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SUMMARY

Techniques for extracting small, single channel ion currents from background noise are described and
tested. It is assumed that single channel currents are generated by a first-order, finite-state, discrete-time,
Markov process to which is added ‘white’ background noise from the recording apparatus (electrode,
amplifiers, etc.). Given the observations and the statistics of the background noise, the techniques
described here yield a posteriori estimates of the most likely signal statistics, including the Markov model
state transition probabilities, duration (open- and closed-time) probabilities, histograms, signal levels, and
the most likely state sequence.

Using variations of several algorithms previously developed for solving digital estimation problems, we
have demonstrated that: (1) artificial, small, first-order, finite-state, Markov model signals embedded in
simulated noise can be extracted with a high degree of accuracy, (2) processing can detect signals that do
not conform to a first-order Markov model but the method is less accurate when the background noise
is not white, and (3) the techniques can be used to extract from the baseline noise single channel currents
in neuronal membranes. Some studies have been included to test the validity of assuming a first-order
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Markov model for biological signals. This method can
be used to obtain directly from digitized data, channel
characteristics such as amplitude distributions, tran-
sition matrices and open- and closed-time durations.

INTRODUCTION

Measurement of single channel ion currents in small
patches of cell membrane has proved to be a powerful
tool for studying biologically important currents. As
the molecular events underlying opening and closing of
a receptor-channel complex are being explored in
increasing detail, it is becoming necessary to character-
ize single channel currents more precisely than before.
If, for example, an ion channel possesses multiple
conductance levels, it is of interest to determine these
levels and to ascertain whether the higher levels are
multiples of a small ‘elementary’ level (Krouse ez al.
1986 ; Hunter & Giebisch 1987). Furthermore, models
proposed to explain the time-dependent behaviour of
ion channels depend on knowledge of transition
probabilities between levels. This information is par-
ticularly difficult to obtain when the currents are very
small and obscured by unavoidable background noise.
Of course, the signal:noise ratio can be improved to
some extent by high-frequency filtering but this method
obscures and distorts fast channel current transients.

We here apply digital signal processing techniques to
extract small single channel currents from noise and to
compute transition probabilities from one state to
another, together with other relevant signal statistics.
The method is based on the assumption that the
current flow through a single channel is determined by
a first-order, finite-state, Markov process on which
white noise is imposed. The model we adopt, commonly
called by engineers a ‘Hidden Markov Model’ (HMM),
has been widely used for a variety of numerical
estimation problems, including speech processing and
estimation associated with convolutional coding. The
procedures for ‘removing’ noise from the observed
sequence of data or, more precisely, for obtaining
signal statistics, involve several steps. First, initial
values of transition probabilities from one state to
another are assigned. These can be organized as an
Nx N matrix, where N represents the number of
possible states of the signal. A so-called forward-
backward procedure is then applied to give a posterior:
signal statistics. Next, Baum—Welch re-estimation
formulae are used to re-estimate the transition prob-
abilities and the process is repeated until convergence
takes place (normally within ten iterations). The signal
statistics on the last iteration are preserved.

In the theoretical section of the paper, we briefly
discuss some aspects of estimation theory for umM. For
detailed mathematical accounts of the theory, the
reader is referred to Baum and his colleagues (1966,
1970, 1972) and Rabiner (1989). To validate the signal
processing technique, a known first-order, finite-state,
Markov signal is embedded in noise generated by a
resistor/patch-clamp amplifier/filter system, and the
technique used to extract the signal. From the results of
these simulations, it is possible to illustrate the power of
the techniques, to ascertain their limits in terms of error
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probabilities and to test the effects of deviations from a
first-order Markov process and from white noise. In the
last section, the potential of the techniques for
biophysical applications is illustrated. They are used to
extract small ion currents through single channels from
records dominated by noise. At the same time,
transition probability matrices, open- and closed-time
statistics, and signal estimates are constructed directly.
Finally the significance of the techniques and results of
the paper, and possible areas for future application are
discussed.

PART I: THEORETICAL BACKGROUND

This section introduces the theoretical basis for the
signal processing scheme based on HMms. We first give
a broad, general description of the theory and the
strategy used in processing channel currents. Detailed,
rigorous explanations of the assumptions we have
made and the principles underlying our algorithms are
provided in later sections and some of the proofs of the
equations used are given in the Appendix.

(1) A general description of the technique
(1) An overview

Records of single channel currents from biological
membranes consist of a signal generated by ions
flowing through an open channel contaminated by
‘background’ noise from electrodes, amplifiers, etc. In
some cases the signal is dominated by the noise and its
characteristics cannot be measured with any certainty.
To extract channel currents from the background
noise, it is convenient to assume that the underlying
signal sequence can be represented as a finite-state,
discrete-time, Markov process. The model of channel
dynamics previously proposed by Colquhoun &
Hawkes (1977, 1981) is based on a finite-state,
continuous-time Markov process, where the state
represents the distinct conformational state of the
channel macromolecule and the transition matrix of
the process is denoted by Q. In this model, the states
are aggregated and partitioned into two classes, namely
open and shut states. The underlying Markov process
is not directly observable but some of its properties can
be deduced from the behaviour of single channel
currents. The ‘state’ in this paper refers to the
conductance level, and the transition matrix for the
process is denoted by 4.

In simple terms, the core of the method is to
determine the most likely transition that occurred
between any two signal current levels to cause an
observed transition between two successive data points.
In practice, the signal is allowed to adopt any of N
levels, normally evenly spaced for convenience. For
example, if the largest signal is 1 pA, 50 current levels
from 0 to 1.5 pA might be allowed (interval 0.03 pA).
Possible transitions could be from any of the 50 levels
at the first point to any of the 50 levels at the second
point. Consider the first data point. We need to make
an initial (arbitrary) assumption. For example, it may
be assumed that there is an equal probability of the
signal being at any of N levels, namely, & if N = 50.
The separation or distance between the measured
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value and each one of N possible signal levels gives the
probability that the observation derives from a
particular signal level. By multiplying this probability
by, in the example given above, &, we obtain the
probability of the first data point being generated by
each of the possible levels. Then, the probabilities of
the second point being generated by each one of the
possible levels can be calculated by making use of the
computed probabilities of each of the possible levels for
the first data point, the transition probabilities between
each of these first levels and the possible second levels
(obtained from a level (state) transition probability
matrix), and the statistics of the noise without signal.
This procedure is repeated for each data point in a
series of data points in a record and then is repeated in
a reverse (backward) direction. Probabilities obtained
in the forwards and backwards directions are mul-
tiplied to give probabilities for each level for each data
point. The level with the highest such probability is
taken as the true signal underlying that data point. To
perform these computations, it is necessary to specify
transition probabilities from any one level to N possible
levels. As these probabilities are unknown for channel
currents, a reasonable guess is made to construct a
transition matrix and estimate the signal current level
probabilities based initially on this guess. Then, after
the first forward and backward pass, the transition
probabilities between levels measured from the esti-
mated signal are substituted for the values initially
used in the level transition probability matrix. After
several such passes, normally 5-10, the estimated signal
sequence and transition probability matrix become
fairly constant and are accepted as a true description of
the channel currents. The amplitude distribution of the
signal gives the most probable signal levels. It will be
shown that this process ‘learns’ the true transition
matrix and produces a model of the signal very close to
the original signal, even when the signal is very much
smaller than the noise.

(1) An outline of the method

Extracting the real signal from a limited set of
imperfectly determined measurements is a problem
that commonly occurs in science. The ordered set of
numbers comprising the data y,, ¥, ¥3, -- -, Yp» Vp, may
be viewed as a real world process that is corrupted by
noise. The aim of any digital processing scheme is to
eliminate this interfering noise to separate the true
signal sequence sy, Sy, 53, -, Spy S, from the noise and,
at the same time, to derive a signal model that explains
the observed set of measurements. To do this, it is
necessary to specify how the signal is different from the
noise and to have an independent estimate of the noise.
Indeed, the effectiveness of any signal processing
strategy hinges critically on an accurate specification of
the characteristics of the signal.

We have chosen the techniques of HMMs to analyse
channel currents. The algorithms used rest on two
basic assumptions which are given in detail in §2 of
Part I. Channel currents are assumed to be generated
by a first-order, finite-state, Markov process, whereas
the noise that is introduced in the process of ex-
perimental measurements and corrupts the data is
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stochastic and memory-less (white) and Gaussian. In
other words, it is assumed that the magnitude of
channel currents, measured at a discrete-time £, is one
of a finite number, N, of states (where N can be as few
as 2 and as many as 120 in our algorithms), and the
probability of being in any one of the N states at time
k+ 1 depends solely on the state s, at time . Transition
probabilities of a first-order Markov process can be
represented by an N x N matrix, with its diagonal
elements representing the probability of remaining in
the same state at time £+ 1, given that the process is
found in state s, at time £. For illustration, consider a
channel characterized by three conductance states
(state 1 = closed, state 2 = partly open, state 3 = fully
open). Its transition matrix is of the form:

0.998 0.001 0.001
A ={0.005 0.980 0.015
0.020 0.000 0.980

The first row of the matrix indicates that the channel
has an equal probability of going into the partly open
state and fully open state from the closed state. The
second row reveals that, once the channel is in the
partly open state, it is more likely to go to the fully open
state (p = 0.015) than to the closed state (p = 0.005).
Similarly, from the last row, the transition from the
fully open state to the partly open state is forbidden.
Conventionally, the elements of the first row are
referred to as a,;, a;, and a,; and those of the second
rOW as dyy, dyy and a,,, etc. Equation (7) in §3 (i)
describes how the open-time histogram and the mean
open-time or closed-time can be directly calculated
from the matrix. This three-state example, with the
matrix given above, will be used to illustrate the
computational steps.

Suppose that a signal sequence can assume several
state levels (3 in this example) and that the transition
probabilities from one state level to another are known.
Suppose, further, that the initial condition at time
k = 0 is the closed state. The standard deviation of the
noise is estimated from a segment of data points that con-
tains no channel current. Three parameters, denoted in
the subsequent sections as 7 (the initial condition), 4
(Nx N transition matrix) and b(-) (Gaussian error
probability of the noise) constitute the signal model on
which our entire processing scheme is based. Consider
five measured data points, ¥, ¥,, ¥3, ¥, Y5 Obtained at
time £t = 1,k =2,...,k = 5. The true signal sequence
at these five discrete times must have been, for the
three-state example given above, one of the following
243 (3°) sequences:

clock time k=1 k=2 k=3 k=4 k=5
state sequence 1 {1 1 1 1 1}
state sequence 2 {2 1 1 1 1}
state sequence 243

{3 3 3 3 3}.

The problem is to determine which one of these 243
sequences is most probable, given the 7" = 5 measure-
ments, the standard deviation of the noise in the
absence of signal, the transition matrix 4 and the
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initial condition m. It is possible to assign to each
possible signal sequence a numerical value P(S,, ¥,)
that indicates the likelihood that a specific signal
sequence produced the observed sequence. The key to
this computation rests on the fact that, because of the
memory-less properties of the noise, the term P(S;, ¥;)
can be factored into two terms: the probability of
observing a given signal sequence, P(S;), and the
probability of obtaining the observation sequence given
the signal sequence, P(Y,|S,). The first term is simply
the product of relevant transition probabilities. For the
state sequence 1 above, it will be P(S,) = (a,;)%, and
for the state sequence 2, P(S,) = (a;,) (ay) (a;;)®,
remembering that the channel was assumed to be
closed (state 1) at time #= 0. The second term is
obtained from the Gaussian error probabilities. For
k =1, the probability of observing y, given that the
signal was at state 1 can be computed from the
equation for the Gaussian distribution curve, and
similarly for £ = 2, 3, 4 and 5. This error probability is
abbreviated as b,(y,), the probability of observing y,
given that the signal at time £ was at state j. The error
probabilities calculated for £ =1,...,kA =5 are mul-
tiplied to obtain the second term, P(Y,|S,). The most
likely signal sequence is the one for which the product
of these two terms, P(S;)P(¥.|S,), is maximal.
Clearly, direct tabulation of every possible permutation
of state sequences is computationally unfeasible for
large 7" and a more efficient procedure is required. A
special algorithm, known as the Viterbi algorithm,
reduces the number of computations from about N* 7T
to N*T (where N is the number of possible states and
T is the number of data points) and selects the most
likely state sequence given the model and the ob-
servation. This algorithm is discussed in §3 (iii).

For single channel currents, however, we have no
prior knowledge about the number of states, state levels
and transition probabilities. Procedures that can be
used together to determine the probable number of
states the signal sequence contains and the associated
transition matrix are discussed in §§3 (i) and 3 (ii).
These are known as the forward-backward procedure
and Baum-Welch re-estimation formulae. For the
forward—backward procedure, we assign three abstract
variables, o (forward), # (backward) and 7y, to each
one of N states at each discrete time. Thus, in this
example, &, (1), &, (2) and «,(3) are the a (or forward)
variables associated with state 1, state 2 and state 3 at
time £ = 1. The forward and backward variables are
calculated recursively, using (1) and (2) in §3(i).
Remembering that 7 is the initial condition (the
probabilities that the signal at time £ = 1 is at state 1,
state 2, state 3), values of a for the three state examples
are calculated as follows:

o, (1) =7le1(y1),
o, (2) = myby(yy),
o, (3) = myby(y,).

The first equation stated in words is that the forward
variable associated with state 1 at time 4 = 1 is the
product of the initial probability of the signal being at
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state | and the probability of observing y, given that
the signal was at state 1. The next step is to calculate
ay(1), a,(2) and a,(3) for time £ =2, using all a’s
calculated for time £ = 1. For the signal at time k = 2
to be at state 1, for example, it must have made one of
the three possible transitions, namely, from state 1 to
state 1, state 2 to state 1 and state 3 to state 1. Thus
a,(1) and all subsequent a,(:) are the sums of three
terms: :

ay(1) = ay(1) ay; b;(ys) +1(2) ay; b1 (ys,)
+0t,(3) a3, 61(ys)-

The numerical value of a,(1) thus embodies the initial
condition 7, the past measurement y,, the transition
probabilities a;; and the present measurement y,. The
backward variable f# is calculated in the same way
using the recursive formula given in (2).

The forward variable a,(¢) is the probability of the
observation sequence, y;,4,,-..,¥, and the signal is at
state 7 at time £. Similarly, £, (7) is the probability of the
future observation sequence ¥y, 1, ¥y - - -5 ¥ given the
signal is at state ¢ at time £. By multiplying (i) and
f.(7) for each one of N states and each time from
k=1 to k= T, and suitably normalizing the product
(4), we obtain the final variable vy,(i). The state at
which y,(7) is the largest is the most likely state of the
signal at time £.

Both the Viterbi algorithm and the forward—
backward procedure rely on the fact that we have a
priort knowledge of the number of states, state levels
and transition matrix. Access to prior knowledge of the
underlying Markov signal statistics would appear to be
anomalous because, if they are already known there
would be little point in processing the observed set of
data to obtain this information, or little point in doing
experiments to begin with. Application of the Baum—
Welch re-estimation formulae detailed in §3(ii), in
conjunction with the backward—forward procedure,
resolves this paradox. The initial probabilities in the
matrix A (as well as w and b(*)), can simply be
reasonable guesses. The formulae re-estimate a new set
of transition probabilities in the revised matrix A,
which are more consistent with the observed sequence
of data than those initially provided. Using the revised
matrix A” and the same set of the observation sequence
Y,, the matrix A4’ is revised again, and this process is
repeated several times, usually 10-15. The re-esti-
mation of the matrix is achieved by computing, for
each state at each time £, a variable §,(4,7), which is the
probability of making a transition from state 7 to state
J at time £. The re-estimated transition probability q,,,
as given in (10), is simply [the total number of
transitions made from state ¢ to state j] divided by [the
total number of transitions made from state i to all
allowed states]. A powerful theorem stated in (13)
shows that successively re-estimated sets of transition
probabilities using the Baum-Welch formulae are
closer to the true set than previous sets. With successive
re-estimations, it is found in practice that the transition
probability a,, converges globally. This means that
provided initial guesses are in the vicinity of the true
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values, the re-estimated values will asymptotically
approach the true ones. An initial guess for the three-
state matrix given above, for example, could have been
0.8 for the three diagonal elements and 0.1 for all the
off-diagonal ones. The re-estimated probabilities after
10 or 15 iterations would be expected to be very close
to the true values.

The Viterbi algorithm and forward-backward pro-
cedure are systematic and efficient ways of selecting the
most likely signal sequence, given the data and a prior:
transition probabilities. With reasonable guesses of the
transition probabilities, this processing method is useful
in estimating a time domain signal sequence for
channel currents that are relatively large compared to
the baseline noise, such as fy-aminobutyric acid
(GABA)-induced chloride channels. For small channel
currents, the use of the forward-backward procedure
together with the Baum—Welch re-estimation formulae
permits identification of the number of states and their
levels. Once this information is gained, the signal
sequence as well as the relevant signal statistics can
readily be obtained by re-processing the same segment
of data or the subsequent data segments obtained from
the same patch, using either the Viterbi algorithm or
the forward-backward procedure. The method is now
described in more detail with mathematical justifica-
tions for the different procedures used.

(2) Assumptions of the model

A schematic diagram of the particular HMM we adopt
is shown in figure 1a. We assume that the underlying
kinetics of membrane ion channels are governed by a
finite-state, discrete-time, first-order Markov process.
Consequently, the state 5, of a channel at time £, being

(a) Hidden Markov Model A(4, b(*), m)
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the ion channel current free of measurement noise, is
one of a finite number N of states ¢;,¢,,--.,qy-
Moreover, with S, denoting the sequence of states s,, s,
...,y then the probability of being in any state g, at
time £+ 1, given knowledge of states up to time £,
depends only on the state s, at time £. Thus P(s,,, =
4;18¢) = P(s341 = ¢;15,). The state transition probabili-
ties of passing from state level ¢, at time £ to state level
g; at time k41, a;; = P(s,; = ¢;15, = ¢,), (k > 2) form
a state transition probability matrix 4 = (a;;). These
probabilities are assumed to be invariant of £ and have
the properties

(for each 7).

(Throughout the paper matrices and vectors are
indicated by italic or sloping bold type.)

To make a connection with the theory of HMMs, we
assume that the ion channel currents measured are
contaminated by noise, or equivalently, that the
Markov process s, is hidden; that is, indirectly observed
by noisy measurements y,. We denote £ discrete values
of the observation sequence y,,Y4,,...,4, by Y. The
vector of probability functions b(:) = (4,(*)) where
b;(y,) = P(y,|s, = ¢,) are assumed invariant of £, with
an independence property:

Py |5 = s S Yerr) = Pyl 5% = @)

or, in words, noise is stochastic and memory-less. Also
we assume that the initial state probability vector & =
(m,) is defined from 7, = P(s; = ¢;). The HMM associated
with signal levels ¢, ¢, ..., ¢, is denoted A = (4,b(*),
7). Relaxing stationarity of the underlying transition
probabilities is beyond the scope of this paper.

initial state probabilities @ = (m,), 7, = P(s; = ¢;)

l

states ¢, g2, - IN
. . . conditional probability functions .
transition probabilities | signal observations
>b(*) = (8(*)); bs(yx) = Plyalsy = ¢;) ——>
A= (ay) Se Yr

(first-order) finite-state Markov model

(6) Additive Gaussian noise case

memory-less noisy channel

wy & N[W, %]

91> 92> - - IN
A = (ay)
n = (m,) S

V\fj >

Y & bi(yy) = Nlg,+@, 03]

Figure 1. A block diagram of the model assumed responsible for generation of recorded single channel currents. The
underlying signal sequence is generated by a discrete-time, first-order Markov process that is corrupted by memory-

less noise,
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In the absence of ion channel currents, experimental
data give measurements y,, which are in fact measure-
ments of the noise generated from the pipette
and amplifier. This noise is normally distributed as
N[w, o2)]. Consequently, when a signal is present, it is
reasonable to assume that the measurements are signal
plus noise as follows:

Yp = St Wy, Wy~ N[u_),o',z”].

Then

b,(y,) = (V21 (0,)) "exp {M}

T

Notice that the independence assumption of the
model reflects itself here as an independence or
‘whiteness’ assumption of w,. The experimental data
in our case appears reasonably white over the
frequency range of the bandpass (aliasing) filters (see
figure 175), although ‘end effects’ are certainly
expected over the frequency range of interest. The
situation is depicted in figure 15. The theory and
algorithms to follow do not rely on this additive
normally distributed noise assumption, because re-
estimation formulas can be employed to estimate b(-),
along with A, 7, as discussed subsequently. In our
computer studies we do not re-estimate b(-). For
simplicity, the Markov model we work with is assumed
to be first-order. Extensions of the theory to mth-order
Markov processes are straightforward, although the
associated computations are more formidable. Ag-
gregation (reduced state) estimation techniques can be
used, as in Eyuboglu & Qureshi (1988) and Duel-
Hellen & Heegard (1989), to simplify calculations, but
simplicity is gained at the expense of optimality, and
also reliable statistics can only be accumulated with
more observation data. Of course, the greater the
observation data length, the less likely the stationarity
assumption holds. Also, amplifier band-limiting filters
inevitably introduce memory into the measurements,
and thereby violate the first-order Markov model
assumption, but we consider this memory negligible
with the sampling rates and bandwidths adopted.

(3) Estimation of the signal and its statistics

Given the signal model as described above and given
observations yi,¥,,..., ¥y, denoted Y,, there are four
inter-related problems that can be solved.

(a) Evaluation of the likelihood of a given model
A generating ‘the given sequence of data, denoted
P(Y,|A). This allows comparison of a set of models
{A;} to select the most likely, given the observations.

(b) Estimation of signal statistics such as a posterior:
probabilities;
signal probabilities

Ve = e(®)s 7)) = Pls, = ¢, ¥, 2),

histograms

hy = (he(1));  hp(i) = P(g,| Y, A) = %"é%“(i)’
duration-time d probabilities

Pu= (P4(0)5 pali) = P(s, = g, with duration d| ¥y, A).
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The vector y, represents a discrete level probability
density, with 2}Y,y,(:) = 1. This density evolves with
time and displays very clearly the information which
can be obtained from the data Y, and a priori knowledge
of the model A. An illustrative example is studied later
in figure 9. From p,(i), state sequence estimates
conditioned on A, denoted {§, | A}, such as maximum «
posteriori (MAP) or conditional maximum (cuM) estimates
can be generated. Recall that MAP estimates track the
peaks of the vy, (7) over ¢ as k evolves, whereas the cm
estimates track the means of y,(¢) over 7 as £ evolves, or
more precisely the nearest signal level to the mean
rather than the mean itself which may not correspond
to any level ¢,. A measure of the quality of an estimate
of time £ could be taken as the variance of v, (i) over i.
Actually, the maximum likelihood (ML) estimate can
also be independently generated by means of dynamic
programming. This is the most likely path of s, given
the noisy data and a first-order Markov model A. In
computer studies presented in this paper, only MAp
estimates will be used because our experience suggests
that these are adequate to achieve our aims.

(¢) Processing of the observations based on a model
assumption A and adjustment (re-estimation) of the
model parameters (functions) 4, b(-), 7, such that the
updated model A is more consistent with the ob-
servation sequence, and repeating until convergence to
the most likely model A™* among the set {A ='(4, b("),
m)} given the data sequence Y,. This then allows the
estimation of the signal sequence and associated
statistics for the most likely signal model in the class
{A = (A4,b("),m)}, given the observations.

(d) Signal level learning. With no a priori knowledge
of ¢1,4,,...,¢, then a fine quantization grid with, for
example, ¢,/10 intervals can be specified and the
associated model A learnt. The associated histogram
can then be used to infer quantization levels for
subsequent processing.

Three MM processing techniques reviewed more
expansively in Rabiner ¢t al. (1986, 1989) and depicted
in figure 2 are now summarized.

(i) Forward—backward procedure

We consider an observation sequence Y, of length T
and an assumed signal generating model A. In seeking
knowledge about the current state s, from the data
sequence Y, and model A, it turns out best to first seek
knowledge of s, from past and present observations Y,
and model A, and in dual fashion from future
observations, denoted Y,, and then combine the
information appropriately.

Forward and backward vector variables a,, #, which
summarize knowledge from past and future observa-
tions, respectively, are defined as probabilities con-
ditioned on the model A, for: =1,2,..., N
4

o = (a(7));  a(?) P(Y, 5. = g, A)

Bo=(8.00); B.(d) = P(T]5, = g, A),

where ¥, denote§ the ‘futl.xre’ SEQUENCE Yyy1s Ypras - - - »
Yr, compared with ¥, which denotes the ‘past’ and
‘present’ data. We see that ¥,, ¥, together form the
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observation sequence Y. Thus o, (¢) is the joint
probability of the past and present observation with
the present signal in state z, given the model A, and
£, (7) is the probability of the future observations given
that the present state is ¢; and given the model A.
Recursive formulas for a,, f, are readily calculated
using Bayes’ Rule and the first-order Markov and
noise-independence assumptions (see Appendix) as

o (7) = 2 ap,(7) Ay bj(ylc)’

i=1

a,(g) = m;6;(yy) (1)

and

M =

Bi(i) = b(Yes1) Bern0)s fr() = 1. (2)

1

<.
I

Of course, (1) can be expressed in matrix notation as
o, = a,_, Ab(y,) but to continue with matrix notation
would require awkward definitions and so is not
attempted. Clearly the forward variable a, is calculated
in a forward recursion, and the backward variable f,
in a backward recursion, thus the variable names and
algorithm name. Because «, decays exponentially with
increasing & and f, with decreasing £, practical versions
of these algorithms require adaptive scaling as discussed
below. The evolution of a,, f, with £, suitably
normalized, is illustrated in figure 9 for an example
studied subsequently.

The likelihood function, which is the end result of
the first HMM processing task, is calculated as

=p P(sp = ¢, Yol A) = Sag(i). (3)

1 - =1

Mz

Ly =P(Yp|A) =

-
]

The a posterior probabilities associated with the
problem are given from (see Appendix)

7 = (ve();

V(@) = o, (4) ﬂlc(z)/? o (1) Bie (1) (4)

Thus p, tells us all we can know about the current state
s> given the signal model A and both past, present and
future measurements Y. Its evolution is illustrated in
figure 9 for an example studied subsequently.

The histogram h, is calculated from averaging y,
over all £ as

Let us denote the sequence y,,V,,...,¥; by I',. The
MAP and cM signal estimates (given A understood) are
then, respectively

§yst =¢,  wherejis the value of { which
maximizes y,(¢) (6a)

Phil. Trans. R. Soc. Lond. B (1990)

S. H. Chung and others 271

and

2

§™ =¢; where jis the value of  which

—§%¢(h) gal- (60)

maximizes |¢;

Denote also §, 5, ..., 5, by S,.

The duration-time & probabilities, which are those of
precisely d consecutive observations in state ¢, are
theoretically

F(d) = ai (1 —ay). (7)

However, to get realistic estimates given Y, and A,
the re-estimation formulas in the next section can be
used. Of course the mean duration time 4 is then
readily calculated to be as 1/(1 —ay;), because

= X daj7 (1 —ay) = (1 —a,)7
a-1

(i1) Baum—Welch re-estimation formulae

So far then, we have achieved our estimation
objectives assuming a given signal model A. We now go
on to show that any estimates of A can be improved,
unless optimum (or at a local optimum). Let us define
the joint conditional probabilities

§c(t.9) = P(sk = @i Sk = ;1 Yp, A). (8)

This is readily calculated (see Appendix) as

£,(1,7) = o4 (2) iy b0;(Yiorn) Bra 1)/ P(Yr | A), 9)
T-1 . T-1 N .

;= X &(%J)/ 2 X&) (10)
k=1 k=1 j=1

and
~ ;

7, =2 & (1)) (11)

j=1

In updating the vector of probability functions b("),
it is reasonable to do this at a finite number of points
Iy, 1y, ..., [, in the range of the signals y,. Quantizing y,
to these levels, gives a quantized signal 7, and allows

re-estimation of ,(/;) as

bi(l) = ZYA)U—%VEWW (12)

k=1 k=1

where J(¢) is unity when ¢ = 0, and zero otherwise. A
key theorem is as follows.

Theorem 1. Wiih the re-estimation formulas (9) (11)

and Tszgﬁiczently large, the model A= A, b(+), ) is more
likely, given the observations, in that
P(¥;] ) > P(Y, |A). (13)

The duration-time d probabilities are estimated at a

discrete set of points {1,2,..., K} as
T k+d
A 2 oy (i) B(d) Bria(i) 11 6:(y))
F(d) = Kk=1T Fklﬁd . (14)
2 X (1) B(d) Prvai) I1 b:(y;)
d=1k=1 j=k+1
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The mean duration time estimate is

d=(d); d;= X F(d)d

Progf. See for example Levinson et al. (1983).

Remarks.

1. The theorem is certainly not a global or even
local convergence result. However, based on our
simulation experience, we would expect global con-
vergence.

2. Observe that the duration-time calculations are
computationally expensive, but of course need only be
performed at the last pass estimate A in the schematic
of figure 2.

3. When there are forbidden transitions, so that
a; =0 for some i,j, notice that the re-estimation
formulas give d,; = 0 for those ¢,j pairs.

4. Empirical ‘improvements’ to the re-estimation
formulae appear possible. For example, in updating a,;,
use weightings on §£,(¢,7) according to y,(i), perhaps a
weighting that is unity when y,(j) is in the vicinity of
its maximum and zero otherwise.

(a) multipass batch processing schematic
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(ill) Maximum likelihood signal estimation

This subsection is not essential to appreciate the
computer studies to follow, but is given here for
completeness. Let us suppose that we are given the
signal model A, perhaps by means of the previous
algorithms. It makes sense then to ask ‘what is the most
likely signal sequence?’, as opposed to ‘what is the best
signal estimate at a particular time £?’. The second
question is answered by the forward—backward pro-
cedure. The first question is answered by application of
the Principle of Optimality in a Viterbi algorithm.
This algorithm can efficiently yield the most likely
sequence. The Principle of Optimality tells us that
subsequences of optimal sequences are themselves
optimal. Consequently, calculations on others need not
be made. Details are now summarized.

Suppose there is given for i =1,2,..., N the most
likely state estimate sequences $G, 5%, - S’y
denoted 8%, terminating on state ¢; at time £. Also,
suppose there is given the associated conditional
probabilities P(gk“{;)l Y,) of these N state sequences
given Y. (At k£ =1, this information is given trivially
from 7.) Then, it is possible to calculate S, 't and

observation
batch
Yr > 7,7
—_— forward— aplA statistics » S,A
backward $ conditioned
A —| procedure Brld on A L A
— LA
initial A.
re-initialize
A=A
. A
A Baum-Welch
. ] TE-ESMAtiOn
pld) = formulae
(b) on-line signal estimation
Y% ———»| dynamic programming Siepld accumulate [
(Viterbi algorithm > statistics over
A > -with delay D) [0, 77 |----- -
‘ A
' ]
5 i
N 1
' 1
H 1
! 1

initial A ‘
re-initialize ,_

Figure 2. A block diagram showing the signal processing method. (a) For a segment of data, an initial transition
probability matrix is arbitrarily assigned. Given the initial matrix, the algorithm based on the forward—backward
procedure gives the most probable signal sequence and its statistics. With the Baum—Welch re-estimation formulae,
the parameters of the model, including the transition probabilities, are adjusted, and a new signal sequence based on
the adjusted parameters is estimated. This process continues until convergence takes place. (5) If the transition
probabilities are known a priori, a dynamic programming method, such as the Viterbi algorithm, can be used to

extract the optimal signal sequence.
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P(fkﬂ“ﬁ) Y,,,) for each i as follows. For each 7, consider
the N transitions from state g; at time £ to state g, at
time k+1 for j=1,2,..., N. In particular, evaluate
P(s,c+1 @i k(j)l Yk+1) for] =1,2,..., N and select the
J which maximizes this. Denote thls 1nteger m. Then set

ML ML
Skt W = Slc(m)’ 9m

P81 | Yesn) = Plskir = @ Seimy | Yeur)-

Proceedlng from £ =1 to k£ = T would give ST“(; for
t=1,2,...,Nand P(STM;)l Y,). Selecting the 7, denoted
m, which maximizes P(S;G | ¥r) clearly gives the most
likely state sequence S, = S,,,. Actually, the paths
S, tend to coalesce over the interval [0,k— D] for
suitably large D (say 100), so that storage requirements
are simplified. In practice, it makes sense to fix some D,
and store only the most likely state sequence prior to
time k—D.

Working with logs of joint probabilities P(S,, ¥;) =

P(S,| Y,) P(Y,), termed lengths, rather than conditional
probabilities P(S,|Y,), turns out to be equivalent and
simpler to implement (at least in the normally
distributed noise case). Thus, using Bayes’ Rule, and
the first-order Markov and noise-independence
assumptions, the key recursive relation is derived as

P(S,, ¥,)
= P(S,) P(Y,|S,)
= Plse| Sa1) P(Se—1) P(Ye| Yo Sis Se1)
X P(Yeq |55 S-1)
= P(sicl sp-1) P(Sp-1) P(Yicl > S-1) P(Ye—1 [ Sie—1)
= [P(sicl Sie-1) PG 51 53e-1) 1 P (i1 Yiema)-

Let us define §,(s,, 1) = &,(1,J) when s, = ¢; and
Sp+1 = ¢; and assign for each transition £ (7, ) from state
Sy = ¢; at time k to state s5,.; =g, at time k+1, a
‘length’

A
€ ()] = —In(ay) —In Py, [ £4(5,)))-
Then the total ‘length’ of a sequence path on [0, T']

T
lp = kzl Ui (sp> S5-1)) = —In P(Sy, ¥p)
is minimized by the selection §,*".

The Viterbi algorithm is based on the above
observations and is as follows. With knowledge of S
and associated path lengths /,(i), at time £+ 1, select
Se.'t as the sequence Sy, s, = ¢;, where m is the
argument such that

Le(m) +{[E(m,7)] <
That is
m = argmin{/, () +{[&.(J, 1) ]}

1<jSN

LN +E.(,9)] forall 1 <j< N.

Remarks.

1. One approach to obtaining estimates of signal
statistics is to obtain first the signal estimate on-line via
dynamic programming, and then take statistics of the
estimated signal over a period [0, T']. In fact, revised
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transition probability estimates can be made leading to
a revised estimate of A, denoted A but not the same as
that of the Baum—Welch approach. The processing can
be repeated with the A instead of A. The arrangement
is depicted as the recursive scheme of figure 24. This
approach is perhaps a reasonable first cut method, but
we stress that it lacks the theoretical backing that direct
estimation of statistics via the forward-backward
approach gives. In particular, there is no guarantee
that A will be an improved estimate of A. We therefore
do not explore this approach further in this paper.

2. In the case that it is known a priori that a;; = 0 for
certain ¢, 7, it is clear that the most likely sequence S
will not contain such forbidden transitions. In contrast,
the estimates S, §,° of (6) calculated from the
forward—backward procedure, when the assumed
model excludes such transitions, may contain forbidden
transitions. Thus it may be considered preferable to
work with the forward—backward procedure together
with Baum—Welch re-estimation formulae to derive
signal statistics and A, and then use the Viterbi
algorithm for obtaining a signal estimate S,"*, at least
when it is known a priori that there are forbidden
transitions.

(4) Practical implementation

In implementing the forward—-backward procedure
there is a ‘curse of dimensionality’ associated with N,
and ill-conditioning due to the fact that a,, f, have
exponential behaviour. Three specific techniques to
alleviate the problems are now introduced, these being
variations on techniques in the literature.

(i) Overlapping calculations

The ‘exponential’ behaviour of a,, B, reflects the
fact that estimates at time £ are influenced at an
‘exponentially’ decaying rate by past measurements
Yp—1>Yp—g» -+, and future measurements i, Ye o --->
respectively. Consequently, in deriving estimates for a
subinterval [k, k,], of [0, T'], then for D sufficiently
large, processing observations over the interval [k, —D
k,+ D], and preserving estimates only in the interval
[£1,k,] will be arbitrarily close to corresponding
estimates in the interval [k, k,] from processing the
entire batch of observations in the range [0, 7]. In our
signal processing, suitable values for £, are taken as 0,
10000, 20000, ..., points and D = 500 points, although
reductions by a factor of 10 lead to virtually identical
results.

This overlapping technique reduces both numerical
ill-conditioning due to exponential behaviour, and also
memory requirements, which grow linearly as the
product of sub-batch length (k,,,—#,) and N.

(i) Adaptive scaling

The method we adopt is to monitor a,(7) for each ¢
and if the norm is less than (say) 1072, scale by a factor
of 10%. Likewise for f,(i). Of course, suitable records
must be kept so that in calculating y(*), &(-,*), the
scale factors can be included in the calculation.
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(iii) Restricted search estimation

The computational effort of the forward—backward
procedure is proportional to N27. It makes sense then
to consider a simplified version of the algorithm which
avoids calculation of very low probability transitions,
given the observations. This can be achieved by
considering only state transitions in the vicinity of the
signal, such as within the range [y,—40,,y,+40,].
With say N, states in this range, the computational
effort is of order N3 T.

Restrictions can be introduced in calculating a,, f,
from (1), (2), to speed up calculations. Thus, instead of
summing from over j=1,2,..., N as in (1), (2), sum
over the limited range where, respectively, o,(j),
Pr+1(J) are not negligible. It turns out that finding such
a range can be achieved in a preliminary processing of
the data using crude quantizations (much fewer N).
Further details on this will be given in another paper.
Suffice it to say that, with this approach, factors of 5
improvement in speed have been achieved in the level-
learning simulation of this paper.

PART II: EXTRACTION OF KNOWN
SIGNALS FROM NOISE

Before this technique was used to extract information
about currents through ion channels in cell mem-
branes, its reliability in extracting known signals buried
in background noise was tested. Background noise was
simulated by recording the output of the patch-clamp
amplifier used in experiments with a 10 GQ resistor
representing the pipette/membrane patch com-
bination across the input. The amplitude distributions
of the noise filtered at 5 kHz, 2 kHz and 1 kHz were
Gaussian. To this noise was added a first-order, finite-
state, Markov signal of varied amplitude, duration and
known transition probabilities. By processing the
resulting observations, we have ascertained, firstly,
that the technique is capable of reliably extracting
signals with amplitudes as low as half the standard
deviation (o) of the baseline noise. As expected, the
detection errors decreased as the average number of
successive points d (dwell-time) at any one signal level
increased, indicating a decrease in detection error for a
particular pulse as pulse length increases. Secondly, for
such signals, the transition probabilities estimated after
each pass approached the true transition probabilities
monotonically with each pass. Typically, the con-
vergence rate appeared exponential, and the estimated
and true transition probabilities were virtually ident-
ical after five to ten iterations. Thirdly, associated
amplitude histograms and dwell-time probabilities
could be calculated from the final transition matrix.
Finally, we have deliberately violated the underlying
assumptions of the processing scheme by applying it to
extract a deterministic (not a first-order Markov)
signal and to extract signals from band-limited (non-
white) noise. The processing scheme was not very
sensitive to deviation from the first-order Markov
assumption, but the accuracy in extraction of signal
timing decreased when the underlying noise was not
white.
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(1) Signal extraction

Noise recorded from a 10 GQ resistor with a patch-
clamp amplifier (Axopatch 1C, Axon Instruments)
was filtered at 5 kHz (—3 dB, Bessel) and digitized at
11 kHz to simulate noise from a ‘quiet’ patch of
membrane. A 1000 point segment of the noise is shown
in figure 3a. The standard deviation of the noise was
0.16 pA. A Markov signal was generated with four
possible levels at 1, 2, 3 and 4 standard deviations of
the noise and transition probabilities of a;; = 0.97 for ¢
to ¢ transitions and a,; = 0.03/3 for 7 to j transitions. A
1000 point segment of the Markov signal is shown in
figure 3 4. This signal was added to the noise to give a
record with the signal buried in noise (figure 3¢).

The estimation algorithm assumes no knowledge of
the signal sequence S, or its transition probabilities a,,
but it is assumed (for simplicity in the first instance)
that the signal amplitudes can adopt any of 13 levels
separated by o,,/2, half the standard deviation of the
recorded noise. This is not a necessary assumption and
later we will consider an heuristic approach to learning
quantization (discrete-state) levels. The algorithms
assume that the noise is white, with normal distribution
N[w, %], where @, 02 are the mean and variance of the
measured noise. The technique was applied to 40000
data points including the 1000 points shown in figure
3¢ with ten passes of the forward—backward procedure
and application of the Baum—Welch re-estimation
formulae depicted in figure 2a. The signal extracted
from the segment of record in figure 3¢ after ten passes
is shown in figure 3d. The estimated signal sequence S,
is virtually indistinguishable from the original signal
sequence S, apart from a small number of very short
excursions which are not picked out.

The improvement in estimation of the signal with
number of passes is illustrated in figure 4. In figure 44
is a segment of the original signal. Differences between
the estimated and recorded signals after ten, five, three
and one passes are shown in figure 4 b—¢ and illustrate
a ‘learning’ process. Clearly there is only a marginal
improvement in using ten passes instead of five passes.

(a) noise

(¢) observations

(d) signal estimates

0 100 200 800 40 500 600 700 80 S0 1000
Figure 3. Extraction of a hidden signal sequence from noise.
Gaussian noise (¢) obtained from a model patch with a
patch-clamp amplifier was added to a sequence of signal
generated by a first-order, four-state, Markov process with
a,, = 0.97 (b) to give a data sequence containing the signal
plus noise (¢). The estimated signal sequence obtained by the
Bayesian marginal algorithm is shown in (d).



Extraction and characterization of channel currents

(a) signal

L A=

(b) 10 Passes

(¢) 5 Passes

I (d) 3 Passes
I I [N I

(¢) 1 Pass

0100 200 0 40 50 60 700 B0 D0 100

Figure 4. Estimation errors in the processing scheme. False
alarms and misses were detected by subtracting the estimated
signal sequence from the original signal sequence, a segment
of which is shown in (a). (b—¢) Differences between (a) and
the estimated signal sequences. As the model parameters
were successively adjusted, the error probabilities decreased.
In the example shown here, only a marginal improvement

was gained after five passes.

It can be seen that estimation errors one or two points
in width occur at some transitions, and nowhere else.
The signal extraction capability appears quite re-
markable. It should be noted that the algorithm used
40000 data points to learn the model, rather than just
the 1000 points shown in figure 3. Moreover, for
simplicity in this case, the signal states are a subset of
those assumed to be possible by the algorithm.

(2) Learning transition probabilities

As discussed in the previous section, the true
transition matrix of a signal sequence we wish to
extract is not known. Initially, we assign an arbitrary
set of transition probabilities, and this initial matrix is
revised according to the Baum—Welch formulae after
each pass through a given data segment. By repeating
this procedure several times, we obtain transition
probabilities which are most consistent with the
observation. The convergence of the estimated and
true transition probabilities with number of passes and
re-estimation using the Baum—Welch formulae is
illustrated in figure 5. For this exercise, 20000 data
points were used. The four-state signal sequence
imbedded in the noise was generated from a transition
matrix, a,; = 0.97 and a;; = 0.01 for 7 # j. In the initial
matrix, we set a;=0.9 and a;=0.1/3, and the
initially assigned matrix was successively revised with
each pass until the values of g, converged. Note that
after ten passes, there is virtually full recovery of the
true transition probabilities.

(3) Histograms

Amplitude histograms were calculated for the 40000
data points at intervals of o,/2 with linear interpo-
lation between points. The evolution of the histograms
at various stages of processing of the forwards—
backwards scheme with Baum—Welch re-estimation is
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transition probability errors

passes

Figure 5. Estimation of the transition probabilities with the
Baum-Welch re-estimation formulae. The error in the
estimates of ¢, is plotted against the number of passes. The
estimate of the transition probabilities rapidly converges to
values close to, but not exactly, 0.97. The small residual
discrepancies are due to the short segment of data used for re-
estimation.

states (¢;)

Figure 6. Gradual evolution of the signal histogram with
successive re-estimation. The amplitude histogram of the
original observation, indicated as O pass, shows no distinct
peaks corresponding to the embedded signal levels but, with
successive re-estimation, the peaks emerge.

depicted in figure 6. These histograms give high
confidence in the extraction of signals with discrete-
state levels separated by o¢,. Studies of other
signal :noise ratios are given in following subsections.
It can be seen that the zero-pass histogram, being
the amplitude distribution of the original data points,
appears as skewed Gaussian. After one pass, there are
already discernible peaks at the discrete state levels
lo, 20, 30, and 4 0,, with a diminished level at
the other points. There is a further concentration as the
number of passes increases, with diminishing im-
provement after five passes. After nine passes, the
probability is near zero except at 1, 2, 3 and 4 times o,
where the probabilities are approximately equal. Thus,
there appears to be a high degree of signal extraction
when signal levels are spaced at intervals of o,

(4) Error probabilities

To assess the limitations of the technique,.we have
made extensive comparisons of binary level, first-order
Markov signals with extracted signals. In figure 7a, the
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Figure 7. The probabilities of error in estimation as functions
of signal amplitude (¢) and signal duration (b). Markovian
signals of various mean durations (4; number of data points)
and amplitudes (Ag) were added to noise and the signal
sequences estimated. The probabilities of false alarms and
misses were tabulated by subtracting the estimated signal
sequence from the original signal sequence.

probability of error Py is plotted against the separation
of signal levels (quantization levels) relative to the
standard deviation of the noise. Here, errors could be
a ‘miss’ or ‘false alarm’. A ‘miss’ is when a signal is
present but not detected, and a ‘false alarm’ is when a
signal is detected although absent. The plots are for
different transition probabilities with a;; = dy, a;, =
a,, giving different average dwell-times d = (1—a,,)”
For low a,;, there are frequent transitions so that the
average signal duration d is small, and for high a,, d is
relatively large. It can be seen that P, decays
‘exponentially’ as the standard deviation of the noise
decreases over a reasonable range. Similarly, the
probability of error decays ‘exponentially’ with in-
creasing d (figure 74).

A more complete analysis, at least for moderately
low error probabilities (say 107%), is available in
Forney (1972) for the case of binary signals with a,, =
Qg9 = gy = a7, = 0.5 in normally distributed white
noise. In this case, error probability bounds can be
formulated in terms of the probability function

-1

o) = 20 “exp (—/2) a
which can be approximated for large x as

exp (—x*/2)

QU ~ = o]
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The error probability bounds are:

K, Qldnin/ (20,) < By < K, Qdyin/ (20,,)],

where &2, is the minimum energy of possible signal
pulses, and K, are given in Forney (1972). The
derivation approach is not immediately applicable
with a; # 0.5 as here, although we would expect
behaviour to be in terms of Q(-) functions involving
signal : noise ratios as above.

The parameters in figure 7 are expressed in terms of
the ratio of signal amplitude to noise standard
deviation and the mean duration is expressed as the
number of data points. In practice, noise standard
deviation from a typical patch in a quiescent state,
when filtered at 2 kHz, is about 0.1 pA. If a digitizing
interval of 100 ps is used, d = 100 represents 10 ms.
Thus a 0.15 pA signal lasting 10 ms will be detected
with a probability of error of about 19,. The false
alarm or miss is most likely to occur at the transition
(cf. figure 4), so introducing on average a 100 ps error
in the estimation of the duration of a 10 ms signal.

(5) Learning discrete-state levels

When the possible levels of a signal ¢, are unknown,
as is normally the case, relatively small intervals
between possible levels can be assumed for the
algorithm. The levels that occur can then be obtained
from probability histograms such as those in figure 6.
This technique is illustrated for a known, first-order,
Markov signal buried in noise with standard deviation
o, with signal levels at 0.4 o,, 0.6 o, and 0.8 o, and
with a,; = 0.98 for all ¢, and a,, = 0.02/3 for all ¢ to j.
The algorithm assumes possible signal levels at intervals
of 0.1 ,. The evolution of the histograms for 40000
points is illustrated in figure 8. It should be pointed out
that the computational effort required is an order

0.60, 0.80,,0.40,

Figure 8. Learning discrete state levels. Noise was added to a
four-state Markovian signal sequence, with levels at 0, 0.4,
0.6 and 0.8 of the noise standard deviation. The method was
used to estimate the most likely signal levels. Amplitude
histograms with successive re-estimation of the parameters
are shown. The number of allowed states for this estimation
was 60, at 0.1 o, intervals. By the fifteenth re-iteration, peaks
corresponding to the original signal levels are clearly

identified.
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magnitude higher than for the histograms of figure 6.
It can be seen that the effective noise variance decreases
as the number of passes increases and after 15 passes
has been decreased by an order of magnitude. Of
course, the more data processed, the greater the
potential for improvement of signal:noise ratio due to
processing. On a finite data batch, there is clearly a
resolution limit in detecting signal levels. For example,
in figure 8, the resolution is greater than 0.4 o, for 15
passes.

Once signal levels are known, it makes sense to
reprocess the data assuming only these levels to obtain
a signal estimate. In this way, there will be less noise in
the signal estimate. In processing more realistic data
when there would be less certainty of the precise
location of signal levels, it may be useful to apply a
Gaussian-sum fit to the histogram. Working with
reasonable variances, the means in the Gaussian-sum
would indicate the discrete-state levels. One would
expect that the higher the occupancy rate of a level, the
less the variance of uncertainty for the Gaussian term
in the sum representing this level.

(6) Evolution of conditional probabilities

It is of interest to display a segment of a,, f, and y,,
working at the high resolution used in the level
learning example above. Figure 9 shows such segments
along with the measurements y, and MAP signal
estimate S,*", which track the ‘hill-tops’ of the y,.

Notice that the variance of y,, indicated by the ‘width’ -

of the ‘hills’ in the figure varies with £. In particular,
in the vicinity of a transition of s,, the ‘widths’ are
larger, as there is uncertainty as to when the transition
takes place from the noisy data whereas, in the constant
signal phase, there is more certainty as to the signal
level. Notice also, that the ‘width’ of the a, hills are
about the same as for the g, hills, because past
information is roughly equal in importance to future
information. Also, the y, widths are less than those for
®,, P, because more information is involved.

(7) Sensitivity to the first-order Markov model
assumption

In the above simulations, the signal sequence
embedded in the noise was first-order Markovian,
generated by an Nx N transition matrix. Thus the
open-time distribution of the signal used in the previous
sections was exponential as in (7). Typical biological
signals, however, may not be best approximated by a
first-order Markov process, especially if the number of
events sampled is small. Here we show that the
algorithm can successfully be employed in extracting
signals, even when the signal statistics deviate con-
siderably from the underlying Markov model as-
sumption used in the estimation procedure. This
suggests that the processing scheme is not very sensitive
to deviation from the first-order Markov assumption,
although processing may not be optimal for departures
from this assumption.

Signals of four different amplitudes and a fixed
duration of 9.1 ms (100 digits) were added to a
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Figure 9. Plots of &, f,, 7, in a typical level-learning sample
of 150 points taken from the level learning simulation study
of figure 8. The plots were obtained during the fifteenth pass.
There are N = 22 levels assumed for calculation giving «,, f§,,
7, vectors of order 22. The values are plotted vertically and
the levels horizontally. Time is the depth ordinate. There are
four levels evident in the processed data as distinct ridges. the
v plot co-ordinates the information in the « and £ plots.

segment (100000 points) of amplifier noise, filtered at
5kHz. The standard deviation of the noise was.
0.18 pA, and the amplitudes of the signals were
—0.180, —0.342, —0.486 and —0.612 pA. These four
levels of deterministic signal were inserted in the noise
in a random order at random intervals, with the
provision that signals were never superimposed. As
shown in figure 104, the amplitude probability density
curve estimated from the signal processing scheme
correctly identified all the four amplitudes of the
signal. Then, using this information, we specified that
the signal could only assume the five discrete states
(including zero) and extracted the original signal
sequence. A 1000-point segment of correctly estimated
signal sequence is illustrated in figure 104. The
transition matrix obtained after 15 iterations describes
correctly the signal statistics. The first row of the
transition matrix (0.9897, 0.0029, 0.0024, 0.0029,
0.0020), gives the relative frequencies of the four
different signal levels. The remaining four rows of the
matrix, which read (0.01, 0.99, 0.00, 0.00, 0.00), (0.01,
0.00, 0.99, 0.00, 0.00), (0.01, 0.00, 0.00, 0.99, 0.00) and
(0.01, 0.00, 0.00, 0.00, 0.99), show that the durations of
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Figure 10. Extraction of deterministic signals. Signals of four
different amplitudes, all 9.1 ms in duration, were added to a
100000-point segment of noise recorded from a 10 GQ
resistor with a patch-clamp amplifier. Signal levels occurred
in random order at random times. The standard deviation of
the noise was 0.18 pA, and the amplitudes of the signals were
—0.18, —0.34, —0.48 and —0.61 pA. (a) The correct
amplitudes of the embedded signals are identified from the
probability density curve. 126 signal levels were allowed at
0.018 pA intervals. The forward-backward procedure was
repeated 15 times and the transition probabilities re-
estimated according to the Baum-Welch formulae. The
curve shown is the final estimate of the signal amplitude
probability distribution. (4) Using the information obtained
from (a), the signal sequence was estimated. A 2000-point
segment of estimated signal sequence shown is not dis-
tinguishable from the original fabricated signal.

all signals were 9.1 ms (91 X 5% us) and that transitions
from one open state to another did not occur.

(8) Sensitivity to the assumption of white noise

In the experimental situation, channel currents with
added broad-band noise are filtered with a low-pass
filter before sampling so that both signal and noise are
distorted. To mimic the experimental procedures as
closely as possible, we added periodic rectangular
pulses to noise generated with a 10 GQ resistor and
patch-clamp amplifier and filtered the summed signal
with a low-pass 4-pole Bessel filter. Although the
underlying noise was not white within the bandwidth
of the aliasing filter used in conjunction with Nyquist
frequency sampling, the signal processing scheme
performed reasonably well and gave reasonable esti-
mations of the added periodic signals.

When the low-pass filter was set at 10 kHz, the noise
(sampled at 22 kHz) was Gaussian with a standard
deviation of 0.25 pA and its peak-to-peak fluctuation
was about 1.6 pA. To this noise was added a periodic
pulse of 0.1 pA with on and off durations of 5 and
10 ms, respectively and the summed noise plus signal
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was filtered at 2.6 or 1.3 kHz (—3 dB, 4-pole Bessel).
The signal processing scheme was used as before to
determine the amplitude of the pulse and the signal
sequence. In all the figures illustrated in this subsection,
the segments of record used for processing contained
100000 data points.

Figures 11 and 12 show segments of record filtered
and sampled at different frequencies, together with
amplitude probability density histograms and esti-
mated signal sequences. In figure 11, the filter and
sampling frequencies were 2.6 and 8.8 kHz; in figure
12, 1.3 and 4.4 kHz. The number of states allowed for
the determination of the amplitude probability density
curves were (arbitrarily) 61 (for the records filtered at
2.6 kHz) and 51 (for the records filtered at 1.3 kHz)
and the interval between states was 0.01 pA.

The probability-density curves shown in figures 114
and 126 correctly show the amplitude of the added
signals to be 0.10 pA. The time domain signal estimates
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|

0.05

probability density

ol ‘ s L N s I
-0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5
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Figure 11. Extraction of small filtered periodic signals from
noise. Rectangular pulses (duration 5 ms; amplitude 0.1 pA)
occurring once every 15 ms were added to wide-band (cut-off
frequency at 16 kHz) noise generated by a patch-clamp
amplifier with a 10 GQ resistor (model patch) across the
input. The standard deviation of the noise was 0.246 pA. The
record (signal plus noise) was then filtered with a 4-pole
Bessel filter with a cutoff frequency of 2.6 kHz and the
filtered output was digitized at 8.8 kHz (113.6 ps intervals).
A 1000-point segment of the record shown in (a) contains the
added signals. The standard deviation of noise alone filtered
at 2.6 kHz was 0.14 pA. (b) The amplitude probability
distribution was obtained by allowing 61 states separated by
0.010 pA. The separation between the peaks is 0.1 pA. The
signal sequence, shown inset in (@), was obtained by assuming
that the records contained a two-state (0 and 0.1 pA)
Markovian signal.
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Figure 12. Identification and extraction of filtered periodic
signals. The same record used in figure 11 was filtered at
1.3 kHz, and digitized at 4.4 kHz (227 ps intervals). (a) A
1000-point segment of the filtered summed record. (b) The
amplitude probability density curve. A segment of estimated
signal sequence is shown inset in (a). The standard deviation
of the noise, when filtered at 1.3 kHz, was 0.09 pA. The
allowed number of states for determining the amplitude
histogram was 51 with a separation of 0.010 pA.

(inset in figures 11a and 12a) reveal that the extracted
signal sequence mirrors the original signal more
faithfully when the records are filtered at 2.6 kHz. This
is in part due to the fact that the duration of the signal
in terms of the number of sampling points is longer
when the digitizing frequency is higher, and the error
probability decreases as a function of the signal
duration (cf. figure 7).

The mean duration of the extracted signal tended to
be shorter than that of the original signal. We
calculated the mean of the signal durations from the
first 4098 points, ignoring ‘false alarms’ lasting one or
two points. The mean duration of the estimated signals
in the record filtered at 2.6 kHz and sampled at
8.8 kHz was 4.8+ 1.1 ms; the equivalent value ob-
tained from the record filtered at 1.3 kHz and digitized
at 4.4 kHz was 4.79+ 1.0 ms. We attribute the errors
and uncertainties in the estimates of the signal
durations mainly to the characteristics of the under-
lying noise, which was band-limited and not white. In
addition, the shape of the square pulse became
somewhat distorted when the signal was passed
through a low-pass filter.

We have not made a systematic study of the increase
in error probabilities as filter memory is gradually
introduced into the noise. It is important to note,
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however, that the noise spectrum should optimally be
flat up to the Nyquist frequency. When, for example, a
record filtered at 1.3 kHz is sampled at 4.4 kHz, a
short-term filter memory is introduced into the noise,
and the distinction between the noise memory and
Markov signal sequence becomes blurred. The signal
sequence estimated under these conditions would result
in a higher probability of errors (both probabilities of
false alarms and misses) than if the sampling frequency
were 2.6 kHz.

(9) Estimation of single channel kinetics

Open-time or closed-time histograms of single
channel currents, from which the rate constants of the
underlying channel processes can be deduced, are
difficult to construct when the signal : noise ratio is low.
We demonstrate here that the channel kinetics can be
deduced with an acceptable degree of accuracy even
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Figure 13. Determination of open- and closed-time histo-
grams from an extracted signal sequence. The amplifier noise
was filtered at 2 kHz and sampled at 5 kHz. A first-order
Markovian signal with an amplitude of 0.15 pA (shown in
(a)) was added to noise that had a standard deviation of
0.0987 pA. From the record containing the signal and noise
(d), the signal sequence was estimated. The open-time and
closed-time histograms of the original signal are shown in ()
and (c). The length of data segment used for this simulation
was 100000 points. The exponential curves fitted through the
histograms of the original signal ((4) and (¢)) are shown
superimposed on the histograms of the extracted signal ((e)

and (f)).
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when current amplitudes are relatively small compared
with the background noise.

A first-order, binary-state, Markovian signal se-
quence was added to a segment of amplifier noise. The
standard deviation of the noise, when filtered at 2 kHz,
was 0.0987 pA. The open-time and closed-time histo-
grams obtained from the estimated signal sequence
were then compared with those of the original
sequence. The results of one such simulation, in which
the amplitude of the embedded signal was 0.15 pA, are
summarized in figure 13. Segments of the original
signal and the signal with noise added are displayed in
(a) and (d). Both open-time and closed-time histograms
of the original as well as the extracted signal sequence
could be fitted with single exponential curves (b, ¢, e
and f) and are illustrated each with the same
exponential curve for reference. Comparison of the two
sets of histograms reveals that the mean duration
deduced from the extracted signal is longer than the
true value due to errors in detecting the presence of
events whose durations are relatively short. The correct
mean duration of the embedded signal was 7.06 ms.
The estimated signal durations calculated directly
from the transition matrix with the signal amplitude of
0.2 pA, 0.15 pA and 0.1 pA were, respectively, 7.17 ms
(29, error), 7.4 ms (7% error) and 7.8 ms (129
error).

PART III: APPLICATION TO SINGLE
CHANNEL CURRENTS

In this Part, the techniques presented above are used
to extract from noise currents through ion channels in
cell membranes. Currents analysed here were recorded
from patches of membrane from neonatal rat pyrami-
dal cells grown in culture for 7-10 days. The output of
the patch-clamp amplifier (Axopatch 1C) was low-
pass filtered at 5 kHz, digitized at 44 kHz and stored
on videotape. For analysis, the digitized signal was
normally sampled at 11 kHz (every 91 ps). To illustrate
the application of our signal processing scheme, we
have used potassium channel currents recorded from
cell-attached patches on neurons exposed to GABA.
These records were chosen solely to illustrate the
technique; the biological significance of the observ-
ations will not be dealt with in any detail here.

As described above, noise was measured before
application of the GABA and its amplitude probability
curve was Gaussian. It was assumed that channel
currents could be modelled as a Markov process with
up to N discrete states. Initial transition matrices were
arbitrarily assigned and the Baum-Welch re-estima-
tion procedures for the parameters were repeated for
10 or 15 passes. Using the final values, the most likely
signal sequence and signal statistics were derived.

(1) Amplitude of small potassium currents
activated by GABA

Single channel potassium currents in a cell-attached
patch, activated by exposing cultured hippocampal
cells to 50 pm GABA, initially had a very small
amplitude that was obscured by the baseline noise. The
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amplitude of these currents was determined by using

~ the methods described above.

A segment (91 ms) of record obtained 90 s after the
application of GABA is shown in figure 144. Although
there appear to be some downward signals near the
middle of the trace, it is not possible to determine their
amplitude by direct observation. Successive estimates
of the amplitude probability density distribution of a
8000-point segment are shown in figure 14 5. To obtain
the curves, it was assumed that the signal could be at
any one of 81 levels at 0.02 pA intervals. Using the
techniques described above, the parameters of the
signal sequence were successively adjusted after each
pass. The initial amplitude distribution was a skewed
Gaussian but, with further passes, three peaks emerged ;
the baseline at 0 pA (the largest peak), a peak at
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Figure 14. Determination of the amplitude of single channel
potassium currents in a cell-attached patch after exposure of
the cell to 50 pm GABA. (a) A segment of data (1000 points)
recorded 90 s after the application of GABA. The record was
filtered at 5 kHz and digitized at 11 kHz (91 ps intervals). In
this and all subsequent figures, downward deflections
represent outward currents (towards the pipette). The bath
and pipette contained (in millimoles per litre): NaCl, 160;
KCl, 5; CaCl,, 2; MgCl,, 1; HEPES, 5. The pipette
potential was —40 mV with respect to the bath. (4) The
amplitude probability density distributions were obtained
from a 8000-digit segment of current record from the same
patch as for (¢). The number of allowed states was 81,
ranging from +0.46 pA to —1.14 pA from the baseline. The
standard deviation of the baseline noise, calculated from a
segment obtained just before the application of GABA, was
0.318 pA. The distributions estimated after each of the 15
successive iterations are shown. The last distribution shows
the peaks at —0.36 pA and —0.80 pA from the baseline (the
highest peak).
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—0.36 and another at —0.8 pA. It can be concluded
that downward currents with amplitudes of about
0.36 pA and 0.8 pA were buried in the baseline noise.

(2) Time-domain properties of channel currents

To detemine the most likely signal sequence of the
channel currents, records obtained at various times
after exposure of a pyramidal cell to 100 um GABA
were analysed. The standard deviation of the noise
before application of GABA was 0.25 pA. About 30 s
after the application of the GABA, small downward
deflections of the baseline noise could be discerned.
The amplitude probability density distribution from a
17000-point segment of the record (not shown here)
contained one prominent peak at —0.36 pA. Allowing
signals at 0 (baseline) and —0.36 pA, a signal sequence
corresponding to observed data points was then
estimated. Three segments of original records and their
corresponding estimated channel currents are shown in
the upper row of figure 15 (a—). A similar analysis of
records obtained about 80s after the agonist ap-
plication showed that the amplitude of the channel
currents had abruptly increased. The amplitude
probability distribution obtained from a 15000-point
segment of data now contained peaks at —0.72 and at
—1.44 pA. Using these values as two allowed levels of
the signal, we estimated sequences of channel currents.
The lower row of figure 15 (d—f) shows three segments
of the original records and estimated channel currents.
The time domain signals shown are the theoretically
most probable signal sequences under the assumption
that the signal is a finite-state (i.e. two-state for the
upper row and three-state for the lower row of figure
15), first-order Markovian which is contaminated by
Gaussian noise with standard deviation of 0.25 pA.
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(3) Interpretation of the transition matrix

The statistics of a stationary, N-state, first-order
Markov signal can be characterized completely by an
NX N transition matrix. Here we illustrate how
transition matrices given by the techniques described
above can be interpreted.

Single channel potassium currents recorded from a
cell-attached patch of membrane on a cultured
hippocampal neuron exposed to 100 um GABA are
used for illustration. The pipette potential was
—40 mV. From a 17000-digit segment, recorded about
30 s after the application of GABA, we obtained an
amplitude probability density distribution using the
algorithm as before. The number of allowed states was
43 with a spacing of 0.12 pA. The amplitude histogram
(not shown) revealed a single level of channel current
at —0.36 pA. Using this information, we estimated a
two-state signal sequence with a transition probability
matrix of:

4o 0.9984 0.0016
~10.0448 0.9552)°

The probabilities of the channel staying closed and
going to the open state are given in the first row of the
matrix, while the second row gives the probabilities of
the channel closing or remaining in the open state. The
mean closed and open durations are, therefore, 56.9 ms
and 2.03 ms, respectively. The interval histogram
would be a single exponential, as given in (7).

As the exposure to GABA was prolonged, the
amplitude of the currents increased and, by 4 min after
the application of GABA, single channel currents with
an amplitude of about —2.5 pA were clearly seen.
These currents flickered rapidly between open and
partly open or closed states, and the fluctuations were
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Figure 15. Records of channel activity from a cell-attached patch from a cultured hippocampal neuron. Below each
trace is the most likely signal sequence. The compositions of the solutions and the pipette potential were as in figure
14. Six 300-point (27.3 ms) segments of the original records, together with the corresponding estimated signal
sequences are displayed. The traces in (a)—(c) were recorded 30 s after exposure of the neuron to 100 pm GABA.
Traces d, e and f'were recorded about 1 min later. The standard deviation of the baseline noise before the application
of the agonist was 0.25 pA. The amplitude probability density distributions and the estimated signal sequences were
obtained from 17000-point and 15000-point records, respectively.
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seen whether or not the extracellular solution contained
magnesium ions. An example of these currents can be
seen in figure 164 (note the baseline noise in this case
is centred on about —1 pA). An amplitude probability
density distribution and transition probability matrix
(not shown) were obtained from a segment of record
containing 80000 data points by allowing 43 possible
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Figure 16. Currents were recorded from a cell-attached patch
(pipette potential —40 mV) following exposure of the cell to
100 ym GABA. The current was filtered at 5 kHz and
sampled at 11 kHz. Pipette and bath solutions were as in
figure 10. (a) A 1000-point segment of single channel currents
shows rapidly fluctuating (flickering) channel currents. (6) A
plot of transition probability against current level (state) for
one of the rows of the transition probability matrix that was
obtained from a data segment containing 80000 points by
allowing 43 states in steps of 0.12 pA. The highest peak in the
row selected is at —1.68 pA and represents a,;, the probability
of remaining in the same state. The peaks on either side, one
at —0.72 pA and the other at —2.52 pA, indicate that the
amplitude of the channel current at —1.68 pA is most likely
to increase or decrease by 0.8-0.9 pA. (¢) Twenty of the 43
rows of the matrix are shown in a three-dimensional curve.
The diagonal peaks correspond to the amplitude probability
density curve. The contour of smaller peaks, running parallel
to the diagonal line, indicate that changes in current
amplitude are most likely to occur in steps of about
0.8-0.9 pA.
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signal levels from 40.72 to —4.44 pA. As might have
been expected from direct examination of the current
trace, there was a single broad peak centred at
—2.4 pA from the baseline peak. Examination of the
transition matrix revealed that transitions from any
level were generally to a level 0.8 to 0.9 pA away from
that level. This is illustrated in figure 165 which shows
transition probabilities between the —1.68 pA level
and other levels. The peak at —1.68 pA is a,, the
probability of remaining at —1.68 pA. The two broad
peaks centred around —2.52 and —0.72 pA indicate
the most probable transition levels from —1.68 pA. In
figure 16¢, 20 rows of the transition matrix are
presented graphically. The first curve (lower left)
shows transition probabilities from the —3.24 pA level
(sharp peak); the most probable transition from this
level is to the —2.4 pA level (broad peak). The curve
just behind it shows transition probabilities from the
—3.12 pA level; the most probable transition from this
level is to the —2.28 pA level. The last curve (upper
right) shows transition probabilities from the
—0.84 pA level. From this state, there is an equal
probability of exiting to the closed state (the 0 pA
level) or to a level between —1.68 pA and —1.94 pA.
From this figure, it can be concluded that the exit from
an open state to the closed state is most likely to occur
in small steps of about 0.8-0.9 pA. The transition from
the closed state to any of the open states is also achieved
in similar stepwise jumps. We should point out that
these steps were obtained with the low-pass filter set at
5kHz and sampling at 11 kHz. In another sample
filtered at 10, 5 and 2 kHz, the step size was
independent of filter frequency.

(4) A test of effective signal extraction

If channel currents contained in the original records
are effectively extracted with the signal processing
scheme, the residual noise obtained by subtracting the
estimated signal sequence from experimentally
recorded observations should be indistinguishable from
control noise recorded before channels are activated.
We have made several such comparisons for chloride
channels activated by GABA in outside-out patches
and potassium channels recorded in cell-attached
patches on cells exposed to GABA or baclofen. On the
basis of such tests, we conclude that the signal
processing scheme adopted effectively selects all chan-
nel currents from the observed records. In all cases, the
residual noise was not significantly different from the
control noise. '

An example of this is illustrated in figure 17. The
data analysed were the same as illustrated in figure 15
(traces d—f). Small sections (15000 points) or the
original records (top), estimated signal sequence
(middle) and residual noise (bottom) are shown in
figure 17a4. Major characteristics of the residual noise
and of the noise recorded just before the application of
GABA were compared and found to be similar. The
power spectral densities of the residual and control
noise, calculated using the Maximum Entropy Method
(MEM) (see Childers 1978), are shown in figure 175. To
obtain the spectra, each noise segment was divided into
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Figure 17. Comparison of control noise and residual noise.
The data used for this analysis are the same as illustrated in
(d)—(f) of figure 14. A 1500-point record of channel currents
activated by 100 pm GABA (top), the estimated signal
sequence (middle) and residual noise (bottom) are shown in
(a). The residual noise was obtained by subtraction of the
estimated signal sequence from the unprocessed current. (4)
Power spectral densities of control noise (dotted line) and
residual noise (solid line). A control segment of noise, from
which the control power spectrum was calculated, was taken
just before the application of GABA. The power spectra were
obtained by using MEM with 64 autoregressive coefficients.
The curves of both control noise and residual noise represent
the average of five spectra, each calculated from a 2048-point
segment.

five shorter segments containing 2048 points for
calculating the autocorrelation function and power
spectral density. The curves illustrated in figure 175
represent the averages. The autocorrelation function
and MEM spectrum of the control noise (dotted line,
lower trace) are virtually identical to those of the
residual noise (solid line, upper trace). Both noise
traces are memory-less, in that the correlation values
drop to zero with one shift. Secondly, both noise signals
are essentially white, as shown by the flat spectra up to
5 kHz. The skew and kurtosis of the residual noise and
control noise, calculated from 10240 data points, were
the same (within 19,). The standard deviation of the
residual noise was marginally higher, however, than
that of the control noise (0.25 pA against 0.32 pA).
This increase is due, we believe, to a small decrease in
the seal resistance.

It can be concluded that the characteristics of the
residual noise do not differ measurably from those of
the control noise and contain no significant biological
signals. Conversely, at least for the segment analysed,
the parameters estimated in terms of the model were
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sufficient to characterize accurately the GABA-induced
potassium currents.

DISCUSSION

We have described and tested a signal processing
scheme based on a Hidden Markov Model for
obtaining information about channel currents
obscured by background noise. It is assumed that the
state sequence of single channel currents is a discrete-
time, first-order, finite-state, Markov process and that
the observed current records containing such a signal
sequence are corrupted by memory-less noise. The
basic theory of this model is formulated by Baum and
his colleagues (1966, 1970, 1972) and has been widely
used for solving digital information problems, such as
speech processing (Baker 1975; Levinson et al. 1983;
Omura 1969). We have provided here a brief and
simplified exposition of the theory. There are several
reviews available that contain more detail (Rabiner
1989; Levinson et al. 1983; Juang 1984).

The power of the techniques for extracting known
finite-state, first-order, Markov signals buried in noise
generated by a model ‘patch’ attached to the input of
the patch-clamp amplifier, has been demonstrated.
The noise was assumed to be white and Gaussian when
appropriately filtered at half the sampling frequency,
and we have ascertained that these assumptions are
reasonable for both resistor and background membrane
noise (figure 17). It has been possible to recover the
original sequence of the known signals with acceptable
accuracy even when the signal amplitudes were as
small as half the standard deviation of the background
noise (figure 10). The estimates of signal model
parameters and signal statistics converged ‘ex-
ponentially’ to the true values with successive re-
estimations with the Baum—Welch formulae (figure 5).
The performance of the algorithms was found to be
satisfactory for detecting both Markov and non-
Markov signals, although accuracy was greater for the
former. Finally, even when the noise was not strictly
white, the method was effective at detecting signal
levels although it provided an estimate of a signal
sequence that contained a higher level of errors than
when the noise was white (figures 11 and 12).

When applied to records of currents generated by
GABA, the technique revealed very small channel
currents that could not normally be resolved (figures
14 and 15). Furthermore, the level transition matrices
extracted from records that contained ‘flickering’
channels revealed that there was a high probability
that transitions from any current level would be to
levels about 0.8 pA larger or smaller (figure 16).
Finally, we have illustrated how the signal processing
method described here can be used to test the
underlying assumptions on which the processing
principle is based. The estimated signal sequence was
subtracted from the original data to give the residual
noise (figure 17). That the spectrum of the residual
noise is virtually white and memory-less is strong
evidence that the finite-state Markov process is a
reasonable model to adopt for the underlying signal
generating system.
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The smallest signal which can be extracted with the
technique depends on its duration and the standard
deviation of noise. Typically, noise from a patch
filtered at 5 kHz by the Axopatch-1C had a standard
deviation of about 0.2 pA, and a standard deviation of
about 0.1 pA when filtered at 2 kHz. However, as the
filter frequency is decreased to reduce the noise, the
sampling frequency needs to be decreased corre-
spondingly, thus decreasing the duration of a given
pulse length in terms of the number of digitized points
and increasing the percentage error in estimating
dwell-times (figure 7). Therefore care has to be taken
in filtering so that the sampling frequency is not
dropped too low. There is a further problem in
applying the technique for determining current ampli-
tudes. Actual current levels can be determined with
closer accuracy as the allowed levels have a smaller
separation. On the other hand, the probability of a
false alarm increases as the separation between the
allowed levels decreases. The strategy we have adopted
is first to use narrowly spaced current levels to
determine accurately the current levels that occur,
then to reprocess the data using only those current
levels to determine the signal sequence. For channel
currents with a mean duration of about 5 ms, the
smallest signal that can be extracted with an acceptable
accuracy is about half the standard deviation of the
noise.

The advantage of drastically increasing the
signal :noise ratio must be weighed against the cost of
processing. Typically, the forward—backward pro-
cedure requires of the order 2N?% T calculations, where
N; is the number of states in the range [—4 7,4 0,]
and T is the number of data points. For N, = 10 and
T = 40000, a seven MIPS computer (SUN4) can
perform the C and FORTRAN implementations of the
relevant calculations for one pass in about a minute.
Although the computational cost is somewhat high,
processing selected segments of patch-clamp data will
undoubtedly provide information about details of
channel currents which are buried in noise and have
hitherto been largely inaccessible.

Although we have assumed that the kinetics of single
channel currents can be approximated by a finite-state
Markov process, we do not wish to propose that this
model is the most appropriate to characterize channel
currents. Colquhoun and colleagues (1977, 1981, 1983)
model channel dynamics by a first-order Markov
process for the underlying states of the channel
macromolecules, but the number of states in general is
found to be greater than the number of conductance
levels. The observed current therefore is not a first-
order Markov process. It is possible that the kinetics of
channel currents are best described by mth order,
rather than first-order, Markov processes, with or
without a further constraint that there are forbidden
transitions known a priori. One alternative model class,
proposed recently by Liebovitch and his colleagues
(Liebovitch et al. 1987; Liebovitch & Sullivan 1987),
supposes that the macromolecules governing the
conductance states of single channels have a continuum
of many conformational states, rather than a few
discrete states. Under this assumption, the transition
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probability from any particular state is dependent on
the probabilities for leaving this collection of states and
is a function of the time spent in that state. These
assumptions give rise to ‘fractal models’. Which one of
these models provide the optimal description of
observed data remains to be investigated. The pro-
cedures we have used could, with certain modifications,
be applied with these additional assumptions, but the
computations would be, of course, more formidable.

Many studies of ion channels are directed at
constructing signal models that explain and charac-
terize the observed data. For example, the number of
conformational states a receptor-channel complex may
assume is inferred from the number of exponential
functions needed to fit the open- or closed-time interval
distribution. Digital signal processing based on an HMM
may prove to be a useful alternative tool for con-
structing plausible gating mechanisms that explain
and characterize the observed single channel current
fluctuations. The technique reduces unwanted noise
considerably and at the same time generates signal
statistics and the most likely model parameters. The
signal estimate itself with reduced noise can give more
insight into the actual signal and possible refinements
to models of signal generation. The method is also
useful for providing an automated, unbiased (free from
observer error) and detailed description of the charac-
teristics of larger channel currents clearly distinguish-
able from baseline noise. It should provide a welcome
relief from the tedium of extracting information about
single channel currents manually at the keyboard.
Statistics such as distributions of open- and closed-
times, multiple conductance levels and even the most
probable signal sequence can be obtained directly and
easily from amplitude histograms and the transition
matrices.

We thank Professor David Colquhoun for his helpful
comments on the typescript. Throughout the course of this
study, Mrs Jennifer Edwards provided excellent technical
assistance, for which we are grateful.
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