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Abstract 

Efforts to identify a formulation for maximal algebraic information flow have led to the 

examination of unit-norm trigintaduonion multiplications. In prior work this was considered 

without the complication of zero divisors. In an effort to remove the zero divisors by requirement 

of maximum domain of analyticity on the log trigintaduonion multiplication we find a theoretical 

framework exists for meromorphic precipitation of matter. In this process a fundamental 

quantum is indicated from the zero divisor residue terms. Analyticity in the form of a Wick 

rotation also provides a mechanism whereby we can switch to a dimensionful action and 

quantum. 

 

 

Introduction 

This paper describes the mathematical properties of maximal algebraic information flow. In prior 

work [1-4] this was considered without the complication of zero divisors. We will see that zero 

divisors act as “sources”, so the prior work was effectively analysis of sourceless information 

flow. In this paper we consider zero divisors and their impact on the maximal information flow 

and in doing so see a mechanism for meromorphic precipitation of quantum matter with 

dimensionful action. 

 

In prior work [1-4] we hypothesized maximal algebraic information flow, where the “emanation” 

of information is represented as multiplication by an element of an algebra in two steps: (i) take 

the maximal current-state element that is a unit-norm trigintaduonion; and (ii) perform the 

emanator step that consists of an achiral sum of multiplications with chiral trigintaduonion 

emanators.   

 

Consider the second step above. There are 4-types of chiral emanators, with 14 sub-types each, 

thus there are 4x14=56 emanator subtypes. The non-perturbed chiral emanator is a 10D algebraic 

element. (For a given chiral propagation, there are then 22D of motion that are frozen with 

respect to the 10D non-perturbed.) When the maximal perturbation is allowed into the 

enveloping 32D trigintaduonion algebra a particular choice of chiral propagation will have 29D 

real dimensions of freedom (29*D effective dimensions when analytic), for which we find 

maximum perturbation when =1/137*. A relation involving parameters {,} was derived in 

[2,4]: 

 

 = (1/137)(cos/cos)(sin/), where  = (/137) and  = /(137  29). 

 

Consider the second step when all emanations are summed and normalized to a unit norm. The 

normalization sum is achiral on the core subtypes identified, with effective dimension 29*, such 

that the fractal edge-of-chaos choice for maximal perturbation gives the {,,𝑐∞} relation [4]: 



 

1
 = (𝑐∞)


 ,  = (1/2)(29*), 𝑐∞ = 1.401155189…, 

where  = (1/2)(29 + (4/72)[(1+{(/72)+(3/72)}]), and =/(137x29). 

 

In what follows we will consider trigintaduonion emanation when multiplication can involve the 

occurrence of zero-divisors. We will see that zero-divisor-removal emanation shall associate 

with matter propagation (see Results), while zero-divisor achiral emanation shall associate with 

wave-collapse (see Discussion). Since critical properties of fractal boundaries, zero-divisors, and 

integrals-with-large-parameter are not well known, they will be reviewed first, in the 

Background sections that follow, along with a recap of previous results. 

 

 

Background 

Previous Results -- Maximum Information Flow Part I: Fiat Numero 

(1) Maximal Information flow without perturbation is in 10D chiral subspace of 32D 

trigintaduonions [1]; 

(2) Maximal perturbation is by amount =1/137* into the enveloping 32D space [2]; 

(3) Maximal Information flow with perturbation is 32D, where all chiral subtypes are summed 

and normalized, with the four 29*D chiral propagations possible in the analytically continued 

32D complexified space (64D). We thereby arrive at the edge-of-chaos maximal information 

emanation relation, where 1
 = (𝑐∞)


 , with its suggestion that the universal evolution is at a 

fractal boundary, and thus fractal itself [4]. 

 

Maximum Information Flow Part II: Logos Incarnate 

(4) The dimensionless quantum arises from analyticity in the form of a meromorphic function 

association to each of the 29D in a given chiral propagation, where associated zero divisor (ZD) 

surgery gives h*<<<1 since each ZD has 29 real component dimensions (plus a remnant of 

imaginary dimensionality, thus effective dim=29* [4]), and where a point-like location is given 

by the location of the cut-out. 

  

(5) In what follows, we shift from emanator projection to discrete-time propagation with (S*/h*) 

and, most notably, a shift from propagation in terms of trigintaduonion emanation steps 

comprising trigintaduonion multiplications to the more conventional propagation in terms of 

complex propagators comprising multiplication of complex functions of a complex variable. The 

shift from 32D emanator numbers to 2D propagator complex functions is necessitated by 

consistency with the maximal info flow hypothesis and the known constraints of the quantum 

deFinetti relation to information flow with complex propagators [4]. 

 

(6) The dimensionful quantum arises from Wick rotation from real to pure imaginary (with ZD 

cut-outs) such that (S*/h*) with discrete time steps ‘n’ Wick rotates to S/h with dimensionful 

time ‘t’. The exact numerical relation h* |h| may be a truly random emergence that will never 

be defined further. The main constraint, which is satisfied, is that the quantum be very small, 

giving rise to an oscillatory integral formalism. A shift in the small constant can’t be explained 

further with the current development of the theory. Experimental data is used to justify the 

dimensionful choices of time in seconds, etc. 

 



 

 

Complex functions, mappings, and fractals (2D  2D transforms) 

The 2D plane can be mapped repeatedly to itself. For such situations the asymptotic behavior can 

be examined. Take for example the classic Mandelbrot set mapping where  

 

𝑧𝑛𝑒𝑤 = 𝑓(𝑧𝑜𝑙𝑑) = (𝑧𝑜𝑙𝑑)2 + 𝑐 
 

For the Mandelbrot set the stability boundary has fractal dimension 2 [5]. One might guess a 

number 1 ≤ 𝑓𝑟𝑎𝑐 ≤ 2, but to actually reach the dimension 2 shows an optimality for the 

Mandelbrot set in this regard that will be called upon later where it will lead to a “zero-divisor” 

occurrence under that circumstance, thereby effecting a second order zero. The order of the zero 

will be relevant to the initial dimensionless Planck “h*” calculation (when using the residue 

theorem from complex analysis). 

 

Trigintaduonion mappings and Zero Divisors (32D  32D transforms) 

We describe emanation as going from an old trigintaduonion base to new trigintaduonion base, 

i.e, a 32D-to-32D transform. For some of the analysis the 32 real component trigintaduonion will 

decompose into a product of N real dimensions, each analytically continued to have a product 

contribution from its residue factor, this will be described further in the Results. For some of the 

analysis the 32D trigintaduonion isn’t reducible, however, such as for consideration of zero 

divisors that are described next. 

 

Zero Divisors 

The division algebras do not have zero divisors and comprise the first four algebras of the Cayley 

family: the real numbers, the complex numbers, the quaternions, and the octonions. Beyond 

octonions the Cayley algebras have zero divisors. The next two Cayley algebras are the 

sedenions and the trigintaduonions. Let’s begin by analyzing the zero divisors for the sedenions. 

Consider the situation: 

 

𝑆1 ⋅ 𝑆2 = 0, 𝑤ℎ𝑒𝑟𝑒 𝑆1 = (𝑂1𝐿 , 𝑂1𝑅)  ≠ 0 𝑎𝑛𝑑 𝑆2 = (𝑂2𝐿 , 𝑂2𝑅) ≠ 0 
 

𝑆1 and 𝑆2 in the above form a zero-divisor pair. Let’s carry the analysis to the level of octonions 

to extract more manageable relations: 

 

(𝑂1𝐿 , 𝑂1𝑅) ⋅ (𝑂2𝐿 , 𝑂2𝑅) = ([𝑂1𝐿  ⋅ 𝑂2𝐿 − 𝑂2𝑅
∗  ⋅ 𝑂1𝑅], [𝑂1𝑅 ⋅ 𝑂2𝐿

∗  + 𝑂2𝑅  ⋅ 𝑂1𝐿]). 
 

For the last expression to be zero, it must be zero component-wise, and we arrive at two 

relations: 

𝑂1𝐿  ⋅ 𝑂2𝐿 = 𝑂2𝑅
∗  ⋅ 𝑂1𝑅   𝑎𝑛𝑑   𝑂1𝑅 ⋅ 𝑂2𝐿

∗ = −𝑂2𝑅  ⋅ 𝑂1𝐿 
  

Let’s consider the simplest case, where the four octonions are unit octonions  

 

{𝑂1𝐿, 𝑂2𝐿, 𝑂1𝑅, 𝑂2𝑅} ∈ {𝑒𝑖} 𝑖 = 0. .7, 
where 



𝑒𝑖 ⋅ 𝑒𝑗 =  {

𝑒𝑗  𝑖𝑓 𝑖 = 0

𝑒𝑖 𝑖𝑓 𝑗 = 0
−𝛿𝑖𝑗𝑒0 + 𝜀𝑖𝑗𝑘𝑒𝑘

 

 

where the antisymmetric tensor is 1 when 𝑖𝑗𝑘 = {123,145,176,246,257,347,365}. The conditions 

are then simplified to (unit octonion for 𝑂1𝐿 is labeled as 𝑒1𝐿): 

 

𝜀(1𝐿)(2𝐿)(𝑘) = 𝜀(1𝑅)(2𝑅)(𝑘) 𝑎𝑛𝑑 𝜀(1𝑅)(2𝐿)(𝑘) = −𝜀(1𝐿)(2𝑅)(𝑘). 

 

Consider the first zero divisor indicated, where:  

 

𝜀(1)(4)(5) = 𝜀(3)(6)(5) → {1𝐿 = 1, 2𝐿 = 4, 1𝑅 = 3, 2𝑅 = 6} 

 

Thus,  𝑆1 ⋅ 𝑆2 = 0, with {𝑆1, 𝑆2} is a zero divisor pair, if 𝑆1 = (𝑒1, 𝑒3) and 𝑆2 = (𝑒4, 𝑒6). If 

converted to sedenions (see multiplication table at [6]): 

 

𝑆1 = (𝑒1, 𝑒3) = (�̂�1 + �̂�3+8) = (�̂�1 + �̂�11) 
 

𝑆2 = (𝑒4, 𝑒6) = (�̂�4 + �̂�6+8) = (�̂�4 + �̂�14) 
 

𝑆1 ⋅ 𝑆2 = (�̂�1 + �̂�11) ⋅ (�̂�4 + �̂�14) = �̂�5 + �̂�15 − �̂�15 − �̂�5 = 0. 
 

So we see that there are zero divisors in the sedenions, with a concrete example above, for any 

set of indices that can be chosen for the antisymmetric tensor in its first two positions. Thus 𝑖 can 

take 7 values and 𝑗 6 in the relation: 𝜀𝑖𝑗(𝑘), so 42 cases. A similar set of relations exist for the 

negative antisymmetric tensor indices for another 42 cases. So there are 84 such zero divisors. 

 

There are only 84 discrete instances of zero divisors for the sedenions. Can this number be 

increased by relaxing assumptions in our derivation above? (1) Can we interpolate with  

𝑆1 = (𝜏𝑒1, (1 − 𝜏)𝑒3) for some variety of 𝜏? If we try this the antisymmetric tensor forces the 

single (equilibrium) case where 𝜏 = 1/2. (Norm=1 would force this as well.) (2) Can we 

generalize solutions of the form (�̂�1 + �̂�11) ⋅ (�̂�4 + �̂�14) = 0 to sedenions consisting of more than 

the addition of two unit sedenions? (In turn, this traces back to assuming the octonion 

decomposition consisted of unit octonions.) For this to work we would have an expression: 

 

{3 �̂�𝑖  𝑡𝑒𝑟𝑚} × {3 �̂�𝑗  𝑡𝑒𝑟𝑚} = {9 �̂�𝑗 𝑡𝑒𝑟𝑚} → 𝑜𝑑𝑑 𝑡𝑒𝑟𝑚𝑠, 𝑐𝑎𝑛′𝑡 𝑐𝑎𝑛𝑐𝑒𝑙 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒, 𝑛𝑜 𝑧𝑑′𝑠 

 

trying again with expression with four unit vector terms: 

 

{4 �̂�𝑖 𝑡𝑒𝑟𝑚} × {4 �̂�𝑗  𝑡𝑒𝑟𝑚} = {16 �̂�𝑗 𝑡𝑒𝑟𝑚} → 𝑛𝑒𝑒𝑑 4 + 4 + 8 = 16 𝑖𝑛𝑑𝑒𝑝. 𝑖𝑚𝑎𝑔′𝑠 

 

For the latter case, we see that to have an expression with a sedenion comprising 4 unit sedenions 

multiplied by another such, the resulting expression will have 16 product terms, for which 

pairwise cancellation is possible (16/2=8 new imaginaries introduced), so 4+4+8=16 independent 

imaginary components are needed (if we have enough imaginary terms to accommodate). This is 



not the case for sedenions but is the case for trigintaduonions. This exhausts the possibilities for 

sedenions, thus there are only the 84 sedenion zd’s indicated. Continuing this analysis for 

trigintaduonions: 

 

{5 �̂�𝑖 𝑡𝑒𝑟𝑚} × {5 �̂�𝑗  𝑡𝑒𝑟𝑚} = {25 �̂�𝑗  𝑡𝑒𝑟𝑚} → 𝑜𝑑𝑑 𝑡𝑒𝑟𝑚𝑠, 𝑐𝑎𝑛′𝑡 𝑐𝑎𝑛𝑐𝑒𝑙 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒, 𝑛𝑜 𝑧𝑑′𝑠 

 

{6 �̂�𝑖 𝑡𝑒𝑟𝑚} × {6 �̂�𝑗  𝑡𝑒𝑟𝑚} = {36 �̂�𝑗  𝑡𝑒𝑟𝑚} → 𝑛𝑒𝑒𝑑 6 + 6 + 18 = 30 𝑖𝑛𝑑𝑒𝑝. 𝑖𝑚𝑎𝑔′𝑠 

 

The latter case is still possible for trigintaduonions, which have 31 imaginary components. 

 

Suppose for trigintaduonions instead of the antisymmetric tensor we have some more general 

third-rank tensor with no indices the same, again we will have a relation with the first two 

indices (ranging over sedenions), with two sign forms, giving rise to no more than 15*14*2=420 

independent discrete trigintaduonion zero divisors. If we view the approximate number to be four 

times that of the sedenions since 1 T-multiplication can be turned into 4 S-multiplications we 

could argue for 4x84=336 trigintaduonion zero divisors. Regardless, it is a discrete set as with 

the Sedenions and that’s all that’s needed for the Methods to be discussed. 

 

Integrals with large parameter 

A review of oscillatory integrals now follows. This mathematics is critical to the path-integral 

quantization program. It traces to Laplace’s method of steepest descents, then to the work of 

Stokes and Lord Kelvin, then to the work of Erdelyi and others [7-9], before its incorporation by 

Feynman into his path integral formulation of QM and QFT, where the most precisely tested 

result in physics was then shown with QED [10-12]. 

 

So far we’ve seen sums involving possibly an infinite number of products during an emanation 

step. These are related to a definite integral with appropriate measure. Thus we arrive at a 

discussion of definite integrals. Now if the integrand has maxima or stationary points the definite 

integral is often dominated by those regions (to be shown momentarily), so the focus turns to an 

asymptotic analysis of the integrals about those internal points (and boundary points), e.g, an 

asymptotic expansion analysis. (The easiest asymptotic expansion for a definite integral is 

obtained by repeated integration by parts.) 

 

For what follows we are interested in the definite integral with large parameter: 

 

𝑓(𝑥) = ∫ 𝑒𝑥ℎ(𝑡)𝑑𝑡
𝑏

𝑎

 

 

where 𝑥 is very large (or grows large). Under these circumstances we are interested in any 

critical point 𝑡0, where ℎ′(𝑡0) = 0, and we write ℎ(𝑡) in terms of its Taylor expansion about that 

critical point: 

 

𝑓(𝑥) ≈ 𝑒𝑥ℎ(𝑡0) ∫ 𝑒−
1
2

𝑥|ℎ′′(𝑡0)|(𝑡−𝑡0)2

𝑑𝑡
𝑏

𝑎

 

 



and we then approximate with the integration bounds at infinity to get the standard Gaussian 

integral. Thus, we get the asymptotic expansion solution for large 𝑥: 

 

𝑓(𝑥) ≈ 𝑒𝑥ℎ(𝑡0)√
2𝜋

𝑥|ℎ′′(𝑡0)|
      𝑓𝑜𝑟 𝑙𝑎𝑟𝑔𝑒 𝑥. 

 

Let’s now consider the more general form originally studied by Laplace: 

 

𝑓(𝑥) = ∫ 𝑔(𝑡)𝑒𝑥ℎ(𝑡)𝑑𝑡
𝑏

𝑎

 

 

similar analysis can proceed if we make the substitution ℎ(𝑎) − ℎ(𝑡) = 𝑢2 (due to Laplace), 

where a factor of 
1

2
 is introduced since the eventual domain of integration will be {0,∞} not 

{−∞, ∞}: 

𝑓(𝑥) ≈ 𝑔(𝑡0)𝑒𝑥ℎ(𝑡0)√
−𝜋

2𝑥ℎ′′(𝑡0)
      𝑓𝑜𝑟 𝑙𝑎𝑟𝑔𝑒 𝑥. 

 

If we consider the last integral but generalized to x a large complex variable, and 𝑔 and ℎ to be 

analytic functions of complex 𝑡 (first studied by Riemann and Debye [9]), we have similar 

analysis but where we start by deforming the path of integration as much as possible to coincide 

with paths of steepest descent. What we seek, however, is not the full complex generalization, 

but the alternate form that might be arrived at by analytic continuation from the initial (pure) real 

form to a pure imaginary form (via a Wick rotation). For this we arrive at the integral: 

 

𝑓(𝑥) = ∫ 𝑔(𝑡)𝑒𝑖𝑥ℎ(𝑡)𝑑𝑡
𝑏

𝑎

 

 

where 𝑥 is large and positive and ℎ(𝑡) is real as before (but with the factor of 𝑖, now effectively 

pure imaginary). To solve this type of integral the integral is dominated by terms not cancelled, 

i.e., where the phase is stationary in the integration. This occurs at the critical points (and end-

points) as before, but represents a slower convergence or domination about the critical point than 

that in the exponential fall-off case dealt with by Laplace. The method of stationary phase was 

initially developed by Stokes and Kelvin [7]. By similar arguments to that shown above we then 

arrive at the solution: 

 

𝑓(𝑥) ≈ 𝑔(𝑡0)𝑒[𝑖𝑥ℎ(𝑡0)+
𝑖𝜋
4

]√
2𝜋

𝑥ℎ′′(𝑡0)
      𝑓𝑜𝑟 𝑙𝑎𝑟𝑔𝑒 𝑥. 

 

In the result above, the integral is dominated by the region around the stationary point. Since this 

integral is written {−𝜀, +𝜀}, which is extended to {−∞, ∞}, we get the standard Gaussian 

integral factor. If we generalize to 𝑔 and ℎ analytic, then the point of stationary phase is a saddle-

point in the complex plane and using methods like in the method of steepest descent, the 



integration path is deformed to traverse the stationary-phase saddle-points (from stirrup to 

stirrup) such that the same result above is obtained as the dominant contribution as 𝑥 grows large 

[9]. 

 

Methods 

Trigintaduonion Emanation: achirality from sum on all chirality 

If analyticity confers Laplace’s equation, from electrostatics for example, what may confer 

electrodynamics? For this we need something that can be dynamical and in the current theory of 

trigintaduonion emanation (projection) we only discussed how to connect to a 10D emanation 

with alpha perturbation into 32D, now complexified to 64D (surmised to have been there in the 

projection to the perturbed 32D state at the outset, with the initial trigintaduonion projection 

emergence). In practice, there are four chiralities, and for a given chirality (with unit norm) there 

are 29 dimensions of freedom (10D + 19D of chirally consistent perturbation). When analytic 

extension is taken to give maximal information flow, the effective dimension for each of the four 

chiralities is 29* (detailed in [4]). This clear decomposition into 29* independent effective 

dimensions is then revealed in the {,,𝑐∞} relation in [4]. The Mandelbrot Set is one of many 

that encounter the universal constant 𝑐∞. The Mandelbrot set also describes a 2D fractal 

boundary at its “edge of chaos”. If driven to similar optimality in approaching a zero-value (a 

zero-divider issue), we see a two-value zero-crossing specification effectively like a double zero. 

The parameterization of the zeros of the Emanator at chiral zero-divisor points will thus be as 

double-zeros.  

 

Recall the description of the emanator from [4]: 

 

𝑇𝑐ℎ𝑖𝑟𝑎𝑙
(𝑘)

=  {

((O,), )
((, O), )
(, (O,))
(, (, O))

 , 𝑤ℎ𝑒𝑟𝑒 𝑇𝑐ℎ𝑖𝑟𝑎𝑙
(𝑘)

= 𝟏 + 𝑖𝜹. 

 

 

Emanation(𝐓) =
1

𝑁
 ∑ 𝐓  

𝑘∈{4𝑥72}𝑛

𝑻𝒄𝒉𝒊𝒓𝒂𝒍
(𝒌)

=
1

𝑁
 ∑ 𝐓  

𝐾∈4 𝑐ℎ𝑖𝑟𝑎𝑙𝑖𝑡𝑖𝑒𝑠

�̅�𝒄𝒉𝒊𝒓𝒂𝒍
(𝑲)

 

 

Suppose we add the rule that emanation may not proceed when a particular chirality is zeroed-

out, in other words: 

𝐓 �̅�𝒄𝒉𝒊𝒓𝒂𝒍
(𝑲)

≠ 𝟎. 
 

For ‘normal’ numbers this goes without saying, since for real numbers if we have 𝑟1 × 𝑟2 = 𝑟3 

then 𝑟3 ≠ 0 𝑖𝑓 𝑛𝑒𝑖𝑡ℎ𝑒𝑟 𝑟1 = 0 𝑜𝑟 𝑟2 = 0. This holds true for the Real, Complex, Quaternion, and 

Octonion numbers. This does not hold true for Sedenions or higher. For sedenions the 

dimensionality of the zero-divisor event is mostly constrained, while for trigintaduonions it is 

significant (see Discussion). If such zeros were eliminated from the emanator description by 

using analytic extension component-wise (on 29* effective components) we see how a 

description devoid of matter (pure static field with no source or sink) might acquire matter by 

way of extending to a maximal domain of analyticity be removing zero-divisor events (a Wick 



transformation from real dimensionless action to pure imaginary action that is dimensionless but 

consisting of a dimensionful ratio). For what follows, let’s parameterize the zero-divisors and 

index them such that: 

 

𝐓 �̅�𝒄𝒉𝒊𝒓𝒂𝒍(𝑺∗
𝒊) → 𝟎 𝑎𝑠 𝑑𝑜𝑢𝑏𝑙𝑒 𝑧𝑒𝑟𝑜 ∀𝑺∗

𝒊 . 
 

 

Maximal emanator analyticity via removal of zeros 

The sum over the zero-divisors means that the part of the emanator requiring analytic ‘repair is 

given by: 

 

∑ 𝐓 �̅�𝒄𝒉𝒊𝒓𝒂𝒍(𝑺∗
𝒊) → 𝒊 ∑ 𝒆𝑺∗

𝒊/𝒉∗

{𝒊}{𝑺∗
𝒊}

 . 

 

Where use is made of the fact that approach to zero-divisor (ZD) is purely involving imaginary 

components. The shift to exponential form will be explained with the choice of analytic 

continuation or ‘repair’ described in the next section. The sum on ZD events (for all ‘time’) can 

thus be described as a sum on (ZD) paths. The dimensionality of possible ZD’s (for 

trigintaduonions) thus indicates a dimensionality on possible paths, with result: 

 

∑ 𝒆𝑺∗
𝒊/𝒉∗

𝒛𝒅′𝒔

→ ∫ 𝒆𝑺∗(𝒊)/𝒉∗

𝒛𝒅 𝒑𝒂𝒕𝒉𝒔

 . 

 

We can see now the identification of matter with the zero-divisor ‘residues’ that occur when 

imposing maximal analyticity. If we now do a Wick rotation and go from real dimensionless 

iteration-number to imaginary dimensionful action, with dimensionful Planck’s constant. We 

then get the highly oscillatory integral that is the basis of quantum field theory and quantum 

mechanics, with their classical and semiclassical reductions. So, we go from an integral on zd 

paths with large parameter 1/h* to an integral on matter paths with large parameter 1/h. We, thus, 

maintain the large-parameter form as we go from a Laplace-type integral to a Stokes-type 

integral, and thus arrive at a path integral formulation: 

 

∫ 𝒆𝑺∗(𝒊)/𝒉∗

𝒛𝒅 𝒑𝒂𝒕𝒉𝒔

→ ∫ 𝒆𝒊𝑺(𝒊)/𝒉

𝒎𝒂𝒕𝒕𝒆𝒓 𝒑𝒂𝒕𝒉𝒔

,        𝑤ℎ𝑒𝑟𝑒 𝑺(𝒊) = ∫ 𝑳𝒅𝒕 . 

 

Zero-divisor removal at component level 

In the Results we will need zero removal for analyticity on the log of the trigintaduonion 

products for a particular chirality of emanation. Let’s now calculate the zero removal residue 

seen as a product of each of the d-dimension number of analytically-continued real components. 

Recall that: 

∮
1

𝑧
𝑑𝑧

𝐶

= ∮ 𝑑(ln 𝑧)
𝐶

= 2𝜋𝑖   (𝑠𝑖𝑚𝑝𝑙𝑒 𝑝𝑜𝑙𝑒). 

 



on a contour that encloses the pole, which generalizes to: 

 

∮ 𝑑(ln 𝑓(𝑧))
𝐶

= ∑ 2𝜋𝑚𝑖

𝑧𝑒𝑟𝑜𝑠

  (𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑧𝑒𝑟𝑜𝑠), 

 

where f has multiple zeros of order m, and where the last result requires that 𝑓(𝑧) be analytic 

throughout the domain, D, with boundary C inside that analytic domain (and D is simply 

connected). Let 𝑺∗
𝒊 be the zeros of 𝑓(𝑧) where at lowest order 𝑓(𝑧) has a double zero at each of 

the 𝑺∗
𝒊 according to the max fractal dimension possible for the boundary condition at the edge-

of-chaos (where the dim=2 boundary dimension is actually the case for the Mandelbrot Set [5]). 

Let’s use this information to parameterize the approach to the zeros: 

 

𝐓 �̅�𝒄𝒉𝒊𝒓𝒂𝒍(𝒛) ∝  ∏ (𝒛 − 𝑺∗
𝒊)

𝟐

𝒅=𝟐𝟗∗

, 

thus, for multiple zeros: 

 

∮
𝑑

𝑑𝑧
(ln[𝐓 �̅�𝒄𝒉𝒊𝒓𝒂𝒍(𝒛)])𝑑𝑧

𝐶

= ∑ ∏ 4𝜋𝑖

29∗𝑧𝑒𝑟𝑜𝑠

. 

 

Focusing on just one of the zeroes and the line integral dominated by a local, stationary phase, 

contribution, we need to integrate and set 𝒛 = 𝑺∗
𝒊: 

 

𝑑(ln[𝐓 �̅�𝒄𝒉𝒊𝒓𝒂𝒍(𝒛)]) =  4𝜋𝑖29∗𝑑𝑧. 
 

and, with choice of integration constants (phase factors): 

 

𝐓 �̅�𝒄𝒉𝒊𝒓𝒂𝒍(𝑺∗
𝒊) = 𝒆𝑺∗

𝒊/|𝒉∗|. 
 

Summing on the zeros of the latter expression: 

 

∑ 𝐓 �̅�𝒄𝒉𝒊𝒓𝒂𝒍(𝑺∗
𝒊)

𝑧𝑒𝑟𝑜𝑠 𝑺∗
𝒊

= ∑ 𝒆𝑺∗
𝒊/|𝒉∗|

𝑧𝑒𝑟𝑜𝑠 𝑺∗
𝒊

. 

 

Thus, the general form of maximal, analytic, information emanation gives rise to a sum on 

residue-like terms associated with each of the zero-divisors (zd’s), and an ‘action’ variable is 

indicated to result from the parameterization of the approach to each of the zero-divisors, with 

their individual actions additive (phase contributions multiplicative) for parts contributing to a 

particular zd. The sum over all the zd’s will, upon analytic continuation, be associated with a 

sum over paths. The zd action variable is written in the form of the integral of a functional along 

a path parameterized by ‘time’, with the usual definition for Action if the functional is the 

Lagrangian: 

 



∑ 𝒆𝑺∗
𝒊/|𝒉∗|

𝑧𝑒𝑟𝑜𝑠 𝑺∗
𝒊

→ ∫ 𝒆𝒊𝑺(𝒊)/𝒉

𝒎𝒂𝒕𝒕𝒆𝒓 𝒑𝒂𝒕𝒉𝒔

, 𝑤ℎ𝑒𝑟𝑒 𝑺(𝒊) = ∫ 𝑳𝒅𝒕 , 

 

where the definition for action above is kept to the simple form for a point particle trajectory. 

More complex forms can be written for field descriptions, where we generalize from point 

particle forms in various ways, but still with point-like coupling terms. Further generalization to 

actions describing 1-D objects, string not points, or beyond (n-D objects, or branes) and their 

trajectories is possible at this point but note how the chain of associations is altered, if not 

broken. Tracing back to a fundamental issue of analyticity when going from emanator form to 

propagator form, we saw that analyticity requires isolated zeros to not make the entire solution 

trivially zero. Thus, the fundamental meromorphic ‘precipitate’ for matter might be point and 

point-based field constructs as we’ve developed them, where the role of string theory will 

emerge separately, although possibly as early as the “matter-precipitating” Wick rotation step 

above, with an appropriate density of zd’s along a 1-D or n-D curve. (If nothing else, String 

theory provides a critical QG renormalization construct, emergent with the spacetime geometry 

itself.) Note that in going from  

 
𝑺∗

𝒊

|𝒉∗|
→ 𝒊

𝑺(𝒊)

𝒉
 

 

(1) Both ratios are dimensionless, but the quantities on the left are a ratio of pure numbers 

themselves dimensionless, while the RHS has a ratio of S, the action, with action 

dimensions, and h, Planck’s constant, also with action unit dimensions. 

(2) Both 1/|𝒉∗| and “1/|𝒉|”, where the abs value operation on the latter simply drops the 

dimensionful units, are extremely large numbers, and for the latter, occurring in a phase 

argument, this sets up a highly oscillatory integral such that the classical solution 𝛿𝑆 = 0 

results, (if a classical solution exists for the system studied), among other things. 

 

Any meromorphic function on a sphere, due to its compactness, must be rational. Evaluation of 

zero divisors occurs when we consider the product of two pure unit-norm imaginary 

trigintaduonions, thus we consider analyticity on a 31-sphere with its possible decomposition 

into analytic extensions on 31 real trigintaduonion components into 31 complex trigintaduonion 

components. 

 

If the emanator is to remain an achiral mix, as well as analytic, then we can’t allow the zero 

divisor events that would drop a chirality mentioned above, where these occurrences are treated 

as isolated singular events removable from the domain of definition of the emanator by repeated 

application of the analytic domain ‘surgery’ (repeated on both events, and for given event, it’s 

different independent components). This analytic ‘surgery’ occurs for each of the independent 

component dimensions for a given chiral emanation, and for each of those dimensions it returns a 

zero-removal ‘residue’ of 4𝜋𝑖 (with an extra factor of 2 since a double zero at the fractal 

boundary). We found in [4] that the effective dimension is 29*, thus the remnant of the surgery 

for each zd removed is: 

  

𝟏/|𝒉∗| = (𝟒𝝅)𝟐𝟗∗
 



 

A quantization on the matter has occurred thus far in the sense that the meromorphic function 

must be rational, so a discrete, countable, number of matter-associated events must occur.  

 

Note that we have: 

 

|𝒉∗| = 𝟔. 𝟔𝟑𝟎 × 𝟏𝟎−𝟑𝟑       𝒗𝒔       𝒉 = 𝟔. 𝟔𝟐𝟔𝟎𝟕𝟎 × 𝟏𝟎−𝟑𝟒𝑱 𝒔 

 

where we only need these two ‘h’ numbers to satisfy the same extreme smallness property in 

order to obtain integrals with large parameter and thus a highly oscillatory integral with 

stationary phase domination.  

 

Achieving Dimensionality 

Unlike Boltzmann’s constant, which can be eliminated by appropriate choice of units, here we 

cannot eliminate the dimensionful part of Plank’s constant (e.g. “𝐽 𝑠”), although a slight shift to a 

time unit of ~1/10 second, a “decond”, or “dec” or”d”, say, could lead to: 

 

𝒉 = |𝒉∗| 𝑱 𝒅 

 

What remains is still the problem of how to dress up the key parameters with dimensionful units, 

to arrive at the standard physics formulations, when the original formalism is purely algebraic, 

albeit with dimensionless constants already found to exist (alpha). This is accomplished by the 

Wick rotation from integration on real terms to integration on imaginary phase contributions. In 

making this analytic continuation we introduce units via transforming a dimensionless ratio of 

dimensionless numbers to a dimensionless ratio of dimensionful numbers. We also go from 

summing on zero-divisor associated terms to summing on zero-divisor associated ‘paths’. The 

summations on path add according to their phase, the latter dependent on the action expressed as  

 

𝑺 = ∫ 𝑳𝒅𝒕 

 

where time emerges as the parameterization of the path. Analyticity on this integral (and all 

integrals encountered thus far), in the form of the Wick rotation especially, is what is referred to 

as Euclideanization in later sections. Note, this describes a doubly analytic structure (at level of 

emanator and at level of propagator) just as there was a doubly chiral extension (for maximal 

emanator). Since the Wick rotation on the trigintaduonion (32D) objects represents use of an 

analytic complex structure to extend each of the real components to complex components, we 

have an analytic extension off of the 32D Cayley algebra into the enveloping 64D Cayley 

algebra. Perhaps a better way to view this is that the emanation process that arrived at the 32D 

Cayley algebra did so in a context where an analytic 64D Cayley algebra extension already 

existed. 

 

For a zero-divisor to occur with the Trigintaduonions the real component must be zero, but this is 

possible for the base trigintaduonion in the Emanator (the number of emanation steps to a zero-

crossing event, with random-walk statistics on the real component, is examined in [3]). We now 

continue the discussion of zero divisors with a description of new results. 



 

 

Results 

Emanation when base trigintaduonion contains Zero Divisors 

Consider emanation when the base trigintaduonion is a zero-divisor 𝐓𝒁𝑫: 

 

Emanation(𝐓𝒁𝑫) =
1

𝑁
 ∑ 𝐓𝒁𝑫  

𝑘∈{4𝑥72}𝑛

𝑻𝒄𝒉𝒊𝒓𝒂𝒍
(𝒌)

, 

 

and suppose the number n (like the number of cards in ‘flop’ to make a reading) is such that 

{4𝑥72}𝑛 is large, such that the sum on trigintaduonion products is dominated by stationary phase 

terms. Such domination by stationary phase is expected with appropriate handling on the 

normalization, even without zero real component and unit norm, since we have phase addition on 

a compact space, the 31-sphere. We now have a new mechanism driving the stationary phase 

solution, however, due to the existence of zero divisors, for which a new type of solution class is 

indicated. Suppose stationary phase in this context selects such that: 

 

Emanation(𝐓𝒁𝑫) =
1

𝑁
𝐓𝒁𝑫(R + 𝐓𝒁𝑫∗) = 𝐓𝒁𝑫, ∆𝐓𝒃𝒂𝒔𝒆 = 𝟎 

 

where 𝐓𝒁𝑫∗ is the zd conjugate to 𝐓𝒁𝑫 , i.e. 𝐓𝒁𝑫𝐓𝒁𝑫∗ = 𝟎, and N is the appropriate 

normalization constant to arrive at unit norm as before. Since ∆𝐓𝒃𝒂𝒔𝒆 = 𝟎, in the emanation 

process it is unchanging, thus this is the condition that will relate to the classic equilibrium (or 

stationarity at least). 

 

Let’s now consider the 𝐓𝒃𝒂𝒔𝒆 that consists of a sum over a countable collection of zero divisors 

with separate weighting factors: 

𝐓𝒃𝒂𝒔𝒆 = ∑ 𝑎𝑖𝐓𝒁𝑫,𝒊 

𝑖 𝜖 𝑎𝑙𝑙

 

 

Suppose stationary phase in this context selects such that: 

 

Emanation(𝐓𝒃𝒂𝒔𝒆) =
1

𝑁
𝐓𝒃𝒂𝒔𝒆 ∑ 𝐓𝒁𝑫∗,𝒊

𝑖 𝜖 𝑎𝑙𝑙

(𝐓𝒁𝑫∗,𝒊)
−𝟏 =  𝐓𝒃𝒂𝒔𝒆 

 

where the order of 3-T multiplications is with the inverse last, and where an overall constant is 

eliminated by the renormalization term to arrive back at the starting base trigintaduonion. This 

appears to be the general condition for describing the emanation form of equilibrium. Let’s now 

consider what happens if the real component is nonzero as well (and assume 420 ZD’s): 

 

𝐓𝒃𝒂𝒔𝒆 = 𝑹 + ∑ 𝑎𝑖𝐓𝒁𝑫,𝒊 

𝑖 𝜖 𝑎𝑙𝑙

 

 



Emanation(𝐓𝒃𝒂𝒔𝒆) =
1

𝑁
(𝑹 + ∑ 𝑎𝑖𝐓𝒁𝑫,𝒊 

𝑖 𝜖 𝑎𝑙𝑙

) ∑ 𝐓𝒁𝑫∗,𝒊

𝑖 𝜖 𝑎𝑙𝑙

(𝐓𝒁𝑫∗,𝒊)
−𝟏 

 

Em(𝐓𝒃𝒂𝒔𝒆) =  
1

𝑁
(420𝑹 + ∑ 419𝑎𝑖𝐓𝒁𝑫,𝒊 

𝑖 𝜖 𝑎𝑙𝑙

) =
𝟏

𝐍
(𝐑 + 𝟒𝟏𝟗𝐓𝒃𝒂𝒔𝒆) ≅ 𝐓𝒃𝒂𝒔𝒆 

 

with a slight overall increase in the real component, and notably retaining all of the ZD’s. 

 

 

Let’s now consider the general case where ZD’s are indicated as a separate portion (and assume 

420 ZD’s): 

𝐓𝒃𝒂𝒔𝒆 = (𝑹 + 𝑻𝒊𝒎𝒂𝒈) + ∑ 𝑎𝑖𝐓𝒁𝑫,𝒊 

𝑖 𝜖 𝑎𝑙𝑙

 

and  

 

Em(𝐓𝒃𝒂𝒔𝒆)  =
𝟏

𝐍
((𝑹 + 𝑻𝒊𝒎𝒂𝒈) + 𝟒𝟏𝟗𝐓𝒃𝒂𝒔𝒆) ≅ 𝐓𝒃𝒂𝒔𝒆 

 

with a slight overall increase in the non-ZD part while still notably retaining all of the ZD’s. 

There is thus conservation of ZD’s, suggesting association of ZD’s with matter/energy and the 

conservation of the latter seen in the emanated propagator formalism. The nature of this matter 

association is still unclear, however, until we consider the next condition on the emanator. 

 

Let’s now consider the form of the emanator when it is summed into the 4 chiralities (or 78 or 72 

card types dependent on form): 

 

Emanation(𝐓𝒃𝒂𝒔𝒆) =
1

𝑁
 ∑ 𝐓𝒃𝒂𝒔𝒆  

𝐾∈4 𝑐ℎ𝑖𝑟𝑎𝑙𝑖𝑡𝑖𝑒𝑠

�̅�𝒄𝒉𝒊𝒓𝒂𝒍
(𝑲)

 

and, thus 

𝐓𝒃𝒂𝒔𝒆  �̅�𝒄𝒉𝒊𝒓𝒂𝒍
(𝑲)

≠ 𝟎 

 

In this context the zero divisors in the base force an unexpected constraint if we require that no 

elimination of chirality (thus violation of emanator achirality) can occur. In other words, we 

hypothesize the emanation is constrained such that it is analytic on the log of the products such 

that zero’s are eliminated from the maximal analytic domain. 

 

On the other hand, suppose the form of the emanator can be written as a sum on achiral groups. 

Such groups can be zeroed-out, which describes a form of wave-collapse or measurement filter 

for the theory: 

 

Emanation(𝐓𝒃𝒂𝒔𝒆) =
1

𝑁
 ∑ 𝐓𝒃𝒂𝒔𝒆  

𝐾∈𝑎𝑐ℎ𝑖𝑟𝑎𝑙 𝑔𝑟𝑜𝑢𝑝

�̅�𝒂𝒄𝒉𝒊𝒓𝒂𝒍
(𝑲)

 

and, thus, we can have: 



𝐓𝒃𝒂𝒔𝒆  �̅�𝒂𝒄𝒉𝒊𝒓𝒂𝒍
(𝑲)

= 𝟎. 
 

From the preceding results we then see that we can formulate a hypothesis for the meromorphic 

precipitation of quantum matter with dimensionful action, where:  

 

(1) The trigintaduonion emanator is doubly analytic, where the first analyticity is in regards to 

removing the zero-divisors from the domain of the trigintaduonion emanator by means of 

analytic operations to remove the zero-event for each of the effective dimensions, giving rise to a 

dimensionless ‘action’ 𝑺∗ and a quantum of that action given by: 

 

|𝒉∗| = (
𝟏

𝟐𝝅𝒎
)

𝟐𝟗∗

, 𝑤ℎ𝑒𝑟𝑒 𝒎 = 𝟐. 

 

While the second analyticity is in regards to the resulting sum on associated zero-divisor paths. 

Upon analytic operation (Wick rotation) we arrive at a sum on paths whose phase is given by a 

dimensionful action with respect to a dimensionful quantum of action (Planck’s constant): 

 

𝑺∗/𝒉∗ → 𝑺/𝒉 

 

(2) We arrive at large-parameter integral over paths, that is highly oscillatory given |𝒉∗| ≈ |𝒉| ≪
 ∝ < 𝟏, and it must satisfy the quantum deFinetti relation [13], to give rise to a real action, with: 

𝑺 = ∫ 𝑳𝒅𝒕 

 

where the real-valued Lagrangian is selected to be at a variational optimum. 

 

Discussion 

We have 6-element, 4-element, and 2-element antisymmetric zero-divisors that are summed in 

the same emanator expression, giving 3 independent ‘coordinates’ to a zero-divisor event, and 

thus of matter. The collection of the matter part of the emanator is pure imaginary. The non-

matter part (real and some imaginary) is increasing when no new zd’s are created. Thus, we see a 

local-time notion as well as a preservation of the mix of zd’s but with them being less of the 

whole – i.e., inflation. 

 

We see matter as meromorphic residue precipitation, in amounts of one quantum given by a 

precursor to Planck’s constant h*. The meromorphic residue winding number is also notable in 

that it gives an integer that stays constant in the meromorphic region. This raises the possibility 

that elementary particle attributes might encode by way of different analytic extensions (complex 

structures), with reference to their different winding numbers at residues, but that will not be 

discussed further here. 

 

We know from [3] that the chiral trigintaduonion emanation theory indicates 22 free parameters 

with maximum perturbation amount alpha in the larger 32D trigintaduonion algebra. In the 

analysis of the possible emanators analyticity is indicated in numerous ways, such that this is a 

core hypothesis for the maximal information propagating solution. This, in turn, indicates 

analytic surgery via the residue theorem, on the log of the emanator, to create a maximal analytic 



region. When we Wick rotate from 𝑺∗/𝒉∗ → 𝑺/𝒉, there should be 22 independent parameters in 

the action 𝑺 [3], with Plank’s constant counted separately. Can we fit the parameters of the 

Standard Model, a possible extension for dark matter (e.g., neutrinos with possible exotic effect), 

and the gravitational constant G all into that 22 count? Yes, if we adopt the Koide relation [14]. 

Let’s show this by first listing the 19 parameters in the Standard Model: 

 

(I) 9 Yukawa coupling constants (masses) for the charged fermions 

(II) 5 constants for Weinberg Angle and the CKM matrix (with three mixing angles and 

CP-violating phase) 

(III) 3 Constants for electromagnetic coupling (alpha), for strong interaction (g3), and 

strong CP-violating phase (𝜃3 ≈ 0). 

(IV) 2 Higgs parameters: Mass and Vacuum Expectation 

 

If we allow for the neutrinos to have mass, then we get 3 more masses and another 4 constants 

for the PMNS matrix (three mixing angles and a CP-violating phase): 

 

(V) Extended model: 7 more constants  We, thus, have 26 parameters.  

 

If we add the constant for Gravitation (G) to have all constants for Std. Model + Gravitation, we 

now have 27 parameters. Note, however, that the alpha constant is listed above as the EM 

coupling constant, but isn’t really a separate parameter since it is the same for any emergent 

chiral trigintaduonion emanation. This is all the more apparent if we go with a listing of 19 

independent parameters in terms of the 𝑔1 and 𝑔2 coupling constants which share the following 

relation with alpha: 

𝛼 =
1

4𝜋

𝑔1
2𝑔2

2

𝑔1
2 + 𝑔2

2
 

 

So, we take alpha away from the count to get to 26. This is where the Koide relation comes into 

play. 

 

The Koide relation [14] was first observed for the three massive leptons currently known: 

 
𝑚𝑒 + 𝑚𝜇 + 𝑚𝜏

(√𝑚𝑒 + √𝑚𝜇 + √𝑚𝜏)
2 =

2

3
 

 

To a lesser extend this relation is satisfied for the quarks as well, particularly for the three most 

massive, where the value is 0.6695. The problem with a simple application to the quark masses is 

that they are dependent on energy scale. A theoretical explanation for the Koide relation 

describes how this relation might exist for the masses of a given generation (or family group) 

[15]. Assuming this or some other theoretical explanation can show that the three masses of a 

given generation aren’t truly three independent parameters, but two. With this correction on 4 

generation of masses (now counting the neutrino generation), we arrive at 26-4=22 free 

parameters as desired., and the emanator theory thus indicates a nearly complete theory in that 

the 22 parameters are almost known. 

 



Conclusion 
The fine-structure constant alpha and Planck’s constant have very different trigintaduonion 

emanation origins and uniqueness: 

1. Alpha derives from T-emanation directly, without reference to zero divisors, is 

dimensionless, and is precisely defined. 

2. Planck’s constant is only partly specified, with its essentially small quantum, to establish 

an oscillatory integral with h*<<alpha, which derives from T-emanation when zero 

divisors are accounted for by way of maximal analyticity.  
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