L)*+O1L*(O1RO2L*)+(O1RO2L*)*O1L, 0) 

 

Multiplying the expressions previously obtained, 1 = norm(O1L)+norm(O1R) with 1 = norm(O2L)+
2
, 

and making use of the norm property norm(xy)=norm(x)norm(y), we have: 

norm(S1S2) = (1-Z, 0), where, 

Z = +(O1LO2L)O1R*+O1R(O1LO2L)*O1L*(O1RO2L*)(O1RO2L*)*O1L. 

 

Since we are computing the norm, which returns only the real component, we know Z must be real. To 

work with this expression with a little more clarity, switch to the notation: 

 

A=O1L; B=O2L; C=O1R*, then have 

Z = (AB)C + C*(AB)*A*(C*B*)(C*B*)*A 

Z = (AB)C + C*(AB)*A*(BC)*(BC)A 

 

The Cayley algebras up to octionic are also known as the composition algebras for which a number of 

properties exist. We need the braid laws to proceed, so let’s briefly detour to address that. The 

fundamental composition rule is simply that of the norm of a product being the product of the norms: 

norm(XY) = norm(X) x normY) Consider the norm of two things added: 

 

Norm(X+Y) = (X+Y)(X+Y)* = XX* +XY*+YX*+YY*  

                     = norm(X) + norm(Y) + 2 real(XY*) 

 



Define [X,Y] = real(XY*) = [norm(X+Y)norm(X)norm(Y)]/2, then have another way to express 

conjugation using norms and real parts: 

 

X* = 2[X,1]-X = 2real(X)-X = (real(X) unchanged, imag(X) negated))  

 

The composition algebras (up to octionic) build from the core norm(XY) = norm(X) x normY) relation 

to arrive at a number of interesting properties, including the ‘braid’ laws: [XY,Z] = [Y,X*Z] and 

[XY,Z]=[X,ZY*]. To arrive at the Braid law (following [34]) you start with the composition law 

norm(XY)=norm(X)norm(Y), you then prove the scaling law, [XY,XZ]=norm(x)[Y,Z], by substituting 

Y with Y+Z in the composition law. Then establish the exchange law [XY,UZ] = 2[X,U][Y,Z]-[XZ,UY] 

by substituting X with X+U in the scaling law. If you put U=1 in the exchange law, it reduces to forms 

allowing the braid law to be shown.  

Let’s apply the braid law for the form [XY,Z] to the (BC)A term, so let’s look at the braid law for 

[BC,A*] = [C,B*A*], which can be rewritten as: 

 

norm(BC+A*)norm(BC)norm(A*) = norm(C+B*A*)norm(C)norm(B*A*) 

norm(BC+A*)=norm(BC)+norm(A*)+(BC)A+A*(BC)* 

norm(C+B*A*)=norm(C)+norm(B*A*)+C(AB)+(AB)*C* 

 

putting this together: (BC)A+A*(BC)*=C(AB)+(AB)*C*. So we can now rewrite the (BC)A term as: 

(BC)A = C(AB)+(AB)*C*A*(BC)*. Substituting this back into Z: 

 

Z = (AB)C + C*(AB)*C(AB)(AB)*C* 

    = [(AB)CC(AB)] + [C*(AB)*(AB)*C*] 

 

What is a commutator on the Cayley numbers, is it necessarily non-real? 

 

XY=(A,B)(C,D) = ([ACD*B],[BC*+DA]) 

YX=(C,D)(A,B)=  ([CAB*D],[DA*+BC]) 

{X,Y}=XY-YX=  ([ACCA+B*DD*B],[BC*BC+DADA*]) 

{X,Y}= ( [{A,C}+2Im(B*D)], [B 2Im(C) + D 2Im(A)] ) 

 

So the commutator at one order of Cayley number is reduced to an expression involving the commutator 

at the next lower order Cayley number, plus a bunch of other terms that don’t contribute to the real 

component. This can be iterated to arrive at the real algebra in the commutator, where the commutator is 

zero, thereby establishing that the commutator on the Cayley numbers must result in a pure imaginary 

Cayley number. This being the case, we see that since Z consists of two commutator terms, neither of 

which has a real contribution, and since Z must be real, this proves that Z=0. 

 

This proves the first extension, for unit-norm propagators that are Sedenions of the form SLeft=(OLeft,) 

or SRight=(,ORight), where OLeft and ORight are any octonion. The next extension is to unit-norm 

propagators that are Bisedenion by using similar constructions, e.g., Bisedenions, of the form 

B=(SLeft,SReal) = ( (OLeft,) ,  ). (Note that  is a real octonion, while  is a purely real sedenion.)  

 

 

 



The Formulation of the Problem for Bi-Sedenion Propagation 

Bisedenions have two unit norm propagators of the form: 

B(unit norm)  B(unit norm propagator) = B(unit norm) 

B(unit norm) = B1(SLeft,SRight) = B1(SL,SR) = (S1L,S1R) 

 

If  B1 is unit norm, then norm(B1) = B1  B1* = 1, which for our notation means: 

1 = (S1L,S1R)(S1L*,S1R) = ( [S1LS1L*+S1R*S1R], [S1RS1L+S1RS1L] ) 

1 = ( [norm(S1L)+norm(S1R)], 0 ) 

1 = norm(S1L)+norm(S1R) 

 

B(unit norm propagator) = B2(SLeft,SReal)  = (S2L, ) for the right sedenion real, e.g., in list notation have 

SReal  = (,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), so have (O2L, (,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)) which is 

abbreviated as (O2L, )  where it is understood that  is real and is the real part of the purely real right 

sedenion. There is another type of unit norm propagator where we have (SReal,SRight) where the same 

results hold, but the example that follows will use the (S2L, ) form. 

 

If B2 is unit norm, then norm(B2) = B2  B2* = 1, which for our notation means: 

1 = norm(S2L)+
2
 

 

So we can now ask the question:  

Does B(unit norm)  B(unit norm propagator), return a unit norm Bisedenion when using the special 

class of unit norm propagators indicated? 

 

Proof that Norm(B1B2)=1  

(B1B2)=(S1L,S1R)(S2L, ) = ( [S1LS2L S1R], [S1L+S1RS2L*] )   

(B1B2)* = ( [S1LS2L S1R]*, [S1L+S1RS2L*] )   

 

norm(B1B2) = (B1B2)  (B1B2)*   

= ( [S1LS2L S1R]  [S1LS2L S1R]* +[S1L+S1RS2L*]*  [S1L+S1RS2L*], 

[S1L+S1RS2L*]  [S1LS2L S1R] + [S1L+S1RS2L*]  [S1LS2L S1R]) 

 

= ( norm(S1LS2L)+norm(S1RS2L*)+
2
 norm(S1R)+

2
 norm(S1L) 

  (S1LS2L)S1R*S1R(S1LS2L)*+S1L*(S1RS2L*)+(S1RS2L*)*S1L, 0) 

 

To proceed as before we need to show that the norm property norm(xy) = norm(x)norm(y) holds for the 

sedenions when one of them is constrained to be in the form of the sedenion propagator, e.g., does 

norm(S1LS2L)=norm(S1L)norm(S2L) where S2L is in the form of the sedenion propagator?  

 

norm(S1LS2L) = (S1LS2L)  (S1LS2L)*   

= ( [O1LLO2LL O1LR]  [O1LLO2LL O1LR]* + 

      [O1LL+O1LRO2LL*]*  [O1LL+O1LRO2LL*], 

    [O1LL+O1LRO2LL*]  [O1LLO2LL O1LR] +  

      [O1LL+O1LRO2LL*]  [O1LLO2LL O1LR]) 

 



= ( norm(O1LLO2LL)+norm(O1LRO2LL*)+
2
 norm(O1LR)+

2
 norm(O1LL) 

        (O1LLO2LL)O1LR*O1LR(O1LLO2LL)*+ 

        O1LL*(O1LRO2LL*)+(O1LRO2LL*)*O1LL,   0) 

 

Now that we’ve reduced to this level, we know that the octonions will offer the standard norm property 

whereby norm(O1LLO2LL)=norm(O1LL)norm(O2LL) and we show the other terms are zero since real yet 

consisting of  commutators, the latter arrangements made possible by manipulations according to the 

braid laws that hold for the composition algebras (including the octonions) without restriction. 

 

So as before, by multiplying the expressions previously obtained, 1 = norm(S1L) + norm(S1R) with 1 = 

norm(S2L)+
2
, and making use of the norm property norm(xy)=norm(x)norm(y) applicable for the terms 

of interest, we have: 

 

norm(B1B2) = (1-Z, 0), where, 

Z = +(S1LS2L)S1R*+S1R(S1LS2L)*S1L*(S1RS2L*)(S1RS2L*)*S1L. 

 

Since we are computing the norm, which returns only the real component, we know Z must be real. As 

with the lower order Cayley extension, we need the braid laws to proceed at this juncture.  

 

What is (S1LS2L)S1R* when accounting for the special form of  S2L=(O2LL, )? First calculate 

(S1LS2L): 

 

(S1LS2L)=(O1LL,O1LR)(O2LL, ) = ( [O1LLO2LL O1LR], [O1LL+O1LRO2LL*] ) 

 

Then 

(S1LS2L)S1R* = ( [O1LLO2LL O1LR], [O1LL+O1LRO2LL*] ) (O1RL*,-O1RR) 

= ([O1LLO2LL O1LR]O1RL* + O1RR*[O1LL+O1LRO2LL*], 

    O1RR [O1LLO2LL O1LR] + [O1LL+O1LRO2LL*]O1RL) 

= ( (O1LLO2LL)O1RL* O1LRO1RL*+ O1RR*O1LL+ O1RR*(O1LRO2LL*), 

    O1RR (O1LLO2LL)+O1RRO1LR+O1LLO1RL+(O1LRO2LL*)O1RL  ) 

 

S1R(S1LS2L)* = (O1RL,O1RR)  ( [O1LLO2LL O1LR]*, [O1LL+O1LRO2LL*] ) 

= ( O1RL[(O1LLO2LL)* O1LR*]+[O1LL*+(O1LRO2LL*)*]O1RR,  

    [O1LL+O1LRO2LL*]O1RL+O1RR[O1LLO2LL O1LR] ) 

= ( O1RL(O1LLO2LL)* O1RLO1LR* +O1LL*O1RR+(O1LRO2LL*)*O1RR , 

    O1LLO1RL(O1LRO2LL*)O1RL+O1RR(O1LLO2LL) O1RRO1LR ) 

 

Putting these first two terms together: 

+(S1LS2L)S1R*+S1R(S1LS2L)* =  

( (O1LLO2LL)O1RL*+O1RL(O1LLO2LL)* 

 O1LRO1RL*+ O1RR*O1LL O1RLO1LR* +O1LL*O1RR 

+ O1RR*(O1LRO2LL*)+(O1LRO2LL*)*O1RR,      0) 

 

For S1L*(S1RS2L*) we have: 

(S1RS2L*)=(O1RL,O1RR)(O2LL*, ) = ([O1RLO2LL*+ O1RR], [O1RL+O1RRO2LL] ) 



So, S1L*(S1RS2L*) = (O1LL*,O1LR)([O1RLO2LL*+O1RR], [O1RL+O1RRO2LL] ) 

= ( O1LL*(O1RLO2LL*)+O1LL*O1RRO1RL*O1LR+(O1RRO2LL)*O1LR , term) 

While for (S1RS2L*)*S1L have 

(S1RS2L*)*S1L= ([O1RLO2LL*+ O1RR]*, [O1RLO1RRO2LL] )(O1LL,O1LR) 

= ([O1RLO2LL*+ O1RR]*O1LLO1LR*[O1RLO1RRO2LL], - term) 

 

S1L*(S1RS2L*)+(S1RS2L*)*S1L= 

( O1LL*(O1RLO2LL*)+(O1RLO2LL*)*O1LL 

+O1LL*O1RRO1RL*O1LR+ O1RR*O1LLO1LR*O1RL 

+(O1RRO2LL)*O1LR+O1LR*(O1RRO2LL),    0) 

 

So have, 

Z =  (   {(O1LLO2LL)O1RL*+O1RL(O1LLO2LL)* 

           O1LL*(O1RLO2LL*)(O1RLO2LL*)*O1LL} + 

      {O1RR*(O1LRO2LL*)+(O1LRO2LL*)*O1RR 

      (O1RRO2LL)*O1LRO1LR*(O1RRO2LL)} + 

 O1LRO1RL*+ O1RR*O1LL O1RLO1LR* +O1LL*O1RR 

O1LL*O1RR+O1RL*O1LRO1RR*O1LL+O1LR*O1RL  , 0) 

 

Z = ({im}+{O1RL*O1LR+O1LR*O1RL O1LRO1RL* O1RLO1LR*} , 0) 

Z = ({im}+{2Im{O1RL*O1LR} +2Im{O1LR*O1RL} , 0) 

 

So again, have that Z = pure imaginary, and since it must be real, it is thus zero. 

Thus, we have norm(B1B2) = 1. This proves the second extension, for unit-norm propagators that are 

Bisedenions of the form BLeft=(SLeft,) or BRight=(,SRight), where SLeft and SRight are sedenion propagators 

shown in the first extension, e.g., SLeft=(OLeft,). (Note that  is a purely real octonion, while  is a 

purely real sedenion.)  

 

The Formulation of the Problem for Bi-trigintaduonion Propagation 

After the bisedenions (also known as trigintaduonions) come the bitrigintaduonions, the 64-component 

Cayley algebra (denoted by ‘T’ in following but later when I reference the RCHO(ST) hypothesis, the 

‘T’ refers to trigintaduonions). Let’s try extending further to see if we can have norm(T1T2) = 1, when 

we build with a similar extension method to define our unit-norm propagator: TLeft=(BLeft,) , 

BLeft=(SLeft,) , and SLeft=(OLeft,), where, as before, once we get to the octionic Cayley level we are 

unrestricted (e.g., OLeft can be any octonion). Let’s see if we can construct, as before, a T unit norm 

propagators of the form: 

 

T(unit norm)  T(unit norm propagator) = T(unit norm) 

T(unit norm) = T1(BLeft,BRight) = T1(BL,BR) = (B1L,B1R) 

 

If  T1 is unit norm, then norm(T1) = T1  T1* = 1, which for our notation means: 

1 = (B1L,B1R)(B1L*,B1R) = ( [B1LB1L*+B1R*B1R], [B1RB1L+B1RB1L] ) 

1 = ( [norm(B1L)+norm(B1R)], 0 ) 

1 = norm(B1L)+norm(B1R) 



 

T(unit norm propagator) = T2(BLeft,BReal)  = (B2L, ) for the right bisedenion real  is real and is the real 

part of the purely real right bisedenion.  

 

If T2 is unit norm, then norm(T2) = T2  T2* = 1, which for our notation means: 

1 = norm(B2L)+
2
 

 

So we can now ask the question,  

Does T(unit norm)  T(unit norm propagator), return a unit norm  bitrigintaduonion when using the 

special class of unit norm propagators indicated? 

 

Failure of Proof construction for Norm(T1T2)=1 , and computational proof of failure of  

Norm(T1T2)=1  

(T1T2)=(B1L,B1R)(B2L, ) = ( [B1LB2L B1R], [B1L+B1RB2L*] )   

(T1T2)* = ( [B1LB2L B1R]*, [B1L+B1RB2L*] )   

 

norm(T1T2) = (T1T2)  (T1T2)*   

= ( [B1LB2L B1R]  [B1LB2L B1R]* +[B1L+B1RB2L*]*  [B1L+B1RB2L*], 

[B1L+B1RB2L*]  [B1LB2L B1R] + [B1L+B1RB2L*]  [B1LB2L B1R]) 

 

= ( norm(B1LB2L)+norm(B1RB2L*)+
2
 norm(B1R)+

2
 norm(B1L) 

  (B1LB2L)B1R*B1R(B1LB2L)*+B1L*(B1RB2L*)+(B1RB2L*)*B1L, 0) 

 

To proceed as before we need to show that the norm property norm(xy) = norm(x)norm(y) holds for the 

bisedenions when one of them is constrained to be in the form of the bisedenion propagator, e.g., does 

norm(B1LB2L) = norm(B1L)norm(B2L) where B2L is in the form of the bisedenion propagator?  

 

norm(B1LB2L) = (B1LB2L)  (B1LB2L)*   

= ( [S1LLS2LL S1LR]  [S1LLS2LL S1LR]* + 

      [S1LL+S1LRS2LL*]*  [S1LL+S1LRS2LL*], 

    [S1LL+S1LRS2LL*]  [S1LLS2LL S1LR] +  

      [S1LL+S1LRS2LL*]  [S1LLS2LL S1LR]) 

 

= ( norm(S1LLS2LL)+norm(S1LRS2LL*)+
2
 norm(S1LR)+

2
 norm(S1LL) 

        (S1LLS2LL)S1LR*S1LR(S1LLS2LL)*+ 

        S1LL*(S1LRS2LL*)+(S1LRS2LL*)*S1LL,   0) 

 

Now that we’ve reduced to this level we see there is a problem. In the prior reduction we arrived at the 

variables being octonions at this stage, for which the norm property and braid laws of the octionoic 

composition algebra allowed norm(O1LLO2LL) = norm(O1LL)norm(O2LL) and showed the non-norm 

terms were zero by manipulations using the braid laws that hold for the composition algebras. Now that 

we’ve moved to the next higher Cayley algebra’s in the derivation, and in our extension construction, we 

now are asking the sedenions to act as a composition algebra to proceed (on an unrestricted part of the 

Sedenion algebra). The construction fails. Thus, the extension process does not extend past the 

Bisedenions, it basically requires the Cayley algebra at two Cayley levels lower to still be a composition 



algebra. It is still possible to extend to the bisedenions because at two levels lower you still have the 

octonions, which are a composition algebra as needed. Computationally we see a failure to propagate the 

bitrigintaduonions so this is consistent. 

 

Code and Computational Validation 

The key software solution to discover/verify the results computationally is a the recursive Cayley 

definition for multiplication, which avoids use of lookup tables and avoids commutation and 

associativity issues encountered at higher order. It is shown next. The cayley subroutine takes the 

references to any pair of Cayley numbers (represented in list form, so represented as simple arrays), and 

multiplies those Cayley numbers and returns the Cayley number answer (in list form, thus an array). The 

main usage was with randomly generated unit norm Cayley numbers that were multiplied (from right) 

against a “running product”. Tests on unit norm hold for millions of running product evaluations in 

cases where there the unit norm propagations are validated, so, like the perfectly meshed gears of a 

machine, or the perfectly ‘braided’ threads of a very long string. 

 

The bignum module was used with 50 decimal places of precision in most experiments, with some 

experiments at 100 decimal places of precision in further validation testing. Using bignum allows much 

higher precision handling (needed for the iterative processes of repeated multiplicative updates). The use 

of bignum, however, entails number representation/storage via strings and is vastly slower than normal 

arithmetic operations. Furthermore, modern GPU enhancements are not possible with the string handling 

intermediaries, so the resultant computational threads are CPU intensive and slow.  

---------------------------------- cayley_multiplication.pl -------------------------------------------- 

sub cayley { 

    my ($ref1,$ref2)=@_; 

    my @input1=@{$ref1}; 

    my @input2=@{$ref2}; 

    my $order1=scalar(@input1); 

    my $order2=scalar(@input2); 

    my @output; 

    if ($order1 != $order2) {die;} 

    if ($order1 == 1) { 

        $output[0]=$input1[0]*$input2[0]; 

    } 

    else{ 

        my @A=@input1[0..$order1/2-1]; 

        my @B=@input1[$order1/2..$order1-1]; 

        my @C=@input2[0..$order1/2-1]; 

        my @D=@input2[$order1/2..$order1-1]; 

        my @conjD=conj(\@D); 

        my @conjC=conj(\@C); 

        my @cay1 = cayley(\@A,\@C); 

        my @cay2 = cayley(\@conjD,\@B); 

        my @cay3 = cayley(\@D,\@A); 

        my @cay4 = cayley(\@B,\@conjC); 

        my @left; 

        my @right; 

        my $length = scalar(@cay1); 

        my $index; 

        for $index (0..$length-1) { 

            $left[$index] = $cay1[$index] - $cay2[$index]; 

            $right[$index] = $cay3[$index] + $cay4[$index]; 

        } 

        @output=(@left,@right); 

    } 

    return @output; 

} 

---------------------------------- cayley_multiplication.pl -------------------------------------------- 



Unit-norm multiplicative ‘step’ generation method (same as used in [3]) 

We now consider a randomly generated propagation step that consists of a unit norm that has a 

randomly generated small perturbation. Consider the eight element octonion denoted: {x0, x1, 

x2,…x7}, where the real component is x01: 

(x0)
2
 = 1 -  (xi)

2
 , 

And where each xi is generated by a randomly generated number uniformly distributed on the interval 

(-0.5 .. 0.5), with an additional perturbation-factor ‘‘, e.g., the max magnitude imaginary perturbation 

from pure real (x0=1), measured with L1 norm,  is simply 7 times /2 (for seven imaginary 

components). 

For the octonions unrestricted unit norm propagation is possible, i.e., all of the components can be 

independently generated and then normalized to have L2 norm =1. So, the restriction to x01 isn’t 

needed. For the left chiral extension spaces we have: 

Propagating chiral left sedenion:  {x0, x1, x2,…x7, x8},  with x9=0, …, x15=0,  

and the 

Propagating chiral left bi-sedenion:  {x0, x1, x2,…x7, x8, x16},   with x9=0, …, 

x15=0,x17=0, …, x31=0, 

where, the propagating chiral left bi-sedenion has a small non-propagating component (here x9 nonzero 

is chosen), and now we formally require  x01 on propagation steps: 

Propagating small perturbation chiral left bi-sedenion: {x0, x1, x2,…x7, x8, x9, x16},   

with x10=0, …, x15=0,x17=0, …, x31=0. 

For the small perturbation steps that are randomly generated, there are now ten imaginary components, 

so in what follows, the maximum magnitude of the imaginary components, measured with L1 norm, 

denoted , is =10/2=5. 

Emergent Parameters 

In the tables that follow are shown the emergent parameters when alpha-perturbations (perturbations 

with max perturbation ) are injected for each of the 22 non-propagating parameters. Regardless of 

injection parameter, if perturbation exceeds , the norm=1 relation fails, and propagation eventually dies 

with norm  0. This is to be expected given the identification of  as the max-perturbation limit in [2]. 

What is odd is that if perturbation is less than , but still in the vicinity of , norm=1 behavior appears 

to eventually fail (after millions of iterations, and using bignum precision) as can be seen in the real 

component eventually falling to zero. In other words, the iterative procedure underlying the propagator 

definition, not surprisingly, is giving rise to fractal behavior (and abrupt transitions). I say not 

surprisingly because the single parameter noise injection that we are using (in repeated multiplicative 

iterations) is such that we’ve set up an iterative process with a 1-dim parameter space and are seeing 

possible fractal behavior -- a well-known phenomenon in 1-D iterative mappings.  

The results that follow are preliminary estimates [3] on the ‘letters of reality’ (actually numbers in this 

numerogenesis algebraic theory) in that both the noise injection method can lead to artifacts, and due to 

the slow process of doing bi-sedenion multiplication with bignum(50). In the tabulations we consider 



unit norm chiral bi-sedenion propagation. In particular, we consider unit element chiral bisedenion 

propagations, with  perturbations introduced, separately, at each of the non-propagating bi-sedenion 

parameters. If working with a perturbation greater than  we expect the real component to start at one 

(we begin with a unit element chiral bisedenion) and eventually decay to zero, and cross-over to 

negative values, as it begins to randomly walk. To a lesser extent, and with fractal structure, this also 

appears to be true for perturbations introduced that are in the vicinity of  but less than . For 

perturbations precisely at ‘’, we expect the real component to decay/search for a while, but to then 

asymptote/lock-on to a particular non-zero (emergent) value with well-defined variance about that 

asymptote, and never crossing zero. In other words, if we want to propagate one bit of information via 

the non zero-crossing real component asymptote of the bi-sedenion indefinitely, it is hypothesized that 

we can do so using  perturbation propagators. In Fig. 4 is shown the Histogram on real components 

(rc) observations after each multiplicative iteration, where an emergent rc=0.971 appears in the first 

60,000 propagation iterations. 

To recap, for ‘off-shell’ bi-sedenion propagation at maximum perturbation amplitude , we examine the 

behavior of the real component (rc) of the bi-sedenion. This is because we are effectively describing 

propagation starting with a unit bi-sedenion (so only have rc=1 nonzero), followed by multiplicative 

propagation steps by way of bisedenions perturbed by at most the fraction  into the bisedenions 31 

imaginary components. We consider each of the 22 possible non-propagating parameters in separate 

perturbation-at-alpha analyses, where the emergent behavior on the rc value is obtained. For the ‘ 

propagation’, where noise injection is solely in a particular non-propagating component, we expect the 

rc component to decay but to eventually asymptote to a positive value (and never cross zero). The 

Results in Table 1 show the emergent 22 parameters when propagation is done with precisely  

perturbation, where  is taken to be the highest precision value known provided by QED 

(1/137.035999070) [36] (which appears via =0.001459470514006 in the code). 

 

 

 

 

 

 

 

 

 

Fig. 4. Histogram of real-component values observed in the first 60,000 iterations of  propagation, 

where the perturbation parameter is x30. As the propagation begins the RC value is at 

1.0=10,000/10,000, so at the rightmost dot in the histogram. As the multiplicative operations proceed, 

the rc value decays thru the range to rc =0.9750, then begins to catch the asymptote with mean at 

0.9710. 



The  propagations are examined for each of the 22 different non-propagating components, with each 

taken individually as sole source of non-propagating perturbation in its respective  propagation 

experiment. Since this process is selecting propagators somewhat arbitrarily, perhaps not as much utility 

can be extracted from the asymptotic RC values as from their variance information. In other words, by 

injecting noise perturbations into each of the 22 parameters separately (like playing a recorder with only 

one hole depressed at a time), computational experiments are attempting to arrive at information 

respective to 22 parameters, but may do so in a mixed form not so useful when expressed in the RC 

values. Furthermore, the Gaussian distributions that appear to be emergent at the asymptotes have 

variance values (or their inverses as shown in Table 1) that may provide the most utility. In essence the 

variance can be thought of as describing a statistical restoring force that’s occurring in the bi-sedenion 

propagation due to the odd properties of bisedenion in general, e.g., they are: non-associative, non-

commutative, have zero-divisors, and lack of inverse due to lack of norm. Bisedenion properties are not 

theoretically fully understood at this time, thus the computational efforts described here (and in [1-3]) to 

try to resolve matters further.  

 

Off-shell 

parameter 

Asymptotic Real 

Component (RC) 

Asymptotic 

RC FWHM 

Asympt. RC 

1/Variance 

x9  0.9823 0.0047 246,819 

x10  0.9361 0.0044 281,623 

x11  0.9585 0.0030 605,803 

x12  0.9856 0.0021 1,236,332 

x13  0.9953 0.0017 1,886,583 

x14  0.9343 0.0029 648,302 

x15  0.9745 0.0023 1,030,666 

x17  0.9644 0.0039 358,463 

x18  0.9745 0.0050 218,089 

x19  0.9799 0.0060 151,450 

x20  0.9792 0.0053 194,098 

x21  0.9639 0.0048 236,641 

x22  0.9797 0.0028 695,436 

x23  0.9593 0.0037 398,263 

x24  0.9826 0.0066 125,165 

x25  0.9979 0.0012 3,786,267 

x26  0.9615 0.0059 156,628 

x27  0.9892 0.0041 324,344 

x28  0.9497 0.0051 209,620 

x29  0.9326 0.0052 201,635 

x30  0.9710 0.0022 1,126,493 

x31  0.9706 0.0020 1,363,056 

 

Table 1. The 22 letters of reality. The ‘letters’ are emergent real parameters (i.e., just numbers, the 

‘best’ set shown in bold in right column) from an iterative process involving repeated chiral bi-sedenion 

multiplication. If noise injection at non-propagating (“off-shell”) parameter x9 is introduced then have 

non-zero components {x0, x1, x2,…x7, x8, x9, x16}. The table lists the off-shell parameter, its 

asymptotic rc value, the full-width at half maximum (FWHM) of the peak (FWHM=2.335), and the 

inverse of the variance (taken as the best set of ‘letters’ available at this time). 


