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Abstract. A computational method is briefly described for classification of individual DNA 
molecules measured by an α-hemolysin channel detector.  Classification is performed with 
better than 99% accuracy for DNA hairpin molecules that differ only in their terminal Watson-
Crick base pairs.  Signal classification was initially done on synthetic data streams, where 
sampling on real mixtures of hairpins was modeled in order to establish performance metrics 
(i.e., where train and test data were of known type, via single-species data files). Signal 
classification was then performed on observations from real mixtures of DNA hairpins.  Hidden 
Markov Models (HMMs) were used with Expectation/Maximization for de-noising and for 
associating a feature vector with the ionic current blockade of the DNA molecule.  Support 
Vector Machines (SVMs) were used as discriminators, and were the focus of off-line training. A 
multi-class SVM architecture was designed to place less discriminatory load on weaker 
discriminators, and novel SVM kernels were used to boost discrimination strength.  The tuning 
on HMMs and SVMs enabled biophysical analysis of the captured molecule states and state-
transitions; structure revealed in the biophysical analysis was used for better feature selection. 
This analysis is presented in more detail, but with less discussion, in Winters-Hilt et al. 2003. 

 

INTRODUCTION 

Molecular classification using nanometer-scale channels provides a powerful new 
tool for efforts in biophysics and biotechnology. Such nanopore detectors use a 
nanometer-scale channel to relate ionic current blockade measurements to single 
molecule translocation by the pore (Akeson et al., 1999; Kasianowicz et al., 1996; 
Meller et al., 2000; Meller et al. 2001), or to single molecule capture by the pore 
(Vercoutere et al., 2001). Biologically based α-hemolysin channels are elegant in this 
regard in that they self-assemble in lipid bilayers (Gouaux et al., 1994; Song et al., 
1996), thereby providing inexpensive and reproducible nanopores. The size of the α-
hemolysin pore is also well suited to DNA measurement in that single-stranded DNA 
(ssDNA) translocates while double stranded DNA (dsDNA) does not, being held 
instead in a vestibule of the pore  (Vercoutere et al., 2001).  For end-capture on 
dsDNA, extensive characterization of ionic current blockades is possible. 



Modifications to the α-hemolysin channel have been examined (Bayley 2000), and 
semiconductor nanopores are being developed (Li et al., 2001). In this paper a brief 
description is given of how a nanopore detector, coupled with pattern recognition, can 
be used to discriminate between DNA hairpin termini with high accuracy.  A more 
extensive discussion can be found in (Winters-Hilt et al., 2003). 

 
In the nanopore signal analysis a Hidden Markov Model (HMM) is used to extract 

a feature vector from each blockade example. HMMs (Chung et al., 1990; Chung and 
Gage, 1998; Colquhoun and Sigworth, 1995) can characterize current blockades by 
identifying a sequence of sub-blockades as a sequence of state emissions. The 
parameters of an HMM are usually estimated using a method called 
Expectation/Maximization (Durbin 1998).  Although HMMs can be used to 
discriminate among several classes of input, multi-class computational scalability 
tends to favor their use as feature extractors. In particular, HMMs are well suited to 
extraction of aperiodic information embedded in stochastic sequential data.  Support 
Vector Machines (SVMs) are then used to classify the feature vectors obtained by the 
HMM (for each individual blockade event). SVMs are fast, easily trained, 
discriminators (Vapnik 1998; Burges 1998), for which strong discrimination is 
possible without the over-fitting complications common to neural net discriminators 
(Vapnik 1998). 

METHODS 

Nanopore Implementation And DNA Hairpin Design 

Each experiment was conducted using one α-hemolysin channel inserted into a 
diphytanoyl-phosphatidylcholine/hexadecane bilayer, where the bilayer was formed 
across a 20-micron diameter horizontal Teflon aperture (Vercoutere et al., 2001). The 
bilayer separates two seventy-microliter chambers containing 1.0 M KCl buffered at 
pH 8.0 (10 mM HEPES/KOH). The nine base-pair hairpin molecules examined share 
an eight base-pair hairpin core sequence, with addition of one of the four permutations 
of Watson-Crick base-pairs that may exist at the blunt end terminus, i.e., 5'-G•C-3', 5'-
C•G-3', 5'-T•A-3', and 5'-A•T-3'.  Denoted 9GC, 9CG, 9TA, and 9AT, respectively. 
The full sequence for the 9CG hairpin is 5' CTTCGAACGTTTTCGTTCGAAG 3', 
where the base-pairing region is underlined. An eight base-pair DNA hairpin with a 5'-
G•C-3' terminus was also tested. The prediction that each hairpin would adopt one 
base-paired structure was tested and confirmed using the DNA mfold server 
(http://bioinfo.math.rpi.edu/~mfold/dna/form1.cgi), which is based in part on data 
from (SantaLucia 1998). The nanopore construction and the DNA synthesis tools are 
described in (Winters-Hilt et al., 2003). 



Sampling Protocol And Signal Acquisition 

The solution sampling protocol used periodic reversal of the applied potential to 
accomplish the capture and ejection of single DNA molecules (added to the cis 
chamber in 20 µM concentrations). The current blockade data was filtered at 10 kHz 
bandwidth using an analog low pass Bessel filter and recorded at 20 µs intervals using 
an Axopatch 200B amplifier coupled to an Axon Digidata 1200 digitizer (Axon 
Instruments, Foster City, CA).  A time-domain finite state automaton (FSA; Cormen 
et al. 1989) with eight states performed the identification and acquisition on the first 
100 ms of blockade signal (Acquisition Stage, Figure 1). The effective duty cycle for 
acquiring the desired 100 ms blockade measurements was one reading every 0.4 
seconds. Further details on voltage toggling protocol the time-domain FSA are in 
(Winters-Hilt et al., 2003). 
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FIGURE 1.  Signal acquisition was performed using a time-domain, thresholding, Finite State 
Automaton.  This was followed by adaptive pre-filtering using a wavelet-domain Finite State 
Automaton. Feature extraction on those acquired channel blockades was done by Hidden 
Markov Model processing; and classification was done by Support Vector Machine.  The 
optimal SVM architecture is shown for classification of molecules 9CG, 9GC, 9TA, 9AT, and 
8GC. The linear tree multi-class SVM architecture benefits from strong signal skimming and 
weak signal rejection along the line of decision nodes.  Scalability to larger multi-class 
problems is possible since the main on-line computational cost is at the Hidden Markov Model 
feature extraction stage. The accuracy shown is for single-species mixture identification upon 
completing the 15th single molecule sampling/classification (in approx. 6 seconds). 



 

Signal Preprocessing And Feature Extraction 

Each 100 ms signal acquired by the time-domain FSA consisted of a sequence of 
5000 sub-blockade levels (with the 20 µs analog-to-digital sampling). Signal 
preprocessing was then used for adaptive low-pass filtering. For the data sets 
examined the preprocessing led to length compression on the sample sequence from 
5000 to 625 samples (later HMM processing then only required construction of a 
dynamic programming table with 625 columns).  The signal preprocessing makes use 
of an off-line wavelet stationarity analysis (Off-line Wavelet Stationarity Analysis, 
Figure 1, Diserbo et al., 2000).  With completion of preprocessing, an HMM (Durbin 
1998) was used to remove noise from the acquired signals, and to extract features from 
them (Feature Extraction Stage, Fig. 1). The HMM was implemented with fifty states, 
corresponding to current blockades in 1% increments ranging from 20% residual 
current to 69% residual current. The HMM states, numbered 0 to 49, corresponded to 
the 50 different current blockade levels in the discrete sequences that it processed. The 
state emission parameters of the HMM were initially set so that the state j, 0 <= j <= 
49 corresponding to level L = j+20, could emit all possible levels, with the probability 
distribution over emitted levels set to a discretized Gaussian with mean L and unit 
variance. All transitions between states were possible, and initially were equally 
likely. Each blockade signature was de-noised by 5 rounds of Expectation-
Maximization (EM) training on the parameters of the HMM. After the EM iterations, 
150 parameters were extracted from the HMM (further details in Winters-Hilt et al., 
2003). The resulting parameter vector, normalized such that vector components sum to 
unity, was used to represent the acquired signal in discrimination at the Support 
Vector Machine stages. 

Classification Training 

The normalized feature vectors obtained from the feature extraction stage were 
classified using binary Support Vector Machines (SVMs). Binary SVMs are based on 
a decision-hyperplane heuristic that incorporates structural risk management by 
attempting to obtain a training-instance void, or “margin,” around the decision 
hyperplane.  Binary SVMs can be grouped into a classifier tree to perform multi-class 
discrimination, and this was done here for the five classes of DNA hairpin (shown in 
classification stages I-IV in Figure 1). Tuning on the multi-class SVM architecture 
itself was done for performance optimization, and separate tuning was also done on 
the polarization strength used in the data cleaning. Tuning was also done on the SVM 
internals, over families of kernels based on regularized distances (Jaakkola 1998) and 
regularized information divergences. In the former case, the squared Euclidean 
distance between feature vectors x and y, d2(x,y) = Σk(xk-yk)2, also known as the 
squared l2-norm on (x-y), [l2(x-y)]2 = d2(x,y), is associated with the Gaussian kernel: 
KG(x,y) = exp(−d2(x,y)/2σ2). In the latter case, the information divergence (relative 
entropy) between probability vectors x and y, D(x||y) = Σkxklog(xk/yk), can be 
associated with the "Entropic kernel:" KE(x,y) = exp(−[D(x||y)+D(y||x)]/2σ2). The 



terminating SVM node of the classifier tree (stage IV in Figure 1) used the Entropic 
kernel.  The other nodes of the classifier tree used a regularized-distance type kernel, 
the "Indicator kernel," based on the square root of the l1-norm, where l1(x-y) = Σk|xk-
yk|, with kernel KI(x,y) = exp(−√l1(x-y)/2σ2). The kernels considered were not 
restricted by Mercer’s conditions. Instead, attention was focused on exploring kernels 
based on regularized information divergences as a parallel to the very successful 
kernels based on regularized distances (such as the Gaussian kernel). The Gaussian 
kernel (which satisfies Mercer’s conditions) was outperformed in all cases studied by 
the Entropic and Indicator kernels. 

Discriminator Implementation 

The SVM discriminators were trained by solving their KKT relations using the 
Sequential Minimal Optimization (SMO) procedure (Platt 1998).  A Chunking (Osuna 
et al., 1997; Joachims, 1998) variant of SMO was employed to manage the large 
training task at each SVM node. The multi-class SVM training was based on over ten 
thousand blockade signatures for each DNA hairpin species. The data cleaning needed 
on the training data was accomplished by an extra SVM training round (further details 
on data cleaning in Winters-Hilt et al., 2003).  

Testing Protocol 

The test data consisted of over two thousand blockade signals for each DNA 
hairpin species and was drawn from experiments that were run on days (and 
nanopores) different from those used to acquire the training data.  Testing on single-
species mixture calling was done directly, with classification on observations from 
single-species solutions in the cis chamber. One goal of the study was to find how 
many classification attempts were required to classify the single-species solutions with 
very high confidence. Scoring was possible by tracking the known labels on the test 
data. For the mixture tests some of the train data was used for an added calibration.  
An extra calibration was required because true mixtures of hairpins are sensitive to the 
different (entropic) acceptance rates and (discriminator) rejection rates by the 
nanopore instrument for the different hairpin species.  

RESULTS 

We were able to determine which of five species of DNA hairpin had been added to 
the cis chamber of the nanopore device. This was done in less than six seconds with 
99.6% accuracy.  The five DNA hairpins consisted of four hairpins that differed only 
in their terminal base-pairs, and a control hairpin.  These results were data drawn from 
nanopores established on days other than those used to generate the training data.  At 
75% weak signal rejection, approximately 15 classification attempts were needed to 
classify the type of single-species solution being sampled; final solution classification 
was obtained in six seconds on average. If training and testing were done on data 
drawn from the same set of days of nanopore operation, albeit different samples, 



99.9% calling was obtained with 15% rejection, and throughput was about one call 
every half second. 

 
Identification of two hairpins in mixtures was also attempted. Figure 2 shows the 

percentage of 9TA classification in a 3:1 mixture of 9TA to 9GC. (Although the 
mixture preparations are estimated to be ±10% of their stated mixture ratios, 
calibration and testing of aliquots from the same mixture compensates for such 
common error.) The assay on 9TA concentration asymptotes to 75% ± 1%, consistent 
with the 3:1 ratio, and the assay error drops to 1% after approximately 100 individual 
molecule classification attempts (completed in 40 seconds). 
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FIGURE 2.  Classification on a 3:1 mixture of 9TA and 9GC hairpin molecules as a function 
of single molecule acquisitions. 

 
 
HMM/EM characterization on the five classes of hairpin signatures revealed the 

existence of two major conductance blockade levels, one minor level intermediate 
between them, and one to three other statistically relevant levels depending on the 
hairpin.  By examining the transition probabilities between the various levels it was 
found that blockades typically began in the less common intermediate level and from 
there almost always transitioned to the greater conductance blockade level. 

DISCUSSION 

Calibration And Feature Extraction By HMM 

A single HMM/EM process was used to perform feature extractions in the 
experiments.  If separate HMMs were used to model each species, the HMM/EM 



processing could also be operated in a discriminative mode. This requires multiple 
HMM/EM evaluations (one for each species) on each unknown signal as it is 
observed. Increased computational burden would thus be added at the worst place: the 
expensive feature extraction stage. For future work, semi-scalable, species-specific 
processing is being considered for the HMM/EM in an indirect manner, by using prior 
HMM/EM characterization of the species to identify a reduced set of features relevant 
to each species.  Traditional signal analysis on the data, using power spectral analysis 
methods, reveals approximately Lorentzian noise, indicating an approximately two-
state random process from which rate constants for transitions back and forth (or time 
constants) can be extracted. In comparison, the HMM/EM reduced feature set is far 
more detailed, and can provide a complete (statistically optimized) physical 
characterization of the captured molecule, via blockade states, their time-constants, 
and allowed state transitions. 

Tests with mixtures of hairpins required an added calibration due to the nanopore's 
different acceptance rates for different hairpins (i.e., there are different free energy 
barriers to capture).  This finding was consistent with a model for hairpin capture in 
which hairpins are captured by an entropically accessible binding site.  It is also in 
agreement with the brief intermediate level state typically observed at the start of the 
signal blockades. 

Classification By SVM Hierarchy 

Novel SVM kernels were used to obtain the results described here. The novel 
kernels are based on a generalization from regularized square-distances to regularized 
information divergences. One of the kernels (the Entropic kernel at Classification 
Stage IV in Figure 1) used the Kullback-Leibler information divergence (Cover and 
Thomas, 1991). Entropic-type kernels may offer advantages when all or part of the 
feature vector can be interpreted as a probability vector. SVM confidence for a 
classification is a function of the distance from the feature vector coordinates (in 
feature space) to the separating, discriminatory, hyperplane (where greater distance 
represents higher confidence in discriminating between two signals). Since the kernel 
defines the notion of distance, tuning on kernels also provides a powerful means to 
manage rejection behavior. Multi-class SVM discrimination can then obtained by 
grouping binary SVMs into a decision-tree architecture (Vapnik, 1998; Bredensteiner 
and Bennett, 1999) using rejection of low confidence data at earlier stages to postpone 
decisions to more appropriate later stages.  

Re-establishing the α-hemolysin channel on a day-to-day basis presents a major 
complication to the pattern recognition task. The class training data that would 
normally map to a single cluster is shattered into a cluster of clusters, with greater 
dispersion and class overlap in the SVM feature vector space.   SVM classification in 
such circumstances faces weaker training convergence and poorer signal calling.  For 
the five classes considered here, a passive stabilization approach was used that 
optimized the kernels for high rejection.  More active (computational) stabilization 
methods are being studied for larger multiclass problems and improved accuracy 
overall. 



Blockade Mechanism For Nine Base-Pair DNA Hairpins 

In a forthcoming manuscript (Winters-Hilt et al., in preparation), analysis will focus 
on details of the current blockade mechanism, so only a preliminary description is 
given here (Figure 3). The intermediate level (IL) conductance state initiates most 
blockades and always transitions to the upper level conductance state (UL). This is 
explained by binding of the hairpin terminus to the vestibule interior (IL) followed by 
desorption of the DNA from the protein wall and orientation of the stem along the axis 
of the electric field (UL).  Transitions from the UL state were either back to the IL 
state or to the lower level conductance state (LL).  From the LL state there were brief 
transitions to nearly full blockade, denoted by S for spike conductance state. The LL 
and S states are both thought to involve binding between the hairpin’s terminal 5′ base 
and the pore’s limiting aperture. The brief S state behavior is explained by a terminus-
fraying event that is accompanied by extension by the terminal 3′ base into the 
limiting aperture. Part of the evidence for this is a strong spike (fraying) frequency 
correlation with the different terminus binding energies. Asymmetric base addition or 
phosphorylation (at the terminal 3′ and 5′ positions) is part of the evidence for the 
asymmetric roles for 5′ binding (LL and S) and 3′ fraying/extension (S). 
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FIGURE 3.  Molecular mechanisms underlying the observed current transitions. a) When a 
9bp DNA hairpin initially enters the pore, the loop is perched in the vestibule mouth and the 
stem terminus binds to amino acid residues near the limiting aperture. This results in the IL 
conductance level. b) When the terminal base pair desorbs from the pore wall, the stem and 
loop may realign, resulting in a substantial current increase to UL.  Interconversion between 
the IL and UL states may occur numerous times, or UL may convert to the LL state c).  The 
LL state corresponds to binding of the stem terminus to amino acids near the limiting aperture 



but in a different manner from IL. d) From the LL bound state, the duplex terminus may fray 
resulting in extension and capture of one strand in the pore constriction. 

 

Force/Geometry Probing Using DNA Hairpins 

In another forthcoming manuscript (DeGuzman et al., in preparation), a variety of 
DNA hairpins are used as probes of the α-hemolysin protein channel geometry. The 
same experiments also serve to reveal the forces at various points in the channel.  
Building on the work of (Vercoutere et al., 2001), a series of blunt-ended DNA 
hairpins are used to probe the depth of the vestibule (where the dsDNA stems can 
reach). The blockade signal exhibits a single blockade level for hairpins with stem 
lengths ranging from three base-pairs (3bps) to seven base-pairs (7bps). For the 8bp 
hairpin a telegraph signal appears, with the primary blockade level at the greater 
resistance. For 9bp hairpins, and those with longer stems, there appear to be three 
main levels (the 9bp case is discussed above).  The geometric bottom of the vestibule 
is reached with a 9bp hairpin, ±1bp. The indeterminacy results from the unknown 
positions of the binding events thought to correlate with the lower conductance levels 
and is being studied further. Using the 9bp hairpin as a base, and taking into account 
the abovementioned 3′-fraying/extension hypothesis, single-stranded DNA overhangs 
of varying length were added to the base at the 3′ terminus. This permits critical 
probing through the trans-membrane part of the channel in a very controlled manner, 
by a single captured molecule event. Preliminary results indicate two significant trans-
membrane constrictions, one at the limiting aperture, and one near the trans-opening. 
The resolving power of the limiting-aperture/trans-opening constrictions is of critical 
importance in DNA-sequencing and biosensor applications, and is undetermined as of 
yet. 

Sequencing Possibilities 

For sequencing, the single molecule basis of nanopore measurements may permit 
Sanger-type sequencing on DNA molecules separated by capillary electrophoresis. If 
ssDNA translocation for α-hemolysin can be slowed enough, by use of single-enzyme 
couplings or servo-electronics, then single-molecule DNA sequencing may prove 
possible as well. For single-molecule sequencing to be successful, however, the 
deconvolution problem must be solved for the collection of bases at the main current 
restrictions (where, presumably, the greatest physical imprint is made on the ionic 
current). Deconvolution of base content from a single blockade signal may be possible 
if dominant contributions to resistance span only 20 Å or so (amounting to about three 
nucleotides length of ssDNA). If the critical nanopore thickness can be made less than 
20 Å it may prove advantageous to work with dsDNA. Such an approach would 
probably require symmetry breaking on the dsDNA strand via base-pairing a native 
ssDNA strand with a set of Watson-Crick substitute nucleotides. Although dsDNA 
takes about twice as many bases to cover the same distance, the information imparted 
in those bases is much richer than that for ssDNA (due to Watson-Crick type bond 
formation, etc.), and this may prove critical to obtaining a working sequencer, 



particularly given the much greater information that can be extracted by introducing 
excitation to the dsDNA bonds during observation. 

Other Applications 

One of the key strengths of nanopore detectors is that they analyze populations of 
single molecules.  With signal processing and pattern recognition, this information 
enables a new type of cheminformatics based on channel current measurements. 
Single molecule observations are also of interest in biophysics; 
binding/conformational changes on captured dsDNA end regions, for example, might 
be tracked and understood using the nanopore blockade signal.  DNA regions away 
from the ends may eventually be studied in a similar manner, using pore-translocation 
that resolves (and is dominated by) the distinctive conductance/binding imprint of 
those bases threading the limiting aperture constriction. For single nucleotide 
polymorphism (SNP) identification, small sample volumes can be used, such that PCR 
amplification may not be needed.  Non-PCR expression analysis, in general, may offer 
a new method for biological experimentation on live cells using patch-clamp methods. 

CONCLUSION 

Five species of DNA hairpin were examined, four of which differed only in their 
terminal base-pairs. Classification of a single 100 ms hairpin event, with no rejection, 
was 77% accurate on average.  Accuracy was boosted above 99% if longer event 
durations were used or if multiple short events were used with nonzero rejection. For 
purposes of rapid mixture analysis, the latter approach was adopted, with single 
species identification with 99.6% accuracy in six seconds, and two species mixture 
identification in 40 seconds with less than 1% error in the majority species percentage. 
The signal processing architecture that accomplished this used HMMs for feature 
extraction and SVMs for classification.  The HMMs were implemented with 
Expectation/Maximization and the SVMs were implemented with novel Kernels. The 
on-line signal processing was designed to be scalable to hundreds of species, or more, 
while at the same time performing the classification in less time than the duration of 
the signal acquisition itself (100 ms). This was accomplished on an inexpensive PC. 
An unconstrained training process, as used here, has scalability complications due to 
rapid growth in multiclass combinatorics, but for five species was easily automated 
(on a network of five PCs).  If scalability requirements are relaxed, allowing species-
specific HMM processing for example, discrimination accuracy (or speed) can be 
boosted even further. The processing architecture is directly applicable to other 
channel current analysis situations by simply re-training the machine learning 
components.  
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