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Abstract 
 

We introduce a generalized-clique hidden Markov model (HMM) and apply it to gene 
finding in eukaryotes (C. elegans). Our objective with the clique generalization is to improve the 
modeling of the critical signal information at the transitions between exon regions and non-
coding regions, e.g., intron and junk regions. In doing this we will arrive at a HMM structure 
identification platform that is novel and robustly-performing in a number of ways.  

The generalized clique HMM begins by enlarging the primitive hidden states associated 
with the individual base labels (as exon, intron, or junk) to substrings of primitive hidden states 
or footprint states.  The emissions are likewise expanded to higher order in the fundamental joint 
probability that is the basis of the generalized-clique, or ‘meta-State’, HMM. We then consider 
application to eukaryotic gene finding and show how a meta-state HMM improves the strength 
of coding/noncoding-transition contributions to gene-structure identification. We will describe 
situations where the coding/noncoding -transition modeling can effectively ‘recapture’ the exon 
and intron heavy tail distribution modeling capability as well as manage the exon-start ‘needle-
in-the-haystack’ problem. In analysis of the C. elegans genome we show that the sensitivity and 
specificity (SN,SP) results for both the individual-state and full-exon predictions are greatly 
enhanced over the standard HMM when using the generalized-clique HMM.  

 
  



Introduction 
 

Computational gene-finding dates back to the 1980’s [1-3]. The most successful gene-finding 
tool has been the hidden Markov model, both in statistics intrinsic to the genome under study (ab 
initio gene-finding) [1-3], and in statistical analysis extrinsic to the genome (homology or EST 
matching) [4]. Matching, or alignment, of query sequences to a known sequence database is 
typically done using BLAST [5] (which involves an HMM seed-alignment, followed by less 
optimal, but faster, non-HMM seed-alignment extension). BLAST can also be used for gene 
finding alone, in homology-based programs to identify new genes by sufficiently aligning a 
query sequence with a known gene or genes [4]. In [6], they combine homology information 
with intrinsic genomic information (from statistical properties of the genomic sequence data 
alone). The main drawback of homology-based approaches is that they appear to be very weak at 
finding new genes, as discussed in [1], and explored in [7]. This is largely because approximately 
half of the genes in eukaryotic genomes appear to be novel to that genome (such as for C. 
elegans). This is likely to be true for humans, where we already know that only 50% of the 
proteins encoded in chromosome 22, for example, are found to be similar to previously known 
proteins. In [8], the author describes application of the best gene-finders known at the time (c.a. 
2004) to gene-finding in novel genomes. From that study it is clear that gene-prediction is 
species-specific, i.e., an ab initio component must operate for any gene-finder to succeed at 
identifying genes and genomic structures novel to that organism [8]. 

 
Beginning c.a. 2000 there was a movement towards consolidation of the intrinsic and extrinsic 
approaches [7,9], as described in a 2002 review [9] and a 2006 review [10]. Furthermore, in the 
2006 review, it was claimed that “improved modeling efforts at the hidden Markov model level 
are of relatively little value.” We describe here a radical improvement in HMM capabilities in 
gene-finding, and likely a number of other areas of application, by introducing a fundamental 
new development at the model level. Also beginning c.a. 2000 was specialization to sensor 
development [11-17] to help supplement the HMM-based structure discovery process. There 
were sensors for transcription start site prediction [6], transcription initiation sites and 
polyadenylation signals [18], splice-site recognition [19,20], and identification of 3’ ends of 
exons by EST analysis [21], to list just a few examples.  

 
The past decade, since 2000, has also seen rapid growth in motif-discovery algorithms -- in 
parallel with the aforementioned sensor specialization (and growing more interdependent, as we 
describe in the Discussion). Many of these motif-discovery algorithms are beginning to tie into 
the HMM-based structure identification via referencing regions indicated by the HMM. In [22] 
and [23], many important TFBS’s, promoters, and other regulatory motifs can be identified by 
their position relative to the start and stop of coding (and other non-self transitions identified by 
the HMM’s optimal Viterbi-path parsing). In [22] they find that the motif finding effort is greatly 
enhanced by referencing to nearby gene-structure and identifying “peak regions” where motifs 
can be isolated. Not surprisingly, if separate statistical profiling is performed on the regions just 
outside (before and after) the transcription region, then gene-finding is improved [22,24]. Motif 
discovery can be focused onto the cis-regulatory regions in particular, and if linked with the 
HMM discovery, the motif-discovery and gene-discovery efforts are simultaneously 
strengthened. One of the clear benefits of having a very strong intrinsic HMM formulation as a 
foundation is that the later pairing with motif discovery and signal-sensor augmentations then 



arrives at a unified and powerful intrinsic/extrinsic gene and motif discovery platform. This is 
capability is enhanced further if zone-dependent emissions are employed via larger meta-states 
(see Discussion) or via reference to HMMD improvements as indicated in [24-26]. The HMM 
formulation with HMMwD augmentation also provides an optimal means for inclusion of 
extrinsic statistics (side-information) into the Viterbi optimization (as described in [24]). The 
‘scaffolding’ provided by the HMM parsing (via the Viterbi path derivation) defines regions 
where zone-dependent statistics and zone-restricted motif-discovery can be applied. Many motif-
finding methods would benefit from the alignment referencing provided by the HMM’s 
scaffolding of annotation across coding and non-coding regions. With zone-restricted motif 
discovery, gap and hash interpolated Markov model’s [27,28] become powerful tools for motif 
discovery in a restricted region [18,28-32]. The approach we describe in this paper, and its 
companion paper [24], seeks to unify the above approaches within a powerful new HMM-based 
structure-modeling architecture. 
 
The shortcomings of the HMM due to algorithmic definitions, such as lack of state-duration 
modeling, are readily apparent (with fixes as described in [24-26]). The shortcomings of the 
HMM due to model definition and related implementation, are more subtle. In an HMM 
implementation the number of look-ups to a particular emission or transition probability ‘table’ 
will show how that table’s anomalous statistics influence the overall computation (where the 
count on use of a particular component in the table is precisely what provides an estimation in 
the HMM Baum-Welch algorithm). Similarly, what is readily observed in implementation of an 
HMM is the use of various probability tables, and a significant shortcoming is revealed. Standard 
HMM’s lead to a model that strongly de-emphasizes (low table usage) and does not recognize 
the anomalous statistics known to exist around non-self transitions, and fundamentally, their 
transition probabilities are not sequence dependent. In this paper we demonstrate use of 
transition probabilities that are sequence dependent, via use of a constrained set of ‘meta-states’, 
with comparable computational complexity to the standard HMM. There is, thus, a ‘choice in 
model primitives’ shortcoming underlying the standard HMM implementations that is resolved 
in the meta-state HMM description to follow. 
 
In this paper we introduce a generalized-clique, ‘meta-state’, hidden Markov model, and apply it 
to the analysis of the genomic structure of C. elegans (a genome-data intrinsic approach, e.g., not 
using EST or homology information). Our meta-state HMM generalizes from primitive states to 
windows of adjacent primitive states (e.g., “footprint states”), and does so by only allowing one 
coding-to-noncoding, or noncoding-to-coding, transition in the window of states. The constraint 
to have no more than a single ‘non-self’ transition in a footprint is equivalent to a minimum 
length constraint on exons, introns, and ‘junk’. The linear growth in higher order states with this 
constraint (proven later) is critical for practical use of the larger footprint size models that will be 
demonstrated. 
 
The generalized clique HMM begins by enlarging the primitive hidden states associated with 
individual base labeling (as exon, intron, or junk) to substrings of primitive hidden states or 
footprint states -- ‘ieeeeeee’ for example (also a Cajun exclamation).  In what follows, the 
transitions between primitive hidden states for coding {e} and non-coding {i,j}, {ei,ie,je,ej}, are 
referred to as ‘eij-transitions’, and the self transitions, {ee,ii,jj}, are referred to as ‘xx-
transitions’. The emissions are likewise expanded to higher order in the fundamental joint 



probability that is the basis of the generalized-clique, or ‘meta-State’, HMM. We consider 
application to eukaryotic gene finding and show how a meta-state HMM improves the strength 
of eij-transition contributions to gene-structure identification. We will describe situations where 
the meta-state eij-transition modeling can effectively ‘recapture’ the exon and intron heavy tail 
distribution modeling capability as well as manage the exon-start ‘needle-in-the-haystack’ 
problem. 
 
Background  
 
Genomic Data – with C. elegans specifics 
Once it is fully annotated, genomic data can be unambiguously represented by strings formed 
from the 4 letters a, c, g, and t denoting the DNA nucleotide bases adenine, cytosine, guanine, 
and thymine, respectively.  Genes are sequences of DNA nucleotides that encode specific 
sequences of amino acids to form proteins (with 5’ to 3’ read convention).  The data annotation 
designates the coding and non-coding segments in the genomic data.  In eukaryotes, genes 
consist of coding segments or exons which are delimited internally by special, intragenic, non-
coding segments or introns.  The intergenic, non-coding regions of bases outside the genes are 
referred to here as ‘junk’. 
 
The process of removing the intermediate introns and reconnecting (possibly variable subsets of) 
the resulting exons end-to-end is referred to as splicing.  Perhaps the most important role of 
introns is to provide a mechanism for the formation of alternative combinations and/or subsets of 
the exons contained in a given gene in order to form alternative proteins also used by the 
organism in question.  These alternative combinations are referred to as alternative splicings. 
 
The C. elegans genome consists of six chromosomes {I,II,III,IV,V,X}, containing approx. 
97,000,000 base-pairs of DNA. The 90% base accuracy of our meta-state HMM is sufficient to 
isolate and resolve outrons and other structures [33], such as the following dozen attributes: 

(1) Approx. 19,000 genes, so approx. 1 gene per 5,000 bases. 
(2) Each gene has an average of 5 introns. 
(3) Tandem repeats account for 2.7% of genome, inverted repeats 3.6%. Repeats have 
different families on different chromosomes, and are more likely on introns. Common 
TTAGGC hexamer repeat.  
(4) 38 dispersed repeat families can potentially be identified via hash interpolated 
Markov model [27]. 
(5) Approx. 50% of genome novel. 
(6) Approx. 80% of genes are trans-spliced to a common spliced leader. 
(7) Approx. 20% of genes organized as operons. 
(8) Common occurrence of ‘outron’ structure: introns-like sequence with no internal 5’ 
consensus that is found before the first exon.  
(9) Genes with trans-splices are often distinguished from those that are not by the 
prescence of an outron.  
(10) 3’ ends of genes within operons typically singaled by AATAA. 
(11) Typical translation Initiation: [(A/G)CCATG] 
(12) Termination (TAA (61%); TAG (17%); TGA (22%)) 

The standard 1st Order HMM 



We define the 1st order HMM as consisting of the following: 
 
• An observable alphabet, B 
• A hidden state alphabet, Λ 
• “Prior” Probabilities P(λ) for all λ∈Λ 
• “Transition” Probabilities P(λ2|λ1) for all λ1 λ2∈Λ -- where the standard transition 

probability is denoted akl = P(λn=l|λn-1=k), a 1st order Markov model on states with 
homogenous stationary statistics (i.e., no dependence on position ‘n’). 

• “Emission” Probabilities P(b|λ) for all λ∈Λ b∈B – where the standard emission 
probability is ek(b)  =  P(bn=b|λn=k), a 0th order Markov model on bases and with 
homogenous stationary statistics. 

 
Given the above, there are three classes of problems which the HMM can be used to solve 
[34,35]: 

1. Evaluation - Determine the probability of occurrence of the observed sequence. 
2. Learning - Determine the most likely emissions and transition. 
3. Decoding (Viterbi) - Determine the most probable sequence of states emitting the 
observed sequence. 

 
Here we focus only on the 3rd problem, the Viterbi decoding problem.  The probability of a 
sequence of observables B=b0 b1… bn-1 being emitted by the sequence of hidden states Λ=λ0 
λ1… λn-1 is solved by using P(B, Λ) = P(B|Λ) P(Λ) in the standard factorization, where the two 
terms in the factorization are described as the observation model and the state model, 
respectively.  In the 1st order HMM, the state model has the 1st order Markov property and the 
observation model is such that the current observation, bn, depends only on the current state, λn: 

 
P(B|Λ) P(Λ) = P(b0|λ0) P(b1|λ1)…P(bn-1|λn-1) x P(λ0)P(λ1|λ0)P(λ2|λ0, λ1)…P(λn-1|λ0... λn-2) 

 
With first order Markov assumption in the state-model this becomes: 

 
P(B|Λ) P(Λ) = P(b0|λ0) P(b1|λ1)…P(bn-1|λn-1) x P(λ0)P(λ1|λ0)P(λ2|λ1)…P(λn-1|λn-2) 
 
In the Viterbi algorithm, a recursive variable is defined (following the notation in [34]): vk(n) = 
“the most probable path ending in state ‘k’ with observation ‘bn’ ”. The recursive definition of 
vk(n) is then: vl(n+1) = el(bn+1) maxk [vk(n) akl]. From which the optimal path information is 
recovered according to the (recursive) trace-back: 
 
Λ* = argmax Λ P(B, Λ) = (λ*0, …, λ*n-1) 
 
λ*n|λ*n+1=l

 = argmaxk [vk(n) akl], and where λ*L-1 = argmaxk [vk(L-1)], for length L sequence. 

 
HMM states for gene-structure identification 
Exons have a 3-base encoding as directly revealed in a mutual information analysis of gapped 
base statistical linkages as shown in [27].  The 3-base encoding elements are called codons, and 
the partitioning of the exons into 3-base subsequences is known as the codon framing.  A gene’s 



coding length must be a multiple of 3 bases.  The term frame position is used to denote one of 
the 3 possible positions – 0, 1, or 2 by our convention – relative to the start of a codon.  Introns 
may interrupt genes after any frame position.  In other words, introns can split the codon framing 
either at a codon boundary or one of the internal codon positions. 
 
Although there is no notion of framing among introns, for convenience we associate framing 
with the intron, as indicated in the example below, as a tracking device in order to ensure that the 
frame of the following introns-to-exon transition is constrained appropriately.  The primitive 
states of the individual bases occurring in exons, introns, and junk are denoted by: 

 
Exon states = { e0, e1, e2 }, 
Intron states = { i0, i1, i2 }, 
Junk state = {j}. 

 
We have three possible intron framings indicated in the following state strings. 

 
jj...je0e1e2…e0i0i0…i0e1…e0e1e2jj…j  (intron frame 0) 
jj...je0e1e2…e1i1i1…i1e2…e0e1e2jj…j  (intron frame 1) 
jj...je0e1e2…e2i2i2…i2e0…e0e1e2jj…j  (intron frame 2) 

 
There are 15 unique two-label (dimer) transitions: {jj, je0, e0e1, e1e2, e2e0, e0i0, e1i1, 
e2i2, i0i0, i1i1, i2i2, i0e1, i1e2, i2e0, e2j}. In what follows we split the stop codon into 
the three  possibilities strictly observed {e2j_TAA, e2j_TAG, e2j_TGA }, for a total of 17 
states in our forward encoding model. 
 
Encodings for proteins can be found in both directions along the DNA strand. The encodings are 
sparse, rarely overlapping, and  have approximately equal numbers of forward and reverse 
(‘shadow’) encodings. The differences in the base statistics in the forward and reverse gene 
encodings are sufficiently negligible (or disjoint) that their counts can simply be merged in the 
modeling (data not shown). We incorporate shadow states, indicating reverse encoded exons and 
introns, into the state model of our meta-state HMM, denoted by the primitives by ê and î, 
respectively.  For example, the 3 possible intron framings for the reverse encoding are as 
follows: 

 
jj...jê2ê1ê0…ê1î0î0…î0ê0…ê2ê1ê0jj…j  (intron frame 0) 
jj...jê2ê1ê0…ê2î1î1…î1ê1…ê2ê1ê0jj…j  (intron frame 1) 
jj...jê2ê1ê0…ê0î2î2…î2ê2…ê2ê1ê0jj…j  (intron frame 2) 

There are 16 reverse encoding state transitions in direct correspondence with the 16 non-jj state 
transitions for the forward read. The jj transition couples the forward and reverse reads in that a 
forward encoding can ‘end’, i.e., transition to a region of junk, then eventually transition to a 
reverse encoded gene. The total number of state-transition (dimer states) in our model is, thus, 
33: 

13 xx-type (homogeneous) dimers 
a. 6 Intron-intron – i0i0, i1i1, i2i2, î0î0, î1î1, î2î2 
b. 6 Exon-exon – e0e1, e1e2, e2e0, ê0ê1, ê1ê2, ê2ê0 



c. 1 Junk-junk – jj 
20 eij-type (heterogeneous) dimers 

d. 6 Exon-intron – e0i0, e1i1, e2i2, ê0î0, ê1î1, ê2î2  
e. 6 Intron-exon – i0e1, i1e2, i2e0, î0ê1, î1ê2, î2ê0 
f. 6 Exon-junk – (e2j)TAA, (e2j)TAG, (e2j)TGA, (ê2j)TAA, (ê2j)TAG, (ê2j)TGA 
g. 2 Junk-exon – (je0), (jê0) 

 
In order to work directly with the above dimer states, or the footprint-state generalization 
introduced in the Methods, we need to generalize to a higher order HMM model. The standard 
HMM has emissions that only dependent on the current state (e.g., we have P(bn-1|λn-1) terms). 
This leads to poor performance in modeling the anomalous statistics in the transition regions 
between exon, intron, or junk regions. If a transition ‘je0’ has occurred, for example, and we are 
looking at the base emission for the ‘e0’ state, we can’t account for the prior state with the simple 
P(bn-1|λn-1) conditional probabilities in the standard bare-bones HMM modeling, we minimally 
need P(bn-1|λn-2, λn-1), i.e., state modeling at the dimer-level or higher. 
 
Methods  
The Methods section begins with a description of the Dataset preparation in Sec. (1) titled 
‘Selection and Preparation of Data Sets….’. Sec. (2), on ‘Application of meta-state HMM model 
to the Test Data’ provides an overview of how the datasets and meta-state HMM models are used 
in the testing and tuning. In Sec. (3) on ‘The Generalized-clique HMM Construction’, we 
provide the core new HMM theory that is the underpinning of the new type of HMM modeling 
enabled. Section (4) gets into the nuts-and-bolts of the ‘Enumeration of the Footprint States’ in 
the meta-state HMM, and Sec (5) to follow provides the ‘Measures of Predictive Performance 
that are used’. 
 
(1) Selection and Preparation of Data Sets for preliminary testing and ‘raw’ Genome 
analysis 
In [16], the authors performed the following steps to arrive at the ALLSEQ data set [37]: 

1) Select the set of all sequences encoding at lease one complete protein from the 
vertebrate divisions of GenBank Release 85.0 (October 15, 1994). 

2) From the above discard the following: 
a. Any sequence encoding at least one incomplete protein. 
b. Any sequence for which the exact coding regions was not unambiguous. 
c. Any sequence encoding a protein in the complementary (reverse encoding) 

strand. 
d. Any sequence containing a gene or part of a gene associated with other 

sequences. 
e. Any sequence encoding a pseudogene (via “CDS Key’’ value ‘‘/pseudo’’). 
f. Any sequence encoding more than one gene or alternative splicing of a gene. 
g. Any sequence encoding a gene without introns. 

3) From the 1410 sequences resulting from the above the following further discards 
were made: 

a. Any sequence whose coding segment did not start with the start codon ATG. 



b. Any sequence whose coding segment did not end with a stop codon (TAA, 
TAG, TGA). 

c. Any sequence whose coding segment was not a multiple of 3 in length. 
d. Any sequence with any intron not beginning with GT and/or ending with AT 

(sic). 
e. Any sequence whose coding segment contained an in-frame stop codon. 

4) The following additional discards were made: 
a. Sequences for immunoglobulins, histocompatibility antigens and additional 

pseudogenes not discarded using previous criteria. 
b. 3 sequences longer than 50,000 bp. 

5) One final selection was made from the sequences surviving the above in that the 
sequence’s date of entry postdated Release 74 of Genbank (January, 1993) – intended 
as such to minimize the overlap of the resulting test set with training sets for the 
programs tested in [16]. 

As mentioned previously, because the training and testing sets were identical in our case, or close 
to identical in the Burset and Guigo study [14,16], we consider the ALLSEQ results as a brute 
force parameter search yielding what to expect in the ideal case and not necessarily a valid test of 
prediction performance.  (The authors in [16] separate the test set from the training set by a date 
of entry criterion, but there was significant overlap between the testing and training data sets 
obtained [14] (an inevitable overlap since the ALLSEQ data set consisted of the “vast majority” 
of vertebrate sequences available at the time).  We compare our initial test results with those 
reported by Burset and Guigo for this reason.  

Early gene finding efforts are described in [38-40]. The authors of [14] provide an informative 
discussion, and references, on exon and intron durations, among other things. In [38], the authors 
observe “that the in-phase hexamer measure, which measures the frequency of occurrence of 
oligonucleotides of length six in a specific reading frame, is the most effective” for inclusion in 
gene finding.  Moreover, those authors assembled their own test data set, called HMR195 [41], 
based on sequences submitted to Genbank after August 1997. We proceed with the results of the 
clique-parameter search using the ALLSEQ dataset. The ALLSEQ dataset properties are 
summarized in Table 3.  

# Bases Coding 
Density 

Sequences Introns Exons 
Total BP Avg. Len. Total BP Avg. Len. Total BP Avg. Len. 

2892149 0.15 570 1754950 3078.86 2079 1310452 630.33 2649 444498 167.80 

Table 3. Properties of the ALLSEQ data set 

Five-fold cross-validation on single encoding (non-alternatively spliced) regions of 
Chromosomes I-V of C. elegans: 
The data for Chromosomes I-V of C. elegans were obtained from release WS200 of Wormbase 
[42].  We note that the sixth and final chromosome of C. elegans, designated for legacy reasons 
as Chromosome X, was excluded from this analysis as it is known to have substantial differences 
in gene encoding properties as compared to Chromosomes I-V. 

The following steps were used in order to prepare the data (described in Tables 4 & 5) prior to 
training and testing. 



1) The data was scanned for in-frame stops, and ultimately no in-frame stops were 
detected. 

2) The data was scanned for alternative splicing, and 6260 (30.5%) out of a total of 
20514 sequences represent alternative splicing – including some forward encoded 
alternative splicings overlapping with reverse encoded alternative splicings. 

3) In order to avoid the complexities involved in the prediction of alternative splicings, 
the transitive closure with respect to overlap of all alternative splicings was deleted 
from the data and the remaining annotation was appropriately offset in compensation 
for the deletions.  For all branches of all alternative splicing sequences – along with 
any sequences interfering with them - the following segments, s, were deleted: 

a. s=the 5’- UTR, where (15b< length(s) <=200b) (15=WS/2: See item 7 below) 
b. s=the 3’- UTR, where (15b< length(s) <=3kb), and 
c. s=the entire coding sequence, CDS, including exons and introns 

4) In order to avoid both the complexity of segmented prediction as well as any bias 
toward any specific subset of chromosomes during cross-validation, the following 
were performed: 

a. Both data and annotation files for all 5 chromosomes were divided into a total 
of 67 autonomous chunks of nominal size 1Mb and minimum size 500kb. 

b. The resulting 67 chunks were then evenly (as allowable) distributed into five 
(5) groups for 5-fold cross-validation. 

5) Training was performed independently on each of the above chunk groups with a 
sampling window size of first WS=30, then WS=40. 

6) Five-fold cross-validation counts from training on chunk groups 1-4 were combined 
to form probability estimates used to test on chunk group 5, then training on 2-5 for 
testing on 1, and so on. 

Summary of data reduction in C. elegans, Chromosomes I-V 
File # sequences # alt. % alt. # exons # alt. % alt. 
CHROMOSOME_I 3537 1306 36.92% 24295 10942 45.04% 
CHROMOSOME_II 4161 1316 31.63% 25427 10427 41.01% 
CHROMOSOME_III 3277 1220 37.23% 21541 9614 44.63% 
CHROMOSOME_IV 3886 1195 30.75% 24390 9509 38.99% 
CHROMOSOME_V 5653 1222 21.62% 32135 9122 28.39% 
Total 20514 6259 30.51% 127788 49614 38.83% 

Table  4. Summary of data reduction in C. elegans, Chromosomes I-V. 
 

# Bases Coding 
Density 

Sequences Introns Exons 
Total BP Avg. Len. Total BP Avg. Len. Total BP Avg. Len. 

67000811 0.24 14255 32547117 2283.2 63919 16371001 256.1 78174 16176057 206.9 

Table 5. Properties of data set C. elegans, Chromosomes I-V (reduced) 

Note: sequence-BP – (intron-BP + exon-BP) = 59, due to a premature start of the sequence 
ZK1010.9 of Chromosome III in the annotation provided.  



(2) Application of meta-state HMM model to the Test Data 
The meta-state HMM is higher order in both base-emission Markov order and state-transition 
Markov order, i.e., the meta-state HMM describes an irreducible joint-probability, or ‘clique’, 
generalization. The footprint states created from windows of 13 primitive states (or footprint size 
F=12, in consecutive overlapping ‘dimers’) lead to one of our best performing models, with full-
exon predictive accuracy of 86% on the B&G ALLSEQ data [16] (with data used as both train 
and test for comparison with GeneID+ and FGENEH). One method, FGENEH, is similar to ours 
in that it only uses the intrinsic genomic sequence data (not homology searches, etc.). 
FGENEH’s predictive accuracy on the same ALLSEQ data was 64% [16]. One of the best 
scoring methods on the ALLSEQ data is GeneID+, whose accuracy is 71%, where GeneID+ 
does use external information [16]. The base-level accuracy of our meta-state HMM on the 
ALLSEQ data is 97%, compared to 86% scoring at the full-exon correct level, indicating that 
improvement in identification of coding/non-coding transitions would improve results, 
particularly at start-of-coding. This has been addressed in [17] with the introduction of SVM 
methods so won’t be elaborated upon here. Further efforts to merge the SVM sensor into the 
meta-state HMM are described in the Discussion. 
 
Other gene finding methods typically involve some degree of pre-processing – as is made clear 
by how their test-data is often arranged (e.g., the 570 separate sequences, each containing one 
gene, in the B&G ALLSEQ dataset [16]). When examining these datasets, and then turning to 
applying our methods on large blocks of genomic data, there seems to be a ‘contrast’ problem in 
the recognition of the start-of-coding region when working with the standard 1st-order HMM (a 
‘needle-in-the-haystack’ problem). We find in our meta-state HMM approach that the contrast 
problems are automatically solved, and that many of the beneficial attributes of HMM-with-
duration modeling are, remarkably, recovered (the heavy-tail modeling capability on intron and 
exon length distributions in particular). 
 
In this effort we also wanted to introduce a new dataset that minimally alters the full genome 
dataset. We want our optimized HMM to also lay the foundation for a multifaceted regulatory 
motif discovery process. The gene prediction, in the end, will not only identify gene-structure, 
but it will have done so by identifying similar structures and regions in relation to the eij-
transitions. The regions around the predicted eij-transitions can, thus, be analyzed using focused 
motif-finder approaches (like the MI method in [27] and [28], to then decipher various aspects of 
gene-regulation). To this end, our main concern with the raw C. elegans genomic data is that the 
alternatively spliced regions will be harder for the HMM to manage, since it is not part of the 
modeling in any way, and will be harder to score, since one prediction will exclude an 
overlapping alternatively-spliced variant, such that to be correct on one you have to be wrong on 
the other. So our approach is to simply drop the regions of the genome that have alternatively 
splice genes. More precisely, we drop those segments of the genome corresponding to the 
transitive closure with respect to overlap of alternatively spliced genes. The alternatively-spliced 
regions are simply dropped from the working dataset (resulting in dataset C.elegans reduced), 
and the annotation is offset as needed to compensate for the deletions. The alt-splice redacted set 
of genomic data that we obtain is reduced by 30.5% for Chromosomes I-V (C. elegans genome 
release WS200). We make no use of the sixth chromosome (labeled as X, roman numeral ten, for 
legacy reasons), where the odd naming convention is the least of the oddities of this 
chromosome, which has a large contribution from non-protein encoding DNA (tRNA, etc.). 



 
Our alternative-splice redacted C. elegans genome has chromosomes I-V concatenated, then split 
into 67 non-overlapping chunks, which are then evenly distributed (as allowable) amongst five 
groups (‘folds’). Five-fold cross-validation was then performed: where 4-folds are used in 
learning the HMM parameters, and the other fold used to test, with prediction scored against the 
annotation on that fold, and this process repeated with other folds held out, then averaged over 
all five  cross-validations to obtain the prediction accuracies detailed in the Results. On the alt-
splice redacted genome we have a full-exon prediction accuracy of 74% (with F=20), while the 
F=2 model, with minimal footprint, has full-exon predictive accuracy of only 61%, in rough 
agreement with the performance of standard-HMM gene finders with purely intrinsic 
information (like FGENEH). The base level accuracy at F=20 is 90%, so as with the ALLSEQ 
data, there is clear room for improvement with better eij-transition recognition. Further details 
are left to the Results Section, along with Discussion and Conclusion. In the Methods Section we 
describe: (i) dataset preparation; (ii) generalized HMMs; (iii) the generalized footprint state 
structure for gene-finding; and (iv) the measures of accuracy used. In the Background that 
follows we describe (i) the data to be analyzed; (ii) HMMs; and (iii) HMMs with state structure 
for gene-finding. 
 
(3) The Generalized-clique HMM Construction 
The traditional HMM assumes that a 1st order Markov property holds among the states and that 
each observable depends only on the corresponding state and not any other observable.  The 
current work entails a maximally-interpolated departure from that convention (according to 
training dataset size) in an attempt to leverage anomalous statistical information in the 
neighborhood of coding-noncoding transitions (e.g., the exon-intron, introns-exon, junk-exon, or 
exon-junk transitions, collectively denoted as ‘eij-transitions’).  The regions of anomalous 
statistics are often highly structured, having consensus sequences that strongly depart from the 
strong independence assumptions of the 1st order HMM. The existence of such consensus 
sequences suggests that we adopt an observation model that has a higher order Markov property 
with respect to the observations.  Furthermore, since the consensus sequences vary by the type of 
transition, this observational Markov order should be allowed to vary depending on the state. 
 
In the Viterbi context, for a given state dimer transition, such as e0e1 or e0i0, we can boost the 
contributions of the corresponding base emissions to the correct prediction of state by using 
extended states.  Specifically, when encountered sequentially in the Viterbi algorithm, the 
sequence of eij-transition footprint states would conceivably score highly when computed for the 
footprint-width number of footprint-states that overlap the eij-transition (as the generalized 
clique is moved from left-to-right over the HMM graphical model, as shown in Fig. 1). In other 
words we can expect a natural boosting effect for the correct prediction at such eij-transitions 
(compared to the standard HMM).  
 
The meta-state, clique-generalized, HMM entails a clique-level factorization rather than the 
standard HMM factorization (that describes the state transitions with no dependence on local 
sequence information). This is described in the general formalism to follow, where specific 
equations are given for application to eukaryotic gene structure identification. 
 
Observation and state dependencies in the generalized-clique HMM are parameterized 



independently according to the following. 
 

1) Non-negative integers L and R denoting left and right maximum extents of a substring, 
wn,  (with suitable truncation at the data boundaries, b0 and bN-1 ) are associated with the 
primitive observation, bn ,  in the following way: 

 
wn = bn-L+1, …, bn, …, bn+R 
𝑤�n = bn-L+1, …, bn, …, bn+R-1 
 

2) Non-negative integers l and r are used to denote the left and right extents of the extended 
(footprint) states, f.  Here, we show the relationships among the primitive states λ, dimer 
states s, and footprint states f: 

 
sn = λnλn+1     (dimer state, length in λ’s =2) 
fn = sn-l+1, …, sn+r ≅ λn-l+1, …, λn, …, λn+r+1 (footprint state, length in s’s= l+r) 
 

As in the 1st order HMM, the nth base observation bn is aligned with the nth hidden state λn: 
 
With the choice of first and last clique described in Fig. 1, we have introduced some additional 
state and observation primitives (associated with unit-valued transition and emission 
probabilities) for suitable values of L, R, l, and r.  These additional primitives are shown in Table 
1 below. 

Additional Primitives 

Table  1 Additional primitives for completion of boundary cliques 

Type of Primitive Boundary 
λ-R -l+1 , …, λ-1 States Left 
b N, …, bN+L+R-2 Observations Right 
λN , …, λN+L+r+1 States Right 

 
Given the above, the clique-factorized HMM is as follows: 
 
P(B, Λ) = P(w-R, f-R) { Πn=-R+1 N+L-2 [P(wn, fn-1, fn) / P(𝑤�  n, fn-1)] } 

 
A generalization to the Viterbi algorithm can now be directly implemented, using the above 
form, to establish an efficient dynamic programming table construction. Generalized expressions 
for the Baum-Welch algorithm are also possible. Some of the generalizations are straightforward 
extensions of the algorithms from 1st order theory with its minimal clique. Sequence-dependent 
transition properties in the generalized-clique formalism have no counterpart in the standard 1st 
Order HMM formalism, however, and that will be elaborated upon here.  
 
The core term in the clique-factorization is: 

 
𝑃(𝑤𝑛,𝑓𝑛−1,𝑓𝑛)
𝑃(𝑤�𝑛,𝑓𝑛−1)

 =  𝑃(𝑤𝑛|𝑓𝑛−1,𝑓𝑛) 𝑃(𝑓𝑛|𝑓𝑛−1) 𝑃(𝑓𝑛−1)
𝑃(𝑤�𝑛|𝑓𝑛−1) 𝑃(𝑓𝑛−1)

  
 
In the standard Markov model R = 0, L = 1, r = -1, l = 0: fn = λn, wn = bn, P(𝑤�n, fn-1) = P(λn): 



 
�𝑃(𝑤𝑛,𝑓𝑛−1,𝑓𝑛)
𝑃(𝑤�𝑛,𝑓𝑛−1)

�
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐻𝑖𝑑𝑑𝑒𝑛
𝑀𝑎𝑟𝑘𝑜𝑣 𝑀𝑜𝑑𝑒𝑙

=  𝑃(𝑏𝑛|λ𝑛) 𝑃(λ𝑛|λ𝑛−1) 

 
In the above we introduce the constraint notation with the vertical bar notation, where the 
expression on the left is the clique factorization term with the constraint that it approximate 
according to the standard HMM conditional probabilities. 
 
The core term in the clique-factorization can also be written by introducing a Bayesian 
parameter, one that happens to provide a matching joint probability construct (to the extent 
possible) with the term in the numerator: 

 
𝑃(𝑤𝑛,𝑓𝑛−1,𝑓𝑛)
𝑃(𝑤�𝑛,𝑓𝑛−1)

= 𝑃(𝑤𝑛,𝑓𝑛−1,𝑓𝑛)
∑ 𝑃(𝑤�𝑛,𝑓𝑛−1,𝑓′𝑛)𝑓′𝑛(𝑎𝑙𝑙𝑜𝑤𝑒𝑑)

 =  𝑃(𝑤𝑛|𝑓𝑛−1,𝑓𝑛) 𝑃(𝑓𝑛|𝑓𝑛−1) 𝑃(𝑓𝑛−1)
∑ 𝑃(𝑤�𝑛|𝑓𝑛−1,𝑓′𝑛) 𝑃(𝑓′𝑛|𝑓𝑛−1) 𝑃(𝑓𝑛−1)𝑓′𝑛

 

 
We now examine specific cases of this equation to clarify the novel improvements that result.  In 
what follows we constrain our model to have a minimum length on regions (thus self-
transitions) such that footprint states, and their transitions, can only have one transition 
between different states. 
 
Consider the case with the first footprint state being of eij-transition type, and the second 
footprint thereby constrained to be of the appropriate xx-type: 
 

��𝑃(𝑤𝑛,𝑓𝑛−1,𝑓𝑛)
𝑃(𝑤�𝑛,𝑓𝑛−1)

�
𝑓𝑛−1 ∈ 𝑒𝑖𝑗

=
𝑃(𝑤𝑛,𝑓𝑛−1,𝑓𝑛)

∑ 𝑃(𝑤�𝑛,𝑓𝑛−1,𝑓′𝑛)𝑓′𝑛(𝑎𝑙𝑙𝑜𝑤𝑒𝑑)

� 𝑓𝑛−1 ∈ 𝑒𝑖𝑗
�𝑓′𝑛𝑢𝑛𝑖𝑞𝑢𝑒 ∈ 𝑥𝑥�

 

�
                                  

                    = 𝑃(𝑏𝑛+𝑅|𝑤�𝑛,𝑓𝑛−1,𝑓𝑛)�𝑓𝑛−1 ∈ 𝑒𝑖𝑗
 �𝑃(𝑓𝑛|𝑓𝑛−1)|𝑓𝑛−1 ∈ 𝑒𝑖𝑗 

                    = 𝑃(𝑏𝑛+𝑅|𝑤�𝑛,𝑓𝑛−1) 
 
Where use is made of the relation �𝑃(𝑓𝑛|𝑓𝑛−1)|𝑓𝑛−1 ∈ 𝑒𝑖𝑗 = 1 for the unique xx-footprint that 
follow the eij-transition given our minimum length constraint. 
 
Consider, next, the case with the first footprint state being xx-type:  
�𝑃(𝑤𝑛,𝑓𝑛−1,𝑓𝑛)
𝑃(𝑤�𝑛,𝑓𝑛−1)

�
𝑓𝑛−1 ∈ 𝑥𝑥

= �
�𝑃(𝑤𝑛|𝑓𝑛−1,𝑓𝑛)|𝑓𝑛−1 ∈ 𝑥𝑥 𝑃(𝑓𝑛|𝑓𝑛−1)

∑ �𝑃(𝑤�𝑛|𝑓𝑛−1,𝑓′𝑛)|𝑓𝑛−1 ∈ 𝑥𝑥 𝑃(𝑓′𝑛|𝑓𝑛−1)𝑓′𝑛
�
𝑓𝑛−1 ∈ 𝑥𝑥

 

 

                                             = � 𝑃(𝑤𝑛|𝑓𝑛) 𝑃(𝑓𝑛|𝑓𝑛−1)
∑ 𝑃�𝑤�𝑛�𝑓′𝑛�𝑃(𝑓′𝑛|𝑓𝑛−1)𝑓′𝑛

�
𝑓𝑛−1 ∈ 𝑥𝑥

 

 
If the second footprint is eij-transition type, then the equation has two sum terms in the 
denominator if the first transition is ii or jj transition, and a third sum contribution (the term with 
‘fey’) if the first transition is an ee-transition: 
 



In what follows, dimer notation is used on footprints, since we are interested in the footprint-to-
footprint transitions. Given their large overlap dependence, this notation and formalism directly 
generalizes to the same cases no matter the size of the footprint (due to the single major-
transition in or between footprints constraint that is provided by a minimum length constraint). 
 
If 𝑓𝑛−1 ∈ 𝑥𝑥 we have three cases: 𝑥𝑥 ∈ {𝑖𝑖, 𝑒𝑒, 𝑗𝑗}. For 𝑓𝑛−1 = 𝑖𝑖, we have two possible 𝑓𝑛 ∈
{𝑖𝑖, 𝑖𝑒}; for 𝑓𝑛−1 = 𝑗𝑗, we have two possible 𝑓𝑛 ∈ {𝑗𝑗, 𝑗𝑒}; for 𝑓𝑛−1 = 𝑒𝑒, we have three possible 
𝑓𝑛 ∈ {𝑒𝑒, 𝑒𝑗, 𝑒𝑖}. 
 
�𝑃(𝑤𝑛,𝑓𝑛−1,𝑓𝑛)
𝑃(𝑤�𝑛,𝑓𝑛−1)

�𝑓𝑛−1= 𝑖𝑖,
𝑓𝑛= 𝑖𝑒

 = 𝑃(𝑤𝑛|𝑖𝑒) 𝑃(𝑖𝑒|𝑖𝑖)
𝑃(𝑤�𝑛|𝑖𝑒)𝑃(𝑖𝑒|𝑖𝑖)+𝑃(𝑤�𝑛|𝑖𝑖)𝑃(𝑖𝑖|𝑖𝑖)

=  𝑃(𝑏𝑛+𝑅|𝑤�𝑛,𝑖𝑒)

1+�𝑃(𝑤�𝑛|𝑖𝑖)
𝑃(𝑤�𝑛|𝑖𝑒)��

𝑃(𝑖𝑖|𝑖𝑖)
𝑃(𝑖𝑒|𝑖𝑖)�

  

 
Where we have introduced the notation ‘ii’ to denote the dimer state or the footprint state 
‘ii…iii’, and the notation ‘ie’ to denote the dimer state or the footprint state ‘ii…iie’. 
 
Similarly, consider 𝑓𝑛−1 = 𝑗𝑗 and 𝑓𝑛 = 𝑗𝑒: 
�𝑃(𝑤𝑛,𝑓𝑛−1,𝑓𝑛)
𝑃(𝑤�𝑛,𝑓𝑛−1)

�𝑓𝑛−1= 𝑗𝑗,
𝑓𝑛= 𝑗𝑒

 = 𝑃(𝑤𝑛|𝑗𝑒) 𝑃(𝑗𝑒|𝑗𝑗)
𝑃(𝑤�𝑛|𝑗𝑒)𝑃(𝑗𝑒|𝑗𝑗)+𝑃(𝑤�𝑛|𝑗𝑗)𝑃(𝑗𝑗|𝑗𝑗)

=  𝑃(𝑏𝑛+𝑅|𝑤�𝑛,𝑗𝑒)

1+�𝑃(𝑤�𝑛|𝑗𝑗)
𝑃(𝑤�𝑛|𝑗𝑒)��

𝑃(𝑗𝑗|𝑗𝑗)
𝑃(𝑗𝑒|𝑗𝑗)�

  

 
For the 𝑓𝑛−1 = 𝑒𝑒 and 𝑓𝑛 = 𝑒𝑗 we get a similar expression, but a third term in the sum due to the 
three possibilities allowed for 𝑓𝑛: 
 
�𝑃(𝑤𝑛,𝑓𝑛−1,𝑓𝑛)
𝑃(𝑤�𝑛,𝑓𝑛−1)

�𝑓𝑛−1= 𝑒𝑒,
𝑓𝑛= 𝑒𝑗

 = 𝑃(𝑤𝑛|𝑒𝑗) 𝑃(𝑒𝑗|𝑒𝑒)
𝑃(𝑤�𝑛|𝑒𝑗)𝑃(𝑒𝑗|𝑒𝑒)+𝑃(𝑤�𝑛|𝑒𝑖)𝑃(𝑒𝑖|𝑒𝑒)+𝑃(𝑤�𝑛|𝑒𝑒)𝑃(𝑒𝑒|𝑒𝑒)

  

 

 =  𝑃(𝑏𝑛+𝑅|𝑤�𝑛,𝑒𝑗)

1+�𝑃(𝑤�𝑛|𝑒𝑖)
𝑃(𝑤�𝑛|𝑒𝑗)��

𝑃(𝑒𝑖|𝑒𝑒)
𝑃(𝑒𝑗|𝑒𝑒)�+�

𝑃(𝑤�𝑛|𝑒𝑒)
𝑃(𝑤�𝑛|𝑒𝑗)��

𝑃(𝑒𝑒|𝑒𝑒)
𝑃(𝑒𝑗|𝑒𝑒)�

 

 
Likewise for the 𝑓𝑛−1 = 𝑒𝑒 and 𝑓𝑛 = 𝑒𝑖 we get a similar expression, but a third term in the sum: 
 
�𝑃(𝑤𝑛,𝑓𝑛−1,𝑓𝑛)
𝑃(𝑤�𝑛,𝑓𝑛−1)

�𝑓𝑛−1= 𝑒𝑒,
𝑓𝑛= 𝑒𝑖

 = 𝑃(𝑤𝑛|𝑒𝑖) 𝑃(𝑒𝑖|𝑒𝑒)
𝑃(𝑤�𝑛|𝑒𝑖)𝑃(𝑒𝑖|𝑒𝑒)+𝑃(𝑤�𝑛|𝑒𝑗)𝑃(𝑒𝑗|𝑒𝑒)+𝑃(𝑤�𝑛|𝑒𝑒)𝑃(𝑒𝑒|𝑒𝑒)

  

 

 =  𝑃(𝑏𝑛+𝑅|𝑤�𝑛,𝑒𝑖)

1+�𝑃(𝑤�𝑛|𝑒𝑗)
𝑃(𝑤�𝑛|𝑒𝑖)��

𝑃(𝑒𝑗|𝑒𝑒)
𝑃(𝑒𝑖|𝑒𝑒)�+�

𝑃(𝑤�𝑛|𝑒𝑒)
𝑃(𝑤�𝑛|𝑒𝑖)��

𝑃(𝑒𝑒|𝑒𝑒)
𝑃(𝑒𝑖|𝑒𝑒)�

 

 
Consider now the cases involving self-transitions: 𝑓𝑛−1 = 𝑥𝑥 and 𝑓𝑛 = 𝑥𝑥. The derivation 
parallels that above for  𝑓𝑛−1 = 𝑖𝑖 and 𝑓𝑛 = 𝑖𝑖: 
 
�𝑃(𝑤𝑛,𝑓𝑛−1,𝑓𝑛)
𝑃(𝑤�𝑛,𝑓𝑛−1)

�𝑓𝑛−1= 𝑖𝑖,
𝑓𝑛= 𝑖𝑖

 = 𝑃(𝑤𝑛|𝑖𝑖) 𝑃(𝑖𝑖|𝑖𝑖)
𝑃(𝑤�𝑛|𝑖𝑒)𝑃(𝑖𝑒|𝑖𝑖)+𝑃(𝑤�𝑛|𝑖𝑖)𝑃(𝑖𝑖|𝑖𝑖)

=  𝑃(𝑏𝑛+𝑅|𝑤�𝑛,𝑖𝑖)

1+�𝑃(𝑤�𝑛|𝑖𝑒)
𝑃(𝑤�𝑛|𝑖𝑖)��

𝑃(𝑖𝑒|𝑖𝑖)
𝑃(𝑖𝑖|𝑖𝑖)�

  

 



Similarly, consider 𝑓𝑛−1 = 𝑗𝑗 and 𝑓𝑛 = 𝑗𝑗: 
 
�𝑃(𝑤𝑛,𝑓𝑛−1,𝑓𝑛)
𝑃(𝑤�𝑛,𝑓𝑛−1)

�𝑓𝑛−1= 𝑗𝑗,
𝑓𝑛= 𝑗𝑗

 = 𝑃(𝑤𝑛|𝑗𝑗) 𝑃(𝑗𝑗|𝑗𝑗)
𝑃(𝑤�𝑛|𝑗𝑒)𝑃(𝑗𝑒|𝑗𝑗)+𝑃(𝑤�𝑛|𝑗𝑗)𝑃(𝑗𝑗|𝑗𝑗)

=  𝑃(𝑏𝑛+𝑅|𝑤�𝑛,𝑗𝑗)

1+�𝑃(𝑤�𝑛|𝑗𝑒)
𝑃(𝑤�𝑛|𝑗𝑗)��

𝑃(𝑗𝑒|𝑗𝑗)
𝑃(𝑗𝑗|𝑗𝑗)�

  

 
For the 𝑓𝑛−1 = 𝑒𝑒 and 𝑓𝑛 = 𝑒𝑗 we get the third term in the sum due to the three possibilities 
allowed for 𝑓𝑛: 
 
�𝑃(𝑤𝑛,𝑓𝑛−1,𝑓𝑛)
𝑃(𝑤�𝑛,𝑓𝑛−1)

�𝑓𝑛−1= 𝑒𝑒,
𝑓𝑛= 𝑒𝑒

 = 𝑃(𝑤𝑛|𝑒𝑒) 𝑃(𝑒𝑒|𝑒𝑒)
𝑃(𝑤�𝑛|𝑒𝑗)𝑃(𝑒𝑗|𝑒𝑒)+𝑃(𝑤�𝑛|𝑒𝑖)𝑃(𝑒𝑖|𝑒𝑒)+𝑃(𝑤�𝑛|𝑒𝑒)𝑃(𝑒𝑒|𝑒𝑒)

  

 

 =  𝑃(𝑏𝑛+𝑅|𝑤�𝑛,𝑒𝑒)

1+�𝑃(𝑤�𝑛|𝑒𝑖)
𝑃(𝑤�𝑛|𝑒𝑒)��

𝑃(𝑒𝑖|𝑒𝑒)
𝑃(𝑒𝑒|𝑒𝑒)�+�

𝑃(𝑤�𝑛|𝑒𝑗)
𝑃(𝑤�𝑛|𝑒𝑒)��

𝑃(𝑒𝑗|𝑒𝑒)
𝑃(𝑒𝑒|𝑒𝑒)�

 

 
In the above expressions we clearly have sequence dependent transitions. For 𝑓𝑛−1 =  𝑖𝑖, 
𝑎𝑛𝑑 𝑓𝑛 =  𝑖𝑒 for example, we have: 
 
��𝜌|𝐺𝐶𝐻𝑀𝑀 = 𝑃(𝑤𝑛,𝑓𝑛−1,𝑓𝑛)

𝑃(𝑤�𝑛,𝑓𝑛−1) �𝑓𝑛−1= 𝑖𝑖,
𝑓𝑛= 𝑖𝑒

 = 𝑃(𝑤𝑛|𝑖𝑒) 𝑃(𝑖𝑒|𝑖𝑖)
𝑃(𝑤�𝑛|𝑖𝑒)𝑃(𝑖𝑒|𝑖𝑖)+𝑃(𝑤�𝑛|𝑖𝑖)𝑃(𝑖𝑖|𝑖𝑖)

=  𝑃(𝑏𝑛+𝑅|𝑤�𝑛,𝑖𝑒)𝑃(𝑖𝑒|𝑖𝑖)

𝑃(𝑖𝑒|𝑖𝑖)+𝑃(𝑖𝑖|𝑖𝑖)�𝑃(𝑤�𝑛|𝑖𝑖)
𝑃(𝑤�𝑛|𝑖𝑒)�

  

 
While the standard HMM has this ratio with 𝑤𝑛 a single element emission sequence, and 
𝑃(𝑤𝑛,𝑓𝑛−1,𝑓𝑛) = 𝑃(𝑤𝑛|𝑓𝑛) 𝑃(𝑓𝑛|𝑓𝑛−1), thus, for the standard HMM: 
 
��𝜌|𝑆𝑡𝑑.𝐻𝑀𝑀 = 𝑃(𝑤𝑛,𝑓𝑛−1,𝑓𝑛)

𝑃(𝑤�𝑛,𝑓𝑛−1) � 𝑓𝑛−1= 𝑖𝑖,
𝑓𝑛= 𝑖𝑒,

𝑆𝑡𝑑.𝐻𝑀𝑀

 = 𝑃(𝑏𝑛+𝑅|𝑖𝑒) 𝑃(𝑖𝑒|𝑖𝑖)  

If we generalized the Std. HMM to higher order Markov models on emissions, to the same order 
as in the generalized clique, there is still the difference in the transition probability contributions: 
 
 �𝜌|𝑆𝑡𝑑.𝐻𝑀𝑀

𝐻𝑂 𝐸𝑀𝑠
= 𝑃(𝑏𝑛+𝑅|𝑤�𝑛, 𝑖𝑒) 𝑃(𝑖𝑒|𝑖𝑖),  

as can be seen in the ratio of their contributions, and how it is sequence dependent (i.e., 
dependent on ‘𝑤�𝑖’): 
 

�𝜌|𝑆𝑡𝑑.𝐻𝑀𝑀
𝐻𝑂 𝐸𝑀𝑠

�𝜌|𝐺𝐶𝐻𝑀𝑀
= 𝑃(𝑖𝑒|𝑖𝑖) + 𝑃(𝑖𝑖|𝑖𝑖) �𝑃(𝑤�𝑖|𝑖𝑖)

𝑃(𝑤�𝑖|𝑖𝑒)� . 
 
Note that the sequence dependencies (in this and the other footprint transition choices) enter via 
likelihood ratio terms. These are precisely the type of terms examined in [17] in an effort to 
improve the HMM-based discriminatory ability via use of SVMs. The ‘discriminatory’ aspect of 
the key new (sequence-dependent) contribution is most evident in forms like that above, where 
we have a likelihood ratio for the observed sequences given the different label ‘classifications’ 
chosen. In the cases that follow we will examine the extreme cases of the likelihood-ratio  
discriminator strongly classifying one way or the other, or not strongly classifying either way 
with the given sequence information (making the contribution of knowing that sequence 



information negligible, which should then reduce to the std. HMM situation, as will be shown). 
Specifically, we will now examine the above equations in situations where the sequence-
dependent likelihood-ratios strongly favor one state model over another, with particular attention 
as to whether there are sequence dependent scenarios offering recovery of the heavy-tail 
distribution in example one and recovery of contrast resolution in example two: 
 

For  𝑓𝑛−1 = 𝑖𝑖 and 𝑓𝑛 = 𝑖𝑖 we showed: 
Example One: 

 

�𝜌 =
𝑃(𝑤𝑛,𝑓𝑛−1,𝑓𝑛)
𝑃(𝑤�𝑛,𝑓𝑛−1) �

𝑓𝑛−1= 𝑖𝑖,
𝑓𝑛= 𝑖𝑖

 =  
𝑃(𝑏𝑛+𝑅|𝑤�𝑛, 𝑖𝑖)

1 + �𝑃(𝑤�𝑛|𝑖𝑒)
𝑃(𝑤�𝑛|𝑖𝑖)� �

𝑃(𝑖𝑒|𝑖𝑖)
𝑃(𝑖𝑖|𝑖𝑖)�

 

 
Example One; Case 1

 
�𝜌|𝑖𝑒≅𝑖𝑖 ≅ 𝑃(𝑏𝑛+𝑅|𝑤�𝑛, 𝑖𝑖) 𝑃(𝑖𝑖|𝑖𝑖) [𝑃(𝑖𝑖|𝑖𝑖) + 𝑃(𝑖𝑒|𝑖𝑖)]⁄  

:   𝑃(𝑤�𝑛|𝑖𝑒) ≅ 𝑃(𝑤�𝑛|𝑖𝑖)   (likelihood ratio of probabilities is 
weakly classified) 

             = 𝑃(𝑏𝑛+𝑅|𝑤�𝑛, 𝑖𝑖) 𝑃(𝑖𝑖|𝑖𝑖)    
 
Thus, in the ‘uninformed’ case we recover regular 1st order HMM theory, with 
geometric distribution on ‘ii’. In this notation, �𝜌|𝑖𝑒≅𝑖𝑖 refers to the value of 𝜌 
when the observed sequence 𝑤�𝑛 has approximately the same probability 
regardless of the state being ‘ii’ or ‘ie’. 

 
Example One; Case 2

 

�𝜌|𝑖𝑒≫𝑖𝑖 ≅ 𝑃(𝑏𝑛+𝑅|𝑤�𝑛, 𝑖𝑖) �
𝑃(𝑤�𝑛|𝑖𝑖)𝑃(𝑖𝑖|𝑖𝑖)
𝑃(𝑤�𝑛|𝑖𝑒)𝑃(𝑖𝑒|𝑖𝑖)

� 

:   𝑃(𝑤�𝑛|𝑖𝑒) ≫ 𝑃(𝑤�𝑛|𝑖𝑖)   (likelihood ratio of probabilities is 
strongly classified) 

 
In this case we obtain contributions less than the regular 1st order HMM 
counterpart, effectively shortening the geometric distribution on ‘ii’→ e.g., it 
adaptively switches to a shorter, sharper, fall-off on the distribution in a sequence 
dependent manner. 

 
Example One; Case 3

 

:   𝑃(𝑤�𝑛|𝑖𝑒) ≪ 𝑃(𝑤�𝑛|𝑖𝑖) (likelihood ratio of probabilities is 
strongly classified – the other way) 

�𝜌|𝑖𝑒≪𝑖𝑖 ≅ 𝑃(𝑏𝑛+𝑅|𝑤�𝑛, 𝑖𝑖) 1 
 
In this case we obtain contributions greater than the regular 1st order HMM 
theory. In particular, we recover the heavy tail distribution in a sequence 
dependent manner: 

�𝑃(𝑤𝑛,𝑓𝑛−1,𝑓𝑛)
𝑃(𝑤�𝑛,𝑓𝑛−1)

�
𝑓𝑖−1 ∈ 𝑖𝑒,
𝑓𝑖 ∈ 𝑒𝑒

= 𝑃(𝑏𝑛+𝑅|𝑤�𝑛,𝑓𝑛−1) 



One more example-case will be considered, that involving acceptor splice-site recognition. For 
𝑓𝑛−1 = 𝑖𝑖, 𝑓𝑛 = 𝑖𝑒 we have: 

Example Two: 

 
�𝜌 =

𝑃(𝑤𝑛,𝑓𝑛−1,𝑓𝑛)
𝑃(𝑤�𝑛,𝑓𝑛−1)

�𝑓𝑛−1= 𝑖𝑖,
𝑓𝑛= 𝑖𝑒

 =  𝑃(𝑏𝑛+𝑅|𝑤�𝑛,𝑖𝑒)

1+�𝑃(𝑤�𝑛|𝑖𝑖)
𝑃(𝑤�𝑛|𝑖𝑒)��

𝑃(𝑖𝑖|𝑖𝑖)
𝑃(𝑖𝑒|𝑖𝑖)�

  

 
Example Two; Case 1

 
:   𝑃(𝑤�𝑛|𝑖𝑒) ≅ 𝑃(𝑤�𝑛|𝑖𝑖) 

�𝜌|𝑖𝑒≅𝑖𝑖 ≅ 𝑃(𝑏𝑛+𝑅|𝑤�𝑛, 𝑖𝑒) 𝑃(𝑖𝑒|𝑖𝑖)  
 
We recover regular HMM theory in the uninformed situation. 
 

Example Two; Case 2
 

:   𝑃(𝑤�𝑛|𝑖𝑒) ≫ 𝑃(𝑤�𝑛|𝑖𝑖) 

�𝜌|𝑖𝑒≫𝑖𝑖 ≅ 𝑃(𝑏𝑛+𝑅|𝑤�𝑛, 𝑖𝑒)    
 
Greater than regular 1st order HMM theory. Removes key penalty of P(ie|ii) 
factor when sequence match overrides. Resolves weak contrast resolution at 1st 
order. 
 

Example Two; Case 3
 

�𝜌|𝑖𝑒≪𝑖𝑖 ≅ 𝑃(𝑏𝑛+𝑅|𝑤�𝑛, 𝑖𝑒) �
𝑃(𝑖𝑒|𝑖𝑖)𝑃(𝑤�𝑛|𝑖𝑒)
𝑃(𝑖𝑖|𝑖𝑖)𝑃(𝑤�𝑛|𝑖𝑖)

�  

:   𝑃(𝑤�𝑛|𝑖𝑒) ≪ 𝑃(𝑤�𝑛|𝑖𝑖) 

 
Less than regular 1st Order HMM, effectively weakens ie transition strength (the 
classic major-transition bias factor). 

 
The clique factorization also allows for an alternate representation such that the internal scalar-
based state discriminant can be replaced with a vector-based feature.  This would allow the 
substitution of a discriminant based on a Support Vector Machine (SVM) as demonstrated for 
splice sites in [17].  Also, we note that these alternate representations would not introduce any 
significant increase in computational complexity, since the SVM-based discriminant, having 
been trained offline, would require the computation of a simple vector dot product. Thus, the 
likelihood ratio look-up can simply be to the tabulated sequence probability estimates (based on 
counts, as outlined in what follows), or make use of BLAST (homology-based) test, or an SVM-
based test (the latter two cases areas of ongoing work, see Discussion). 
 
(4) Enumeration of the Footprint States 
According to the restrictions just described, footprint states fall into the same two categories or 
types as dimer states, xx-type and eij-type.  Regardless of footprint state type, each footprint state 
can be considered to be generated by the xx-type dimer that it contains.  For xx-types, it is 
sufficient to specify the generating dimer only, such as i0i0 for the xx-type footprint state 
i0i0…i0.  For eij-types, a position must also be specified for the location of the generating 



dimer within the generated footprint state. The number of xx-type footprint states is identical to 
the number of xx-type dimers, as enumerated in Table 1 below.  

 

Table 1. All 13 xx-type footprint states generated by the xx-type dimmers 

As for the eij-type footprint states, each is generated by the non-homogeneous dimer that it 
contains but is further characterized by the position of the generating dimer within the footprint 
string, such as e0i0 in the right-most position of the eij-type footprint state 
e(F-2)mod3e(F-1)mod3…e0e0e0i0 . As a consequence of this, there are F eij-type footprint states for 
each corresponding eij-type dimer.  Given an eij-type footprint state of length F in dimers, there 
are precisely F possible positions for the implied eij-type dimer to occur within the footprint 
state’s string of primitives.  These dimer positions are labeled 0, …, F-1 and taken in the order of 
encoding (forward or reverse) in Table 2 below.  Thus we have the relation: # eij-type footprint 
states= 20 (F) = (# eij-type dimer states) (F). 
 

Dimer 
Index 

EIJ-type 
Generating Dimer 

EIJ-type Generated Footprint State 
For Generating Dimer Positions 0, …, F-1 

0 … F-1 
0  e0i0 e0i0…i0 … e(1-F)mod3e(2-F)mod3…e0i0 
1  e1i1 e1i1…i1 … e(2-F)mod3e(-F)mod3…e1i1 
2  e2i2 e2i2…i2 … e(-F)mod3e(1-F)mod3…e2i2 
3  ê0î0 ê(1-F)mod3ê(2-F)mod3…ê0î0 … ê0î0…î0 
4  ê1î1 ê(2-F)mod3ê(-F)mod3…ê1î1 … ê1î1…î1 
5  ê2î2 ê(-F)mod3ê(1-F)mod3…ê2î2 … ê2î2…î2 
6  i0e1 i0e1e2…e(F)mod3 … i0…i0e1 
7  i1e2 i1e2e0…e(F+1)mod3 … i1…i1e2 
8  i2e0 i2e0e1…e(F-1)mod3 … i2…i2e0 
9  î0ê1 î0…î0ê1 … î0ê1ê2…ê(F)mod3 
10  î1ê2 î1…î1ê2 … î1ê2ê0…ê(F+1)mod3 
11  î2ê0 î2…î2ê0 … î2ê0ê1…ê(F-1)mod3 
12  (e2j)TAA (e2j)TAAjj…j … e(-F)mod3e(1-F)mod3…(e2j)TAA 
13  (e2j)TAG (Similar to above) … (Similar to above) 
14  (e2j)TGA       “              “ …       “              “ 
15  (ê2j)TAA ê(-F)mod3ê(1-F)mod3…(ê2j)TAA …  (ê2j)TAAj…j 
16  (ê2j)TAG (Similar to above) … (Similar to above) 

Dimer Index XX- type Generating Dimer XX- type Generated Footprint State 
0  i0i0 i0i0…i0 
1  i1i1 i1i1…i1 
2  i2i2 i2i2…i2 
3  î0î0 î0î0…î0 
4  î1î1 î1î1…î1 
5  î2î2 î2î2…î2 
6  e0e1 e0e1…e(F)mod3 
7  e1e2 e1e2…e(F+1)mod3 
8  e2e0 e2e0…e(F-1)mod3 
9  ê0ê1 ê0ê1…ê(F)mod3 
10  ê1ê2 ê1ê2…ê(F+1)mod3 
11  ê2ê0 ê2ê0…ê(F-1)mod3 
12  jj jj…j 



17  (ê2j)TGA       “              “ …       “              “ 
18  je0 je0e1…e(F-1)mod3 … jj…je0 
19  jê0 jj…jê0 … jê0ê1…ê(F-1)mod3 

Table 2. All 20(F) eij-type footprint states generated by the eij-type dimers 

We have the following relations: 

# footprint states = 13 + 20(F) 
# footprint state transitions = 13 + 20(F+1) 

In the model without the minimum length constraint we still have the fundamental set of 33 
dimers, beyond that, however, the larger footprints can have arbitrary numbers of state-toggles: 

# extended states without minimum length assumption ≥ 33 * 2F-1 
# extended state transitions without minimum length assumption ≥ 33 * 2F 

 

(5) Measures of Predictive Performance that are used 
The measure of prediction performance was taken in two ways: full exon accuracy and 
individual base (nucleotide) accuracy, according to the conventions of Burset and Guigo in [16].  
 
Accuracy at the base or nucleotide level, is given by  

snsp_avg = (sn + sp*)/2, where sn = TP/(TP + FN) and sp* = TP/(TP + FP), and 

TP = true positives; FP = false positives; FN = false negatives 
 

Note that the authors [16] have used an alternative form of specificity from the usual form  

sp=TN/(TN+FP). 

This is done in the context of gene prediction, with typically high concentrations of junk, where 
the contribution from the quantity TN= true negative (or correctly predicted actual non-coding) 
can overwhelm FP in what is actually weakly accurate prediction (i.e., scoring is best conveyed 
in terms of the overlap between predicted positives and actual positives [36]).  
 
We use (sn + sp*)/2 for accuracy, following the conventions of [16], partly to compare with their 
results, but we also calculate the specificity according to the standard form sp=TN/(TN+FP), and 
both of these values are shown in Tables 8 & 9. The specificity convention sp* = TP/(TP + FP) 
has the effect of weighting genes with shorter and fewer exons more heavily in the base and exon 
level accuracy measurements, respectively.  (In the notation to follow, sp will be used in place of 
sp* if there is no ambiguity.) Moreover, this effect can become extremely pronounced in cases 
such as both of the cited evaluations, where all DNA sequences tested contain only a single gene. 
In this effort, the number of correct (and incorrect) predictions are first summed over all test 
sequences and then the measurements were computed from those sums for the exon and base 
level measurements, respectively.  Either method of measurement appears appropriate for the 
Burset and Guigo data sets, where the data sequences have a single gene via pre-processing (and 
may be leveraged as such in the design of the program being tested). In what is a more realistic 
context of raw genomic data processing, however, we are likely to encounter two key issues as 
part of the problem: 

1) We have raw genomic sequences that contain multiple genes. 



2) Scoring at the exon level in effect designates the exon as the fundamental unit being 
counted rather than the gene, this avoids weighing more complex genes the same as 
simpler genes (that have fewer exons). 

As indicated above, in each case of the data sets used in this effort, the measurements for both 
the exon and base level prediction differ somewhat from the method used in the cited 
evaluations.   Moreover, of the data sets tested in this effort, ALLSEQ is the only data set 
consisting entirely of single-gene DNA sequences.  The results of the meta-state HMM for 
ALLSEQ in this effort are given in both the cited measure of accuracy [6], as well as standard 
‘exon-level’ scoring. 

The accuracy measure at the full exon level presents a much greater challenge as it requires the 
successful prediction of the entire exon for the exon to be scored as correct.  These events 
include the start and end positions of exons as well as the continuation of the exon at all 
intermediate introns splicing points.  The full exon accuracy is given similarly to that given 
before at base-level scoring: 

SNSP_AVG = (SN + SP*)/2, where 
SN = (number of correct exons)/(number of actual exons), and 
SP* = (number of correct exons)/(number of predicted exons) 

Again, SP will be used in place of SP* in what follows if there is no ambiguity. It should be 
noted that this measure for full exon accuracy does not allow for any improvement due to partial 
exon prediction.   More specifically, the exon level accuracy can only be improved by the precise 
prediction of one or more entire exons – at both start and end positions. 
 
Results 
All predictions are based on state prior, state transition, and emission probabilities which are 
estimated directly from counts in the training data without any further refinement.   The meta-
state HMM model is interpolated to highest Markov order on emission probabilities given the 
training data size, and to highest Markov order (subsequence length) on the footprint states (with 
different values shown in the Results as multi-trajectory plots). The former is accomplished via 
simple count cutoff rules, the latter via an identification of anomalous base statistics near the 
coding/noncoding-transitions, initially, followed by direct HMM performance tuning. Allowed 
footprint transitions are restricted to those that have at most one coding/noncoding-transition, 
which leads to only linear growth in state number with footprint size, not geometric growth, 
enabling the full advantage of generalized-clique modeling at a computational expense little 
more than that of a standard HMM. 
 
Algorithmic Complexity of meta-HMM dynamic programming table construction 
For comparison with the meta-state HMM, we first consider the complexity of the traditional 1st 
order HMM.  First define ‘T’ as the length of the testing data set, and ‘N’ as the number of states. 
The Viterbi algorithm constructs the table recursively, with computational updates in each cell in 
a given column only dependent on computations involving each of the cells of the prior column, 
thus the time complexity involved in the Viterbi algorithm is given by O(TN2). In the meta-state 
HMM we have similar growth in number of states, but in the case of the increasing footprint size 
F this increase in states, and state transitions, is linear, with time complexity given by 
O(T(F+L+R)), where linearity in F for fixed L and R is verified in the set of time trials shown in 
Fig. 2. 



 
Results for Benchmark Dataset ALLSEQ 
Exon- and base-level accuracy for values of the parameters M, F, L, and R were tested and 
examined for stability. Fig. 3 and Fig. 4 below show plots for exon- and base-level maxima, 
respectively, over the parameters L and R of meta-state HMM’s prediction performance.  The 
plots illustrate the enhanced performance of the meta-state HMM over simpler prediction 
models, including the (null hypothesis result) meta-state HMM for which the base Markov 
parameter, M=0.  (Note: the meta-state HMM uses only the intrinsic information in the data – 
making no use of extrinsic information, such as EST’s, protein homology, etc.)   
 
In comparing the results of this data set to the other results in this effort, the quality of the best 
result can be attributed to the increased size of the training data set (despite the decreased coding 
density) as well as adherence among the donor and acceptor splice sites to the consensus 
sequences, gt and ag, respectively.  Fig.s 3 & 4 also show the best performing predictors from the 
original benchmark study, FGENEH and GeneID+, that use intrinsic and extrinsic genomic 
information, respectively.  At both the full exon- and base- levels, the meta-state HMM 
outperforms standard HMM approaches by a discernable margin. 
 
Results for C. elegans Dataset 
The results shown in Fig.’s 5 & 6 indicate that a local maximum for the exon and base level 
predictions was attained at F=12, with a plateau for F>12 extending to F=20, with exact exon 
prediction accuracy 74% and base accuracy 90%. In comparing the results of this data set to the 
other results in this effort, the reduced performance at full exon level for M=8 compared to that 
for M=5 is an indication of insufficient training size reflected in lack of support for M=8 
probability estimates at splice sites.  
 
The degree of preconditioning in our data set is minimal, such that there is allowance in the data 
for disagreement with the consensus dinucleotide introns sequences, gt and ag, as well as the 
incorporation of reverse encodings. As mentioned previously, we arrive at a base accuracy of 
90%. The prospects for improving this result further are many, starting with simply enlarging the 
training dataset by including similar genomes from other nematodes, C. Briggsiae in particular 
(see further discussion in the Conclusion).   
 
Discussion 
The top performing results from the evaluations performed in [16] and [14] are included in Table 
6 & 7 below (where they predict on data that has much greater preprocessing, not raw genome), 
including values for the (nucleotide) base level accuracy converted from the AC measurement to 
E[(sn+sp)/2]. 

Table 8 shows the top results of the meta-state HMM for the data sets and parameter values 
tested in this effort, including in each case the optimum values for the parameters M, F, L and R.  
Recall that the method of measurement used in this effort differs slightly from that of the cited 
evaluations. For additional reference, Table 9 shows the maximum accuracy specifically for the 
ALLSEQ data set at both the base and exon levels using the method of measurement in the cited 
evaluations, as well as our own. 

Software Nucleotide level Full Exon Level 



Name E[sn] E[sp] AC E[(sn+sp)/2] E[SN] E[SP] E[(SN+SP)/2] 
FGENEH 0.77 0.88 0.78±0.26 0.825 0.61 0.64 0.64±0.33 
GeneID+ 0.91 0.91 0.88±0.16 0.91 0.73 0.70 0.71±0.29 

Table 6. Top 2 performers in the evaluation by Burset and Guigo testing with ALLSEQ. 

 

Software 
Name 

Nucleotide level Full Exon Level 
E[sn] E[sp] AC E[(sn+sp)/2] E[SN] E[SP] E[(SN+SP)/2] 

Genie 0.91 0.90 0.89±0.16 0.905 0.71 0.70 0.71±0.30 
Genscan 0.95 0.90 0.91±0.12 0.925 0.70 0.70 0.70±0.32 

HMMgene 0.93 0.93 0.91±0.13 0.93 0.76 0.77 0.76±0.30 

Table 7. Top 3 performers in the evaluation by Rogic, et al., testing with HMR195. 

 

The meta-state HMM’s performance on the ALLSEQ dataset clearly exceeds that of the top 
performing program, GeneID+, cited in [16], by substantial margins, 6.5% and 17%, at the base- 
and exon-levels, respectively.  GeneID+ also uses extrinsic information via “amino acid 
similarity searches” in the process of forming its prediction, whereas the meta-state HMM in this 
effort uses only the intrinsic information contained in the DNA sequence data alone.  
 

Data set Name Nucleotide level Full Exon Level 
sn sp (sn+sp)/2 M F SN SP (SN+SP)/2 M F 

ALLSEQ 0.978 0.954 0.966 8 4 0.919 0.803 0.861 8 12 
Chr. I-V 0.938 0.864 0.901 5 12 0.775 0.711 0.743 2 20 

Table 8. Maximum accuracy of meta-state HMM for the parameter values tested. 

Data set Name Nucleotide level Full Exon Level 
E[sn] E[sp] E[(sn+sp)/2] M F E[SN] E[SP] E[(SN+SP)/2] M F 

ALLSEQ 0.987 0.961 0.974 8 12 0.917 0.847 0.882 8 12 

Table 9. Maximum accuracy of meta-state HMM for ALLSEQ using the cited method of 
measurement 

The question naturally arises on how we might do better, and we are proceeding in three 
directions: (1) verifying that HMMD offers little improvements due to the recovery of the heavy 
tail attribute see [24]; (2) future work involving pMM/SVM sensors [17]; (3) future work 
involving alternative-splice state structures [43] (with verification of statistical support for the 
more elaborate state model indicated in [27]); and (4) use of large footprints of HMMD 
scaffolding to employ zone-dependent statistics to capture cis-regulatory signaling, in particular, 
in the generalized meta-HMMD model. In this effort we tried to mainly draw comparisons with 
other methods similarly based solely on intrinsic genomic statistics. The method presented here 
will benefit from extrinsic genomic information ‘add-ons’ for boosting performance via use of 
homology matching, or EST alignment, for example. We do not compare with the state-of-the-art 
extrinsic/intrinsic techniques in this purely intrinsic approach, but upon the further 
extrinsic/intrinsic statistical modeling refinements indicated above, such a comparison will be 



made and judging from the performance of the meta-HMM modeling foundation, a state-of-the-
art gene structure identifier should result. 
 
Conclusion 
We describe a clique-generalized, meta-state, HMM.  The model involves both observations and 
states of extended length in a generalized clique structure, where the extents of the observations 
and states are incorporated as parameters in the new model.  This clique structure was intended 
to address the following 2-fold hypothesis. 

1) The introduction of extended observations would take greater advantage of the 
information contained in higher order, position-dependent, signal statistics in DNA 
sequence data taken from extended regions surrounding coding/noncodong sites; and 

2) The introduction of extended states would attain a natural boosting by repeated look-
up of the tabulated statistics associated in each case with the given type of 
coding/non-coding boundary. 

 
We find that our meta-state HMM approach enables a stronger HMM-based framework for the 
identification of complex structure in stochastic sequential data.  We show an application of the 
meta-state HMM to the identification of eukaryotic gene structure in the C. elegans genome.  We 
have shown that the performance of the meta-state HMM-based gene-finder performs 
comparably to three of the best gene-finders in use today, GENIE, GENSCAN and HMMgene 
[44].  The method shown here, however, is the bare-bones HMM implementation without use of 
signal sensors to strengthen localized encoding information, such as splice site information.  An 
SVM-based improvement, to integrate directly with the approach introduced here, is described in 
[17], and given the successful use of neural-net discriminators to improve splice-site recognition 
in the GENIE gene finder [45], there are clear prospects for further improvement in overall gene-
finding accuracy with the meta-state HMM foundation described in this paper.  
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Figures 
 
Figure 1. Top Panel. Sliding-window association (clique) of observations and hidden states in the 
meta-state hidden Markov model, where the clique-generalized HMM algorithm describes a left-
to-right traversal (as is typical) of the HMM graphical model with the specified clique window. 
The first observation, b0, is included at the leading edge of the clique overlap at the HMM’s left 
boundary.  For the last clique’s window overlap we choose the trailing edge to include the last 
observation  bN-1. Bottom Panel. Graphical model of the clique-generalized HMM, where the 
interconnectedness on full joint dependencies is only partly drawn. The graphical model is 
significantly constrained, as well, in a manner not represented in the graphical model, in that 
state sequences are only allowed with at most one non-self transition.  
 
Figure 2. Meta-state HMM test times for test data length 1Mb 
 
Figure 3. Maximum full exon meta-state HMM performance for data ALLSEQ 
 
Figure 4. Maximum base level meta-state HMM performance for data ALLSEQ 
 
Figure 5, F-view. Top. Full exon level accuracy for C. elegans with 5-fold cross-validation. 
Bottom. Base level accuracy for C. elegans with 5-fold cross-validation. 
 
Figure 6, M-view. Top. Full exon level accuracy for C. elegans 5-fold cross-validation. Bottom. 
Base level accuracy for C. elegans 5-fold cross-validation. 
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