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Abstract
Background: Hidden Markov Models (HMMs) provide an excellent means for structure
identification and feature extraction on stochastic sequential data. An HMM-with-Duration
(HMMwD) is an HMM that can also exactly model the hidden-label length (recurrence)
distributions – while the regular HMM will impose a best-fit geometric distribution in its modeling/
representation.

Results: A Novel, Fast, HMM-with-Duration (HMMwD) Implementation is presented, and
experimental results are shown that demonstrate its performance on two-state synthetic data
designed to model Nanopore Detector Data. The HMMwD experimental results are compared to
(i) the ideal model and to (ii) the conventional HMM. Its accuracy is clearly an improvement over
the standard HMM, and matches that of the ideal solution in many cases where the standard HMM
does not. Computationally, the new HMMwD has all the speed advantages of the conventional
(simpler) HMM implementation. In preliminary work shown here, HMM feature extraction is then
used to establish the first pattern recognition-informed (PRI) sampling control of a Nanopore
Detector Device (on a "live" data-stream).

Conclusion: The improved accuracy of the new HMMwD implementation, at the same order of
computational cost as the standard HMM, is an important augmentation for applications in gene
structure identification and channel current analysis, especially PRI sampling control, for example,
where speed is essential. The PRI experiment was designed to inherit the high accuracy of the well
characterized and distinctive blockades of the DNA hairpin molecules used as controls (or
blockade "test-probes"). For this test set, the accuracy inherited is 99.9%.

Introduction
It appears possible to obtain kinetic features directly from
the channel blockade signals obtained during the capture

of certain molecules in a nanopore detector, shown in Fig.
1 (see further details on the Detector in the Background),
where individual blockade levels appear to correlate with
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binding or conformational states of the molecule [1-3].
The extraction of kinetic features from nanopore detector
measurements, e.g., obtaining the median dwell times of
the most frequented channel blockade levels, requires that
we faithfully preserve the dwell times of the various block-
ade states (or "levels") encountered during the channel-
capture event, to the exclusion of short noise pulses that
might normally be misinterpreted as short dwell times.
During analysis using conventional Hidden Markov Mod-
els (HMMs), both the combination of first-order mode-
ling and pulsed noise conspire to produce premature state
transitions and hence incorrect assessment of kinetic fea-
tures. From the preliminary work in [4], in particular, we
know that bi-level synthetic data with Poisson-distributed
dwell times provides an example of such a pulsed noise
instability. Here we clarify how to solve the problem with
(1) dwell-time dependence in the state-to-state transi-
tions; and (2) emission variance amplification (EVA pro-
jection); and show new experimental results.

The conventional HMM is first order and fixed (scalar) in
the transition probabilities for remaining in a given state,
which leads to a geometric length distribution for remain-
ing in that state [5] – i.e., conventional HMMs automati-
cally impose geometric length distributions on their
same-state regions, such as exon or intron lengths or
blockade level durations. An HMM-with-Duration
(HMMwD) is an HMM where true, or a much more com-
plete, knowledge of the length distributions on same-state
regions is incorporated into the model [6]. Here we
describe a novel HMMwD where the non-geometric
length distribution information is incorporated via dwell-
time dependent transition probabilities (for transitions of
state to self) [4]. New experimental results are shown, and
compared to an exact HMMwD (described in [7]).

Part of the novelty of the new "cellular" HMMwD that is
proposed is that it is defined at the cell-level in its
dynamic programming table construction, much like the
conventional HMM, with one column's computation
only dependent on information held in the prior column
(in an overall table computation involving a single pass
through the table). Our HMMwD can be defined for
either the Viterbi or the Forward/Backward algorithms
(see Methods). This is convenient because we have a
method for distributed HMM processing based on such
table computations (paper in preparation), that takes
advantage of the basic, underlying Markov assumption to
do distributed processing with simplicity of the "chunk"
distributed processing that we use for the SVM training
[8]. That method is shown to work very effectively for the
Viterbi algorithm (similar distribution methods for the
Forward/Backward distribution algorithm are also dis-
cussed there). The end-result of all of this is that very

sophisticated feature extraction tools can be brought to
bear for real-time pattern recognition informed operation.

Real-time control of a nanopore detector, based on live,
streaming measurements and sufficiently fast pattern rec-
ognition identification of any blockading ("captured")
analyte, holds great promise for single molecule experi-
ments. Real-time sampling control of a nanopore detector,
alone, can boost nanopore detector sampling productivity
by orders of magnitude, depending on the mix of desira-
ble signal classes vs. undesirable in the data being ana-
lyzed. An example of such an experiment is the focus of
the proof-of-principle experiment performed here. If there
is a 1 to 100 ratio of desirable to undesirable, for example,
then one obtains desirable signal sampling only about 1%
of the time with a passive sampling system. With pattern
recognition informed sampling this can potentially be
changed to desirable signal sampling almost 99% of the
time. In a real-time setting the challenge is to perform the
HMM feature extraction sufficiently quickly (whereas the
SVM is trained off-line, so operates very quickly on-line).
In this work we show that this can be accomplished with
pattern recognition used to identify DNA molecules
within the first few hundred milliseconds of their block-
ade of the detector channel.

We establish a real-time experimental setup for Patter Rec-
ognition Informed (PRI) sampling control via integration
of LabWindows automation capabilities with our "in-
house" Channel Current Cheminformatics (CCC) meth-
ods (see Methods). Data acquired with LabWindows is
passed to a network of CCC software clients, on a stream-
ing real time basis, for analysis and classification. The clas-
sification results are then quickly returned to the
LabWindows automation software for experimental feed-
back control. Further details of a real-time test of PRI sam-
pling is described in the Results. The classification inherits
the 99.9% accuracy of the non real-time implementation
(established in prior work [1]) as nothing has changed in
regards to the features extracted and the classifier used.

To make these Channel Current Cheminformatics and
Machine Learning tools available to fellow researchers, we
are developing web-accessible machine-learning tools.
Using hidden Markov model (HMM) processing, and
finite state automata (FSAs), we are able to extract robust
features and obtain very accurate support vector machine
(SVM) classification results. The Machine Learning web-
interfaces described here are for both machine learning
experts and non-experts, particularly biologists and bio-
physicists/biochemists. For non-experts, default values are
specified on the key parameters.

Web-accessible tools for HMM-based feature extraction
and SVM classification are accessible at http://
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Left Panel: A lipid bilayer supports the alpha-hemolysin heptamer that creates a pore, or channel used to collect the data, as shown leftFigure 1
Left Panel: A lipid bilayer supports the alpha-hemolysin heptamer that creates a pore, or channel used to collect the data, as 
shown left. The channel is supported by an aperture, which allows the flow of ions between cis (here, left) and trans (here, 
right) wells. Right Panel: The assembled α-hemolysin pore shown to scale, with a captured dsDNA molecule. As shown, the 
double stranded form is too wide to pass through the pore, while a single strand may pass through.



BMC Bioinformatics 2007, 8(Suppl 7):S19 http://www.biomedcentral.com/1471-2105/8/S7/S19
logos.cs.uno.edu/~nano/. Examples of the Web interfaces
are shown in the Results. The web tools can help in iden-
tification of blockade levels, the level transition and life-
time characteristics, and the fast blockade "spike"
characteristics. The SVM classification is of general use for
any kind of classification problem, and a number of novel
kernels and novel implementations are employed. SVM-
based clustering is also implemented in a novel way to
yield a non-parametric clustering approach, which is used
to cluster signals into multiple classes (particularly impor-
tant for complex multi-orientation data-sampling situa-
tions such as with an antibody).

Background
Nanopore detector
Single biomolecules, and the ends of biopolymers such as
DNA, have been examined in solution with nanometer-
scale precision using nanopore blockade detection [1-3,9-
11]. In early studies [2], it was found that complete base-
pair dissociations of dsDNA to ssDNA, "melting", could
be observed for sufficiently short DNA hairpins. In later
work [1-3,9], the nanopore detector attained Angstrom
resolution and was used to "read" the ends of dsDNA
molecules, and was operated as a chemical biosensor. In
[9-13], the nanopore detector was used to observe the
conformational kinetics of the end regions of individual
DNA hairpins (see Fig. 1, Lower Panel).

The α-hemolysin (α-HL) channel, a protein heptamer
formed by seven identical 33 kD protein molecules
secreted by Staphylococcus aureus, is used as the channel in
the nanopore device due to its stable conformation (in the
strongly favored heptamer formation, which has minimal
gating) and its overall geometry (see Fig. 1, Lower Panel).
DNA and RNA interaction with the α-hemolysin channel
during translocation is non-negligible (but not too strong
either, i.e., it is not such that the molecule "gets stuck").
Although dsDNA is too large to translocate, about ten
base-pairs at one end can still be drawn into the large cis-
side vestibule. This permits very sensitive experiments
since the ends of "captured" dsDNA molecules can be
observed for extensive periods of time to resolve features,
allowing highly accurate classification of the captured end
of dsDNA molecules [1-3,9-13]. This is a very brief and
limited synopsis of the Nanopore Detector background
relevant to this paper. For other references on Nanopore
Detectors see the review of Nanopore Detectors presented
in [14]; early work involving alpha-Hemolysin Nanopore
Detectors can be found in [1-3,9-11,15-25]; rapidly grow-
ing research endeavors on Nanopore Detectors based on
solid-state and other synthetic platforms can be found in
[26-36].

Cheminformatics
The pattern recognition informed (PRI) signal processing
architecture builds and "closes the loop" on the prototype
architecture presented in [1] (see Fig. 2). The signal
processing architecture is used to perform a preliminary
test of PRI sampling control (see Results). The processing
is designed to rapidly extract useful information from
noisy blockade signals using feature extraction protocols,
wavelet analysis, Hidden Markov Models (HMMs) and
Support Vector Machines (SVMs). For blockade signal
acquisition and simple, time-domain feature-extraction, a
time-domain Finite State Automaton (τFSA) approach is
used [37] that is based on tuning a variety of threshold
parameters (see Fig. 3 and [1] for full description of the
model). A generic HMM is then used to characterize cur-
rent blockades by identifying a sequence of sub-blockades
as a sequence of state emissions [1,9-11]. The parameters
of the generic-HMM can then be estimated using a
method called Expectation/Maximization, or 'EM" [5], to
effect de-noising. The HMM method with EM is part of the
standard implementation used in what follows. Classifi-
cation of feature vectors obtained by the HMM for each
individual blockade event is then performed using SVMs.

EVA projection
The HMM method is based on a stationary set of emission
and transition probabilities. Emission broadening, via
amplification of the emission state variances, is a filtering
heuristic that leads to level-projection that strongly pre-
serves transition times between major levels (see Fig. 4,
and [4], and Methods for further details). This approach
does not require the user to define the number of levels
(classes), which is a major advantage compared to existing
tools that require the user to determine the levels (classes)
and perform a state projection. This allows kinetic features
to be extracted with a "simple" FSA (Finite State Automa-
ton) that requires minimal tuning. Figure 5 (reproduced
from [4]) shows the benefits of EVA filtering.

Preliminary HMM with Duration and EVA for channel 
current signal analysis
One important application of the HMM-with-duration
method used in [4] includes kinetic feature extraction
from EVA projected channel current data (the HMM-with-
Duration is shown to offer a critical stabilizing capability
in an example in [4]). The EVA-projected/HMMwD
processing offers a hands-off (minimal tuning) method
for extracting the mean dwell times for various blockade
states (the core kinetic information).

The HMM-with-Duration implementation, described in
[4], has been tested in terms of its performance at parsing
synthetic blockade signals (see Fig. 5). The synthetic data
ranges over an exhaustive set of possibilities for thorough
testing of the HMM-with-Duration. The synthetic data
Page 4 of 17
(page number not for citation purposes)



BMC Bioinformatics 2007, 8(Suppl 7):S19 http://www.biomedcentral.com/1471-2105/8/S7/S19
used in [4] was designed to have two levels with lifetime
in each level determined by a governing distribution
(Poisson and Gaussian distributions with a range of mean
values were considered). The HMM here was performed
with 0 EM iterations.

SVM classification used in PRI sampling selection
Support Vector Machines (SVMs) are variational-calculus
based methods that are constrained to have structural risk
minimization (SRM) such that they provide noise tolerant
solutions for pattern recognition [38,39]. Simply put, an
SVM determines a hyperplane that optimally separates
one class from another (see Fig. 6). Once learned, the
hyperplane allows data to be classified according to the
region (separated by the hyperplane) in which it resides.
Currently there are two approaches to implementing mul-
ticlass SVMs. One arranges several binary classifiers as a

decision tree such that they perform a multi-class deci-
sion-making function (SVM-external classification – an
example of this is the architecture used here, see Fig. 2).
The second approach involves solving a single optimiza-
tion problem corresponding to the entire data set (with
multiple hyperplanes), with multi-class discriminator
optimization performed internally. The SVM-internal
approach, when it is stable and properly generalizable (an
active area of research), is preferred (see Results for inter-
face), since a tuning over Decision tree topologies and
weightings is avoided [40]. The on-line discriminatory
speed of a trained SVM is simply that of evaluating an
inner product, so it's operational constraint on the PRI
feedback endeavor is negligible compared to that of the
HMM feature extraction stage. For this reason, there is lit-
tle discussion of SVMs in this paper, even though SVMs

Nanopore Cheminformatics and Control ArchitectureFigure 2
Nanopore Cheminformatics and Control Architecture. LabWindows Server now used. Data sent to cluster of Linux 
Clients via TCP/IP channel. Linux clients run expensive HMM analysis as distributed processes (similarly for off-line SVM train-
ing). The sample classification is used by the Server to provide feedback to the nanopore apparatus to increase the effective 
sampling time on the molecules of interest (this can boost nanopore detector productivity by magnitudes).
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comprise much of the complexity of the HMM/SVM PRI
feedback system.

Generalized HMMs
The work by Johnson in [41] is an excellent source of ref-
erences on generalized HMMs (but entirely focused on
speech applications). The approaches to HMM duration
described in [41] are broken into three categories: 1) Hid-
den semi-Markov models (HSMMs), 2) variable transi-
tion HMMs (VTHMMs), and 3) standard HMMs with
more states, etc. The current work thus would fall into the
VTHMM category. In [41] they assert that VTHMM meth-
ods are essentially variations on Ferguson's [42] explicit
duration HMM (EDHMM), placed in the HSMM category,
yet acknowledge the differences in computational com-
plexity. In [43], Levinson gives estimates of transitions
and emissions for state durations modeled by gamma dis-
tributions, but no explicit method provided or used to
decode actual signals. In [44], Ramesh et al estimate the
duration dependent state transitions, Aij(d), in general
rather than assume, as in the current work, that Aij(d) = Cij
for i ≠ j, but do not offer any performance analysis per se
of the Viterbi decoding algorithm. Also, [44] provides
insight into the work by Ferguson [41] in that, the expan-
sion state HMM (ESHMM) in [41] uses multiple expan-
sion states in order to finitely approximate the duration of
a given state of the original system. The current work uses
only one model state for each known physical state, and
uses time dependent self-transition probabilities to cap-
ture state duration information.

In [45], Mitchell et al model duration explicitly using
expansion substates, rather than an explicitly time
dependent self-transition probability as in the current
work. It also manages computational complexity via par-
allel platform architecture. The paper listed as [46], is the
only prior work that is found to model the self-transitions
using the cumulative duration in the form Aii(di) = 1 -
P(di), and this was only in a much more restricted sense
than that described here. The authors there considered
only a two-state system for which the "splitting" in prob-
abilities upon exiting one state is trivial. In [46], Vaseghi
computes the duration dependent state transitions
directly from the Viterbi output, thus avoiding the costly
forward-backward computation and this is similar the
methods employed here for general multi-state HMMs.
This is useful in situations where the exit transitions are
not already known and must be estimated from the data.
Otherwise, like most of the references included here,
though it can apply specifically to the current work, it
involves algorithms that are more generic and computa-
tionally complex and not the clear, extremely fast, and
simple implementation described here.

As in most other works cited here, Sin et al. [47] involves
more generic computations and hence more computa-
tional complexity, though in the examples provided
avoids the complexity of multiple exit transitions from
any given state by restricting the actual computations per-
formed to only left-to-right type models, where there is
only one exit transition per state. (Future work might be

Time domain Finite State Automaton (τFSA) for detection/screening of molecular capture events at the nanopore channel siteFigure 3
Time domain Finite State Automaton (τFSA) for detection/screening of molecular capture events at the nanopore channel site. 
All signal blockades are normalized to the average value of the baseline for the 20.48 ms prior to onset of blockade.
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HMM/EM Viterbi-path level occupation feature extractionFigure 4
HMM/EM Viterbi-path level occupation feature extraction. Strong EVA projection (effects of λ = 2 shown) is 
employed to project the data onto dominant levels, a Viterbi path Histogram then shows the barcode "fingerprints" of the dif-
ferent molecular species. The labels are for the DNA hairpins examined in [1], and since then have been used as controls.

=1
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to use the framework in [47] to confirm the choice of
splitting factor for multiple exit transitions, see Discus-
sion.) Park et al [48] also performs analysis using only
left-to-right models, where the splitting factor for multiple
exit transitions is not an issue. Though emissions for a
given state in cheminformatic data are not expected to be
time-dependent – other than noise component, future
work would be to use the framework in [48] to confirm
stationary emissions. Finally, in Yoma et al. [49] the anal-
ysis is restricted again to the typical left-to-right models of
speech recognition, where considerations of splitting fac-
tor for exit transitions are trivial.

Results
HMM with Duration experimental tests
Results for our new, implicit HMMwD, are presented in
Figure 7 and in the figures in Additional Files 1–3, along
with the comparative results from an explicit HMMwD
(for a two state system) that is used for comparative anal-
ysis (a detailed analysis with the explicit HMMwD is given
in [7]). The explicit two-state HMMwD has 2n states,
where n is the number of dwell bins in the quantization
of the dwell-time distribution. The computations that are
needed scale quadratically in n. So, for n = 1000, the
explicit HMMwD can take 1,000,000-times longer to
compute than the HMMwD described here (or the con-
ventional HMM). Performance of the new HMMwD is
given in comparison to the conventional HMM is also

Results using synthetic ~Poisson dataFigure 5
Results using synthetic ~Poisson data. Synthetic data with Poisson distributed length statistics is shown in the upper trace. 
Emission broadening is introduced with an emission variance amplification factor of 4.5. This effectively broadens the noise 
band (thickness) seen in the upper trace by a factor of 4.5, which leads to a blurring between the upper and lower levels of 
blockade since the noise bands now overlap (i.e., here we purposefully over-project to lead to the typical toggling cross-over 
instability shown in the bottom trace). The middle trace shows the clean, highly accurate Viterbi parsing into the appropriate 
levels that is obtained with use of the HMM-with-Duration implementation. The lower trace shows the Viterbi parse with a 
simple HMM, that is uninformed about the underlying length distributions, thus giving rise to a Viterbi traceback parse that fails 
to penalize unlikely, very short duration, blockade events (seen as the unstable, rapid level-projection toggles).

Original signal

HMM w/ EVA and 
duration

HMM w/ EVA
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shown in Figure 7 and in the figures in Supplemental Files
1–3. Specifically, the figures in Additional File 1–3 show
the Average and Standard Deviation of Viterbi Decoding
Accuracy over 10 different trials (instances) of 10 k-length
synthetic 2-level signal data, where both levels have iden-
tical Poisson duration but the separation between the 2
levels varies. From top to bottom, the Viterbi response
improves as the number of steps increases in the decoding
HMM's approximation of the 1 k-step generating HMM's
Poisson durations. From left to right in each plot, the
Viterbi response improves as the separation of the 2 levels
(emission means) increases. In the figure in Additional
File 1 are shown the results with only 1 step used in the
Viterbi decoding HMM's approximation of the 1 k-step
generating HMM's Poisson durations. In the figure in
Additional File 2 are shown the results with 10 steps used
in the Viterbi decoding HMM's approximation of the 1 k-
step generating HMM's Poisson durations. In the figure in
Additional File 3 are shown the results with 100 steps
used in the Viterbi decoding HMM's approximation of the
1 k-step generating HMM's Poisson durations. The sim-
plicity of the binary signal case actually provides a chal-
lenging case for differentiating the performance of the
HMMwD methods from the conventional HMM, so the
preliminary results shown here show promise for the
overall validity and utility of the method.

The next example considered is that of a 3-state system,
again, the strong performance of our new HMM-with-
Duration method is demonstrated, see Figures 8 and 9
and the figure in Additional File 4. The figure in Addi-

tional File 4 shows the decoding performance with distri-
butions with means 19 (for geometric), 19.5 and 20 (with
Poisson distributed dwell-times) (in the Top panel), and
in the Bottom Panel the figure shows decoding perform-
ance with distributions with means 19 (for geometric),
19.75 and 20.5 (with Poisson distributed dwell-times). As
a challenging, preliminary, test case, the duration means
for all the distributions are kept the same (at 200). (See
Fig. 8 caption for further details.)

In another test, we compare the performance of our two-
state HMMwD to explicit HMMwD and conventional
HMM (see Tables 1 and 2), with different size data gener-
ation and length distribution representation. The compar-
ative scores shown are not optimised for use of the
internal HMMwD, but are meant to explore the validity of
the model and the behaviour of the accuracy of the differ-
ent methods – which is consistently ordered as conven-
tional HMM good, implicit HMMwD better, explicit
HMMwD best (but the latter at much great computational
cost). The results clearly demonstrate the superior per-
formance of the HMM-with-duration over its simpler
HMM without Duration formulation. With use of the
EVA-projection method this affords a robust means to
obtain kinetic feature extraction. The HMM with duration
is, thus, critical for accurate kinetic feature extraction, via
a pairing of the HMM-with-Duration stabilization with
EVA-projection.

Pattern recognition informed feedback via LabWindows 
automation
A blockade signal's stationary statistics, or phases thereof,
reveals information about the kinetics of the biopolymer
resulting from interactions with surroundings, or from
undergoing conformational changes. LabVIEW Automa-
tion software is used to help manage the feedback linkage
between patch-clamp amplifier measurements and in-
house cheminformatics software. This has been used to
demonstrate molecular identification in the first 100 ms
of capture, with return of classification information to the
control of the amplifier – for voltage-controlled sample
ejection if desired. Screen-captures of the interfaces are
shown in the figures in Additional Files 5–7. Additional
File 5 shows the Acquisition Server interface and LabWin-
dows C development environment. Additional File 6
shows a real time 9at vs 9gc classification (with 9at iden-
tification indicated by the led being on). Additional File 7
shows a real time 9gc identification.

The LabWindows Server initiates the distributed CCC
computations by sending data to a cluster of Linux Clients
via a TCP/IP channel. The Linux clients run the expensive
HMM analysis as distributed processes (similarly for off-
line SVM training). The sample classification is then used
by the Server to provide feedback to the nanopore appara-

SVM: Hyperplane separability with a Margin (thickness)Figure 6
SVM: Hyperplane separability with a Margin (thickness). Sup-
port vectors consist of both the blue and red points occur-
ring on the blue and red margin surfaces, respectively. Unlike 
HMM-based classification, the SVM-classification provides 
built-in confidence levels as part of the classification output.
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Average and Standard Deviation of Viterbi Decoding Accuracy over 10 different trials (instances) of 10 k-length synthetic 2-level signal data, where both levels have identical Poisson duration but the separation between the 2 levels variesFigure 7
Average and Standard Deviation of Viterbi Decoding Accuracy over 10 different trials (instances) of 10 k-length synthetic 2-
level signal data, where both levels have identical Poisson duration but the separation between the 2 levels varies. From top to 
bottom, the Viterbi response improves as the number of steps increases in the decoding HMM's approximation of the 1 k-step 
generating HMM's Poisson durations. From left to right in each plot, the Viterbi response improves as the separation of the 2 
levels (emission means) increases. Result of 1 k steps used in the Viterbi decoding HMM's approximation of the 1 k-step gener-
ating HMM's Poisson durations.
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Average Viterbi Decoding Accuracy over 10 different trials (instances) of 10 k-length synthetic 3-level signal data, where all lev-els have identical Poisson duration but the separation (gaussian emission means) between the levels variesFigure 8
Average Viterbi Decoding Accuracy over 10 different trials (instances) of 10 k-length synthetic 3-level signal data, where all lev-
els have identical Poisson duration but the separation (gaussian emission means) between the levels varies. The Viterbi decod-
ing accuracy improves as the number of bins increases in the decoding HMM's approximation of the Poisson durations 
generated using a 1 k-bin length distribution representation in the generating HMM. From left to right in each plot, the Viterbi 
response improves as the separation of the 3 levels (emission means) increases. Top, decoding performance when all levels 
have identical attributes is random 3-way guessing, so the expected 3333 out of 10000 correct is observed in all cases. Bot-
tom, decoding performance with distributions with means 19 (for geometric), 19.25 and 19.5 (with Poisson distributed dwell-
times).
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Top, decoding performance with distributions with means 19 (for geometric), 20 and 21 (with Poisson distributed dwell-times)Figure 9
Top, decoding performance with distributions with means 19 (for geometric), 20 and 21 (with Poisson distributed dwell-
times). Bottom, decoding performance with distributions with different mean separations, with a 1000-bin representation of 
the state dwell-time distribution. (See Fig. 11 caption for further details.)
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tus to increase the effective sampling time on the mole-
cules of interest (meant to boost nanopore detector
productivity by magnitudes, as described in the Back-
ground).

Channel current cheminformatics and Machine-Learning 
web interfaces
The tFSA/HMM-based channel current cheminformatics
web-interfaces are as follows: (1), As the tFSA runs, signal
regions are identified for processing by the HMM. (2), A
50-state generic-HMM (typically) is used to obtain feature
vectors, to be used by a SVM, consisting of three compo-
nents: (i) Blockade Histogram: blockade level occupation
probabilities (stat's on Viterbi path); (ii) The Emission
Variances; and (iii) Compression of Transition probabili-
ties to weighted sum of transition profiles from two dom-
inant levels (the UL and LL states) (one of the interfaces
for this process is shown in the figure in Additional File 8).
And (3), Kinetic features are then extracted (often with
EVA-projected data from step 2). An SVM interface and all
other software described is available via the webpage:
http://logos.cs.uno.edu/~nano/. As with the external and
internal multiclass SVM discriminator implementations,
the strong performance of the binary SVM enables SVM-
External as well as SVM-Internal approaches to clustering
[40].

Methods and discussion
Conventional HMM
An HMM consists of 2 main computations (Durbin et al
[5]):

1. Baum-Welch Iteration of recursively defined forward/
backward probabilities (symbols x, states π)

fl(i + 1) = P(x1...xi+1, πi+1 = l) = el(xi+1)πkfk(i)akl

bk(i) = P(xi+1...xL| πi = k) = πlaklel(xi+1)bl(i + 1)

2. Viterbi Path Determination

vl(i) = el(xi)maxk(vk(i - 1)akl)

ptri(l) = argmaxk(vk(i - 1)akl)

In the HMMwD described here, each of the stationary
transition probabilities akl are replaced by a dwell-time
dependent update factor. The forward/backward proba-
bilities used in the standard HMM-EM algorithm occur
when evaluating p(Z0...L-1) by breaking the sequence prob-
ability p(Z0...L-1) into two pieces via use of a single hidden
variable treated as a Bayesian parameter: p(Z0...L-1) =
Σkp(Z0...i, si = k)p(Zi+1...L-1, si = k) = Σkfkibki, where fki =

Table 1: For all row entries the average dwell time of both the upper and lower signal levels increases proportionately with bin-count.

Bin # 2-state Geometric HMM 2n-state Explicit HMMwD 2-state Implicit HMMwD

10 743876 832514 756765
100 951916 960272 953151
1000 995388 995408 995381

Thus the resolution of the duration distribution for both the signal-generating and the signal-decoding HMM's are identical for all row entries. 
Upper and lower mean durations are .2 and .6 times that of the bin count, respectively. Upper and lower mean emissions are 50.0 and 45.0, 
respectively, whereas the emission variance for both upper and lower is 20.0. In other tests (see Fig. 7 and figures in the Additional Files), the 
decoding duration distribution is an increasingly refined step function approximation of the generating duration distribution. For the data shown in 
this table, both upper and lower dwell-time distributions are 2-component beta-mixtures that are monotonically decreasing. The numbers shown 
represent the accuracy of Viterbi decoding out of an input signal 1 M samples in length.

Table 2: As with Table 1, for all row entries the average dwell time of both the upper and lower signal levels increases proportionately 
with bin-count.

Bin # 2-state Geometric HMM 2n-state Explicit HMMwD 2-state Implicit HMMwD

10 720050 795723 741579
100 947062 957753 948505
1000 994978 995013 995005

Thus the resolution of the duration distribution for both the signal-generating and the signal-decoding HMM's are identical for all row entries. 
Upper and lower mean durations are .2 and .6 times that of the bin count, respectively. Upper and lower mean emissions are 50.0 and 45.0, 
respectively, whereas the emission variance for both upper and lower is 20.0. In other tests (see Fig. 7 and figures in the Additional Files), the 
decoding duration distribution is an increasingly refined step function approximation of the generating duration distribution. For the data shown in 
this table, both upper and lower durations are 3-component beta-mixtures with humps in the aggregate.
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p(Z0...i, si = k) and bki = p(Zi+1...L-1, si = k). Given stationar-
ity, the state transition probabilities and the state proba-
bilities at the ith observation satisfy the trivial relation pqi
= Σkakqpk(i-1), where pqi = p(Si = q), and pq0 = p(S = q), and
the latter probabilities are the state priors. The trivial
recursion relation that is implied can be thought of as an
operator equation, with operation the product by akq fol-
lowed by summation (contraction) on the k index. The
operator equation can be rewritten using an implied sum-
mation convention on repeated Greek-font indices (Ein-
stein summation convention): pq = aβqpβ. Transition-
probabilities in a similar operator role, but now taking
into consideration local sequence information via the
emission probabilities, are found in recursively defined
expressions for the forward variables, fki = eki(aβkfβ(i-1)),
and backward variables, bki = akβeβ(i+1)bβ(i+1). The recursive
definitions on forward and backward variables permit
efficient computation of observed sequence probabilities
using dynamic programming tables. It is at this critical
juncture that side information must mesh well with the
states (column components in the table), i.e., in a manner
like the emission or transition probabilities. Length infor-
mation, for example, can be incorporated via length-dis-
tribution-biased transition probabilities (introduced in
[4]), and that is what is experimentally validated done
here.

EVA projection
Using a standard implementation of a HMM with emis-
sions probabilities parameterized by Gaussian distribu-
tions: emission_probabilities[i][k] = exp(-(k - i)*(k - i)/
(2*variance)), where "i" and "k" are each a state where 0
<= i, k <= 49 in a 50 state system. To perform EVA, the var-
iance is simply multiplied by a factor that essentially wid-
ens the gaussian distribution parameterized to best fit the
emissions, and the equation simply becomes exp(-(k-
i)*(k-i)/(2*variance*eva_factor)). The choice of this
amplification factor is important. If too large of a factor is
used, then the power signal will be altered to the point
where the state transition information will be invalid. But
for a sizable range of this parameter, HMM with EVA will
remove the noise from the power signal while strictly
maintaining the state transitions. In practice, any multi-
plicative factor between 2 and 10 works well.

After EVA-projection, a simple FSA can easily extract level
duration information. Each level is identified by a simple
threshold of blockade readings, typically one or two per-
cent of baseline. Then, the HMM with EVA processed data
is swept through with a small window to eliminate any
remaining noise or spike artifacts that may distort actual
level duration statistics. It is important to note that there
must be a sufficient amount of data to support the level
duration statistics. A small sample will simply not be rep-
resentative of the true kinetic information. Further, it is

important that the FSA is tuned properly in order to prop-
erly identify levels.

HMM with Duration via cumulant transition probability
The transition probabilities for state 'e' to remain in state
'e', a "ee" transition can be computed as: Prob(ee | elength
= L) = Prob(elength ≥ L + 1)/Prob(elength ≥ L). The transition
probabilities out of state 'e' can have some subtleties, as
shown in the following where the states are exon (e),
intron (i), and junk (j). In this case, the transition proba-
bilities governing the following transitions, (jj) -> (je),
(ee) -> (ej), (ee) -> (ei), (ii) -> (ie) are computed as:
Prob(ei | elength = L) = Prob(elength = L)/Prob(elength ≥ L) ×
40/(40 + 60) and Prob(ej | elength = L) = Prob(elength = L)/
Prob(elength ≥ L) × 60/(40 + 60), where the total number of
(ej) transitions is 60 and the total number of (ei) transi-
tions is 40. The pseudocode to track the critical length
information, on a cellular basis in the dynamic program-
ming table, goes as follows:

1. Maintain separate counters for the junk, exon and
intron regions.

2. The counters are updated as follows:

a. The exon counter is set to 2 for a (je) - (ee) transition

b. The exon counter gets incremented by 1 for every (ee) -
(ee) transition

Prob(elength ≥ L + 1) is computed as: Prob(elength ≥ L + 1) =
1 - ∑i=1..LProb(elength = i). Hence we generate a list such
that for each index k > 0, the value 1 - ∑i=1..kProb(elength =
i) is stored.

Simplifying from three state model, {e, i, j}, to a two-state
model, {e, i}, for a moment: after n occurrences of state
'e', the 2 cases of update factor to handle are:

P(en+1|ee..en) = P(length e ≥ n+1)/P(length e ≥ n)

P(i|ee..en) = P(length e = n)/P(length e ≥ n)

Similarly for n occurrences of state 'i', and there are no
probability splitting ambiguities upon exiting state 'e' as
there is only one state to exit to in the two-state system
(and there are no differences in the Viterbi and Forward/
Backward transition probability alterations).

Consider, as an example, a simple extension of our two-
state notation to cover N + 1 states: {e, i1,...,iN}. Suppose
we are interested in the probability of an 'i' after seeing a
length 4 segment of e-states:

P(i|eeee) = 1 - P(e|eeee) = 1 - P(Le = 5)/P(Le = 4)
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There are two types of transition rule that appear to result,
one for Viterbi, with its maximum operation on paths,
and one for Forward/Backward, with its sum operation.
For the two-state case, N = 1, and these update rules
involving "splitting" factors all become the same (see
Results):

Viterbi update
(1) Difference splitting: p(ik|eeee) = [1 - P(Le = 5)/P(Le =
4)] * [1 + P(ik|e) - AvgzP(Z|e)]

(2) Ratio splitting: p(ik|eeee) = [1 - P(Le = 5)/P(Le = 4)] *
P(ik|e)/[AvgzP(Z|e)]

In this situation we are not maintaining a sum rule on
probabilities, here we are viewing each path through the
table in a manner consistent with the maxprob evalua-
tion.

Forward/Backward update
(1) Difference splitting: p(ik|eeee) = [1 - P(Le = 5)/P(Le =
4)] * [1 + P(ik|e) - AvgzP(Z|e)]/N

(2) Ratio splitting: p(ik|eeee) = [1 - P(Le = 5)/P(Le = 4)] *
P(ik|e)/[N*AvgzP(Z|e)]

The equation above with the factor [1 + P(ik|e) -
AvgzP(Z|e)]/N provides a suitable "splitting factor", as ik

and 'e' probabilities sum to one, remain positive, and
have other nice properties. The splitting factor is not
unique, however, as case (2) makes clear.

It is important to note that we appear to have some free-
dom on splittings of probabilities upon exiting a state
(when we are using the length distribution cumulants to
describe transition probabilities, etc.). This is merely an
associated effect of that length distribution incorporation
– now upon exiting that length distribution our main fac-
tor is P(ik|some prior length of e), that factor is blind to
the appropriate splittings amongst the "not e" states, and
we must incorporate another factor to deal with the prob-
ability splitting – in the case of forward/backward, this is
chosen to obey a prob sum to 1 on all cases, on Viterbi this
must maintain each path's probability with proper
weighting with respect to the others (consistent with the
max-path operation).

Real-time processing hardware/software setup
The server was able to concurrently perform the following
using a single 1.5 GHz processor with no hyper-threading:

1. Acquire data from the DAQ buffer at 50 KHz sample
rate.

2. Update the server GUI screen with the acquired data –
though a 10× data decimation was required in order to
avoid irrevocable delays in reading from the DAQ buffer

3. Perform tFSA logic to screen for signals resulting from
molecular capture events at the nanopore channel

4. Send capture-signals as long as 100 ms in duration at a
rate 10 per second to a waiting 1.5 GHz processor, Linux-
based TCP/IP client for HMM-based feature extraction

5. Receive extracted HMM features from the TCP/IP client

6. Compute the classification of the HMM features with
tolerance via a binary SVM previously trained on 9gc and
9at bphp signals.

7. According to the user's preset preference, issue a control
signal to the DAQ resulting in ejection of the undesirable
molecule so determined from the nanopore channel site.
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Fig. 7), with only 1 step used in the Viterbi decoding HMM’s approxima-
tion of the 1k-step generating HMM’s Poisson durations.
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Additional file 2
Further Results for with the new  HMM-with-duration formalism
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of the 1k-step generating HMM’s Poisson durations.
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