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Nanopore Cheminformatics

STEPHEN WINTERS-HILT,1,2 and MARK AKESON3,4

ABSTRACT

A cheminformatics method is described for classification, and biophysical examination, of individual mole-
cules. A novel molecular detector is used—one based on current blockade measurements through a nanome-
ter-scale ion channel (alpha-hemolysin). Classification results are described for blockades caused by DNA mol-
ecules in the alpha-hemolysin nanopore detector, with signal analysis and pattern recognition performed using
a combination of methods from bioinformatics and machine learning. Due to the size of the alpha-hemolysin
protein channel, the blockade events report on one DNA molecule at a time, which enables a variety of re-
producible, single-molecule biophysical experiments. To capture the full sensitivity of the nanopore detector’s
blockade signal, Hidden Markov Models (HMMs) were used with Expectation/Maximization for denoising
and for associating a feature vector with the ionic current blockade of each captured DNA molecule. Support
Vector Machines (SVMs) that employ novel kernel designs were then used as discriminators. With SVM train-
ing performed off-line, and economical HMM processing on-line, blockade classification was possible during
capture. HMMs were also used in conjunction with a time-domain finite state automaton (off-line) for fea-
ture discovery and kinetics analysis. Analysis of the DNA data indicates a variety of binding (DNA–protein),
fraying, and conformational shifts that are consistent with data obtained from thermodynamic analyses (melt-
ing curves), X-ray crystallography, and NMR studies. The software tools are designed for analysis of generic
blockades in ionic channels, including those in other biological pore-forming toxins, other biological channels
in general, and semiconductor-based channels.
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INTRODUCTION

ANANOMETER-SCALE CHANNEL can be used to associate ionic
current measurements with single-molecule channel block-

ades. A biologically based (protein) channel, �-hemolysin, is used
for this purpose because its solution soluble monomer easily
self-assembles in membranes as a heptamer channel (Gouaux
et al., 1994; Song et al., 1996). This leads to an inexpensive
and reproducible nanopore detector (see Fig. 1a). �-Hemolysin
is also chosen because it is stable (e.g., nongating) and has di-
mensions well suited to DNA/RNA measurement: ssDNA
translocates while dsDNA does not, being held in the channel’s
cis-side vestibule instead. Figure 1b shows a crystal structure
(Song et al., 1996), with a 1.5-nm limiting aperture ringed by
Glutamic Acids and Lysines. The entry aperture on the cis-side
is 2.6 nm in diameter (ringed by Threonines), which is large
enough to admit (and capture) dsDNA. Figure 1b shows a cap-

tured nine base-pair DNA hairpin superimposed. Operation of
the �-hemolysin nanopore detector demonstrates that it is pos-
sible to obtain at least Angstrom-level resolution of structural
features (Winters-Hilt et al., 2003). To accomplish this, how-
ever, the detector must extract subtle differences between ionic
current blockades Figure 2 shows blockade traces for a collec-
tion of five hairpins. Figure 2b shows the dominant blockades,
and their frequencies, for the different hairpin molecules.

A nanometer-scale, �-hemolysin based, channel detector, or
“nanopore detector,” can be used to observe single ssDNA mol-
ecules during channel translocation (Kasianowicz et al., 1996;
Akeson et al., 1999; Meller et al., 2000, 2001), or to observe
the ends of single dsDNA molecules captured by the pore (Ver-
coutere et al., 2001, Winters-Hilt et al., 2003). For the �-he-
molysin nanopore detector, progress analyzing ssDNA translo-
cations has been limited due to the high speed of such
translations. Lowering the applied potential to slow the ssDNA
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translocation does not help either, since a minimal applied po-
tential is required to draw molecules into the channel, that is,
a free energy barrier must be overcome. For end-capture of ds-
DNA, on the other hand, extensive characterization of ionic cur-
rent blockades is possible because the molecules can be held
and observed for as long a needed. A voltage-reversal sampling
cycle then allows examination of many such dsDNA ends (Ver-
coutere et al., 2001; Winters-Hilt et al., 2003). Modifications to
the �-hemolysin channel have been examined (Bayley, 2000), and
semiconductor nanopores are being developed (Li et al., 2001).
In previous work (Winters-Hilt et al., 2003) it was shown that
molecular blockade information permitted highly accurate classi-
fication of DNA hairpins (99.6% accuracy, see Figs. 3 and 4).

The information that permitted this discrimination was found
to derive from an imprint of the DNA–protein binding kinetics
on the surrounding ionic flow. In this paper, preliminary results
show that a nanopore detector, coupled with modern pattern
recognition methods, can also be used to characterize the con-
formational kinetics of captured DNA hairpins.

In the nanopore signal analysis in (Winters-Hilt et al.,) (see
Fig. 3), a Hidden Markov Model (HMM) was used to extract
a feature vector from each blockade example. HMMs can char-
acterize current blockades by identifying a sequence of sub-
blockades as a sequence of state emissions (Chung et al., 1990;
Colquhoun and Sigworth, 1995; Chung and Gage, 1998). The
parameters of an HMM can then be estimated using a method
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FIG. 1. The nanopore detector. (a) The electrochemistry setup for the nanopore device. (b) The crystallographic description of
the �-hemolysin channel with a 9-bp DNA hairpin superimposed.

FIG. 2. The channel current blockade signal. (a) The five DNA hairpins, with sample blockades, that were used to test the sen-
sitivity of the nanopore device. (b) The dominant blockades, and their frequencies, for the different hairpin molecules.
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called Expectation/Maximization (Durbin, 1998). Although
HMMs can be used to discriminate among several classes of in-
put, multiclass computational scalability tends to favor their use
as feature extractors. This, and related signal processing issues,
can be found in Winters-Hilt et al. (2003). Thus, HMMs, which
are well suited to extraction of aperiodic information embedded
in stochastic sequential data, are used for feature extraction. Clas-
sification of feature vectors obtained by the HMM (for each in-
dividual blockade event) is then done using Support Vector Ma-
chines (SVMs), an approach which automatically provides a
confidence measure on each classification. SVMs are fast, easily
trained, discriminators (Burges, 1998; Vapnik, 1998), for which
strong discrimination is possible without the overfitting compli-
cations common to neural net discriminators (Vapnik, 1998).

In this work, the signal processing architecture shown in Fig-
ure 3 has grown to include an added feature identification 
module (identification stage II) and an added feature extraction 
module (extraction stage II). The purpose of these added com-
putational stages is to build on the feature identification/ex-
traction information available from the stage I modules, such
that kinetic information can be directly extracted and repre-
sented. This information will eventually be used for on-line sig-
nal processing (shown as the dotted arrow in Fig. 3). Such on-
line processing will require a new feature vector structure and

retraining of the SVM Decision Tree, however, so the focus in
this work is on obtaining and examining preliminary results off-
line (via the “Kinetic Analyzer” module in Fig. 3).

Prior classification and mechanism results

Five DNA hairpins were used in the prototype study to ex-
plore the sensitivity of the detector, as well as to probe the pore
geometry (see Discussion). The DNA hairpins studied (in Fig.
2a) differed only in their terminal base pairs. Classification ac-
curacy was 99.6% on average for the five DNA hairpins (see
Fig. 4a), and this was accomplished by the 15th classification
attempt (6 sec on average). The classification result for a mix-
ture solution of 9TA and 9GC hairpin species (Fig. 4b) is shown
as the number of single molecule samplings is increased. The
mixture was in a 3:1 ratio of 9TA:9GC, consistent with the 75%
asymptote. Less than 1% error (on majority population size)
was obtained by the 100th observation.

HMM/EM characterization on the five classes of hairpin sig-
natures revealed the existence of two major conductance block-
ade levels, one minor level intermediate between them, and one
to three other statistically relevant levels depending on the hair-
pin (see Fig. 2b). By examining the transition probabilities be-
tween the various levels it was found that blockades typically
began in the less common intermediate level, and from there
almost always transitioned to the UL blockade level. Figure 5
describes the hypothesized blockade mechanism for the nine
base-pair hairpin blockades (Vercoutere et al., 2003; Winters-
Hilt et al., 2003 for further results).

Preliminary results indicate that the UL blockade level may
be unbound at its terminus, permitting conformational kinetics
to be seen. One example of this is that the upper level block-
ade (UL) plateaus once the hairpin stem length reaches seven
base pairs. This plateau occurs well before that of the other
blockade levels (which can be explained as the hairpin grow-
ing too long for the pore vestibule, causing the hairpin loop to
extend beyond the pore vestibule entrance). The explanation for
the UL plateau centers on the tight flow geometry between
channel and captured hairpin. In such a geometry, much of the
ionic flow is confined to be in or near the grooves of the cap-
tured DNA molecule. For the unbound molecule, this groove
flow can be directed towards the limiting aperture by appro-
priate orientation of the hairpin molecule (which it is free to do
since it is unbound). The unbound molecule can thus cause a
“short circuit” effect, where the contribution to the ionic cur-
rent is not significantly altered as the hairpin is extended (by
base-pair addition), thus explaining the early plateau. This, and
other, results (described in Winters-Hilt et al., 2003 and Ver-
coutere et al., 2003) strengthen the hypothesis that the nine base-
pair DNA hairpin’s UL blockade corresponds to a molecular
state with unbound terminus.

MATERIALS AND METHODS

Nanopore implementation and DNA hairpin design

Each experiment was conducted using one �-hemolysin
channel inserted into a diphytanoyl-phosphatidylcholine/hexa-
decane bilayer, where the bilayer was formed across a 20-mi-
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FIG. 3. The signal processing architecture. Signal acquisition
was performed using a time-domain, thresholding, Finite State
Automaton. This was followed by adaptive prefiltering using a
wavelet-domain Finite State Automaton. Feature extraction on
those acquired channel blockades was done by Hidden Markov
Model processing; and classification was done by Support Vec-
tor Machine. The optimal SVM architecture is shown for classi-
fication of molecules 9CG, 9GC, 9TA, 9AT, and 8GC. The lin-
ear tree multiclass SVM architecture benefits from strong signal
skimming and weak signal rejection along the line of decision
nodes. Scalability to larger multiclass problems is possible since
the main on-line computational cost is at the Hidden Markov
Model feature extraction stage. The accuracy shown is for sin-
gle-species mixture identification upon completing the 15th sin-
gle-molecule sampling/classification (in approx. 6 sec). Off-line
kinetic feature extraction was done at the newly added HMM
Level and tFSA Spike Identification module and the time-do-
main FSA Kinetic Feature Projection module.
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cron diameter horizontal Teflon aperture (Vercoutere et al.,
2001). The bilayer separates two 70-�l chambers containing 1.0
M KCl buffered at pH 8.0 (10 mM HEPES/KOH). The nine
base-pair hairpin molecules examined share an eight base-pair
hairpin core sequence, with addition of one of the four permu-
tations of Watson-Crick base pairs that may exist at the blunt
end terminus, that is, 5�-G � C-3�, 5�-C(G � 3�, 5�-T � A-3�, and
5�-A � T-3�. Denoted 9GC, 9CG, 9TA, and 9AT, respectively.
The full sequence for the 9CG hairpin is 5� CTTCGAACG-
TTTTCGTTCGAAG 3�, where the base-pairing region is un-
derlined. An eight base-pair DNA hairpin with a 5�-G � C-3�
terminus was also tested. The prediction that each hairpin would
adopt one base-paired structure was tested and confirmed us-
ing the DNA mfold server (http://bioinfo.math.rpi.edu/~mfold/
dna/form1.cgi), which is based in part on data from (SantaLu-
cia, 1998). The nanopore construction and the DNA synthesis
tools are described in (Winters-Hilt et al., 2003).

Sampling protocol and signal acquisition

The solution sampling protocol used periodic reversal of the
applied potential to accomplish the capture and ejection of sin-
gle DNA molecules (added to the cis chamber in 20 �M con-
centrations). The current blockade data was filtered at 10-kHz
bandwidth using an analog low-pass Bessel filter and recorded
at 20-�sec intervals using an Axopatch 200B amplifier coupled
to an Axon Digidata 1200 digitizer (Axon Instruments, Foster
City, CA). A time-domain finite state automaton (FSA; Cor-
men et al., 1989) with eight states performed the generic sig-
nal identification/acquisition for the first 100 msec of blockade
signal (Acquisition Stage, Fig. 3). An abrupt drop to 70% resid-
ual current, or less, triggered transition from the reset ready
state to the signal active state. For DNA hairpins with stems
shorter than eight base pairs, multiple states were not clearly
discernible by the prototype, presumably because the hairpins
were too short to interact with the current constriction and
strong forces near the limiting aperture. For nine base-pair hair-
pins, and longer, a clear 1/f noise (flicker noise) is discernible—

a preliminary indication of the single-molecule kinetics results
that follow. The effective duty cycle for acquiring the desired
100-msec blockade measurements was one reading every 0.4
sec. Further details on the voltage toggling protocol and the
time-domain FSA are in Winters-Hilt et al., (2003).

Signal preprocessing and unsupervised 
feature extraction

Each 100-msec signal acquired by the time-domain FSA con-
sisted of a sequence of 5000 subblockade levels (with the 20-
�sec analog-to-digital sampling). Signal preprocessing was
then used for adaptive low-pass filtering. For the data sets ex-
amined the preprocessing led to length compression on the sam-
ple sequence from 5000 to 625 samples (later HMM process-
ing then only required construction of a dynamic programming
table with 625 columns). The signal preprocessing makes use
of an off-line wavelet stationarity analysis (Off-line Wavelet
Stationarity Analysis, Fig. 3; also see Diserbo et al., 2000). With
completion of preprocessing, an HMM (Durbin, 1998) was used
to remove noise from the acquired signals, and to extract fea-
tures from them (Feature Extraction Stage, Fig. 3). The HMM
was implemented with 50 states, corresponding to current
blockades in 1% increments ranging from 20% residual current
to 69% residual current. The HMM states, numbered 0 to 49,
corresponded to the 50 different current blockade levels in the
discrete sequences that it processed. The state emission para-
meters of the HMM were initially set so that the state j, 0 �
�j ��49 corresponding to level L � j � 20, could emit all
possible levels, with the probability distribution over emitted
levels set to a discretized Gaussian, with mean L and unit vari-
ance. All transitions between states were possible, and initially
were equally likely. Each blockade signature was denoised by
five rounds of Expectation-Maximization (EM) training on the
parameters of the HMM. After the EM iterations, 150 parame-
ters were extracted from the HMM. The 150 feature vector com-
ponents were extracted from parameterized emission probabil-
ities, a compressed representation of transition probabilities,
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FIG. 4. Single-species and mixture classification results. (a) The prediction accuracy as the number of signal classification at-
tempts increases (allowing increase in the rejection threshold). (b) The prediction accuracy on 3:1 mixture of 9TA to 9GC DNA
hairpins.



and use of a posteriori information deriving from the Viterbi
path solution (further details in Winters-Hilt et al., 2003). This
information elucidates the blockade levels (states) characteris-
tic of a given molecule, and the occupation probabilities for
those levels (Fig. 2b), but does not directly provide kinetic in-
formation. The resulting parameter vector, normalized such that
vector components sum to unity, was used to represent the ac-
quired signal in discrimination at the Support Vector Machine
stages.

Kinetic feature extraction

Extraction of kinetic information begins with identification
of the main blockade levels for the various blockade classes
(off-line). This information is then used to scan through already
labeled (classified) blockade data, with projection of the block-
ade levels onto the levels identified for that class of molecule.
A time-domain FSA performs the above scan, and uses the in-
formation obtained to tabulate the lifetimes of the various block-
ade levels. Once the lifetimes of the various levels are obtained,
a variety of kinetic properties can be obtained. If the experi-
ment is repeated over a range of temperatures, a full set of ki-

netic data is obtained. This data can be used to calculate kon

and koff rates for binding events, as well as indirectly calculate
forces by means of the van’t Hoff Arrhenius equation (or other
arguments based on Boltzmann factors).

Classification training

The normalized feature vectors obtained from the feature ex-
traction stage are classified using binary Support Vector Ma-
chines (SVMs). Binary SVMs are based on a decision-hyper-
plane heuristic that incorporates structural risk management by
attempting to obtain the greatest training-instance void, or “mar-
gin,” around the decision hyperplane. Binary SVMs can be
grouped into a classifier tree to perform multiclass discrimina-
tion, and this was done here for the five classes of DNA hair-
pin (shown in classification stages I–IV in Fig. 3). Tuning on
the multiclass SVM architecture itself was done for perfor-
mance optimization, and separate tuning was done on the po-
larization strength used in the data cleaning. Tuning was also
done on the SVM internals, over families of kernels based on
regularized distances (Jaakkola and Haussler, 1998) and regu-
larized information divergences. In the former case, the squared
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FIG. 5. The nine base pair DNA hairpin blockade mechanism. Molecular mechanisms underlying the observed current transi-
tions. (a) When a 9-bp DNA hairpin initially enters the pore, the loop is perched in the vestibule mouth and the stem terminus
binds to amino acid residues near the limiting aperture. This results in the IL conductance level. (b) When the terminal base pair
desorbs from the pore wall, the stem and loop may realign, resulting in a substantial current increase to UL. Interconversion be-
tween the IL and UL states may occur numerous times, or UL may convert to the LL state (c). The LL state corresponds to bind-
ing of the stem terminus to amino acids near the limiting aperture but in a different manner from IL. (d) From the LL bound
state, the duplex terminus may fray resulting in extension and capture of one strand in the pore constriction.



Euclidean distance between feature vectors x and y, d2(x,y) �
�k(xk � yk)2, also known as the squared l2-norm on (x-y), 
[l2(x-y)]2 � d2(x,y), is associated with the Gaussian kernel:
KG(x,y) � exp(�d2(x,y)/2�2). The latter case represents a
whole new class of kernels (see Winters-Hilt et al., 2003, for
more details) based on information-theoretic measures of dis-
tance between probability vectors (discrete distributions). The
information divergence (relative entropy) between probability
vectors x and y, D(x��y) � �kxklog(xk/yk), can be associated
with the “Entropic kernel:” KE(x,y) � exp(�[D(x��y) �
D(y��x)]2�2). The terminating SVM node of the classifier tree
(stage IV in Fig. 1) performed best with such an Entropic ker-
nel. The other nodes of the classifier tree used a regularized-
distance type kernel, the “Variation-distance kernel,” based on
the square root of the l1-norm, where l1(x-y) � �k�xk � yk�, with
kernel KI(x,y) � exp(� √l1(x-y)/2�2).

Discriminator implementation

The SVM discriminators were trained by solving their KKT
relations using the Sequential Minimal Optimization (SMO)
procedure (Platt, 1998). A Chunking (Osuna et al., 1997;
Joachims, 1998) variant of SMO was employed to manage the
large training task at each SVM node. The multiclass SVM
training was based on over 10,000 blockade signatures for each
DNA hairpin species. The data cleaning needed on the training
data was accomplished by an extra SVM training round (fur-
ther details on data cleaning in Winters-Hilt et al., 2003).

Prototype testing protocol

In the five DNA hairpin study, the test data consisted of over
2000 blockade signals for each DNA hairpin species and was
drawn from experiments that were run on days (and nanopores)
different from those used to acquire the training data. Testing
on single-species mixture calling was done directly, with clas-
sification on observations from single-species solutions in the
cis-chamber. One goal of the study was to find how many clas-
sification attempts were required to classify the single-species
solutions with very high confidence. Scoring was possible by
tracking the known labels on the test data. For the mixture tests
some of the train data was used for an added calibration. An
extra calibration was required because true mixtures of hairpins
are sensitive to the different (entropic) acceptance rates and
(discriminator) rejection rates by the nanopore instrument for
the different hairpin species.

RESULTS

The prototype study described in the introduction indicates
that the UL blockade state (see description with Fig. 5) can be
understood as a captured DNA hairpin with unbound terminal
base pair. This enables a study of the conformational dynam-
ics at the ends of DNA molecules by focusing on the UL states
of nine base-pair DNA hairpins. In preliminary results, shown
in Figure 6, it can be seen that the UL blockade state for some
of the hairpin molecules actually has internal structure.

This is currently hypothesized to be due to conformational
switching in the hairpin stem. DNA hairpins that do not exhibit

such switching are thought to exist in one, dominant, helical
conformation. Since much of the current flow is thought to re-
side in the DNA’s major groove (see Discussion section), it is
understandable why changes in helical conformation might im-
print as toggles in the UL blockade level. Information from
NMR studies on the same tetranucleotide termini confirms the
results indicated, for example, the molecule thought to be ex-
hibiting conformational switching in Figure 6 is found in NMR
studies to have two low energy states.

DISCUSSION

Nanopore cheminformatics provides a powerful new tool
for single molecule biophysics. Preliminary efforts indicate
that a variety of sequencing and other biotechnology schemes
will be possible. Likewise, nanopore-based cheminformatics
offers an exciting new arena in which to develop and test the
latest machine learning approaches. So far, every machine-
learning method introduced, including HMMs and SVMs, has
enabled greater sensitivity to be extracted from the nanopore
device.

Major groove ion flow

Given the restricted flow geometry between protein channel
and a captured DNA hairpin, it is perhaps surprising that a num-
ber of unexpected nanomechanical and nanofluidic issues have
not arisen. So far, there is only the odd “short circuit” effect
described earlier. Further study of conformational switching
will inevitably have to address some of these issues, since they
are observable in precisely the odd state referred to above. One
interesting possibility along these lines is that of cooperative
flow along the major groove the DNA molecule.

�-Exonuclease as a brake on ssDNA translocation

Using lambda exonuclease as an ssDNA brake appears to be
possible. Conditions have been obtained where both the ex-
onuclease retains function and the toxin self-assembles. Other
work on methylated or dye-tagged ssDNA and dsDNA appears
to offer significant new information as well (without laser ex-
citation of dyes being introduced yet). Experiments with laser
modulation of analytes are in progress.

Force/geometry probing using DNA hairpins

For a forthcoming manuscript, a variety of DNA hairpins are
used as probes of the �-hemolysin protein channel geometry.
The same experiments also serve to reveal the forces at vari-
ous points in the channel. This is done by building on the work
of Vercoutere et al., (2001), a series of blunt-ended DNA hair-
pins are used to probe the depth of the vestibule. The blockade
signal exhibits a single blockade level for hairpins with stem
lengths ranging from three base pairs (3 bp) to seven base pairs
(7 bp). For the 8-bp hairpin a telegraph signal appears, with the
primary blockade level at the greater resistance. For 9-bp hair-
pins, and those with longer stems, there appear to be three main
levels. The geometric bottom of the vestibule is reached with
a 9-bp hairpin,	 1 bp. Using the 9 bp hairpin as a base, and
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taking into account the 3�-fraying/extension hypothesis (men-
tioned in the mechanism description in Fig. 5), single-stranded
DNA overhangs of varying length were added to the base at
the 3� terminus. This permits critical force/geometry probing of
the trans-membrane part of the channel in a very controlled
manner, by a single (captured) molecule event. Preliminary re-
sults indicate two significant trans-membrane constrictions, one
at the limiting aperture, and one near the trans-opening. The
resolving power of the limiting-aperture/trans-opening con-
strictions is of critical importance in DNA sequencing and
biosensor applications, and is undetermined as of yet.

Sequencing possibilities

The highly accurate “read” on the end of nine base pair DNA
hairpins appears to extend to 10, 11, and 12 base pair hairpins
as well. Thus, the possibility of performing a similar “read” on
the end of native blunt-ended dsDNA seems possible as well.
In conjunction with capillary electrophoresis, this offers the
prospect of the entire Sanger sequencing protocol being per-
formed on a microchip-sized laboratory. If ssDNA transloca-
tion through �-hemolysin can be slowed enough, by use of 
single-enzyme couplings or servo-electronics, then single-
molecule DNA sequencing may prove possible as well. For 
single-molecule sequencing to be successful, however, the 
deconvolution problem must be solved for the collection of
bases at the main current restrictions (where, presumably, the
greatest physical imprint is made on the ionic current). Decon-
volution of base content from a single blockade signal may be
possible if dominant contributions to resistance span only 20 Å

or so (amounting to about three nucleotides length of ssDNA).
Thus, single-molecule sequencing will require further progress
in the force/geometry probing and the enzyme braking efforts.
Since dsDNA carries much more information than ssDNA (i.e.,
the molecular motions are much more constrained and read-
able), progress may eventually be made with easily formed syn-
thetic/ssDNA chimeric molecules that are sized more like 
ssDNA, but have the richer bond-formation structure of dsDNA.

Non-PCR expression analysis

One of the key strengths of nanopore detectors is that they
analyze populations of single molecules. With signal process-
ing and pattern recognition, this information enables a new type
of cheminformatics. For single nucleotide polymorphism (SNP)
identification, a nanopore detector also offer the prospect that
only small sample volumes need be used, such that PCR am-
plification may not even be needed. Non-PCR expression analy-
sis, in general, may offer a new method for biological experi-
mentation on live cells using patch-clamp methods.

Novel kernels

The kernels studied were not limited to those satisfying Mer-
cer’s conditions. The variation and entropic kernels, however,
probably satisfy Mercer’s conditions, since they can be de-
scribed as metrics “regularized” by incorporation as positive ar-
guments in a decaying exponential. The Gaussian kernel, which
satisfies Mercer’s conditions, has the exponential form (with
Euclidean distance squared between feature vectors) and was
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FIG. 6. UL toggle correlates with NMR predicted conformational switching. Preliminary results add credence to the hypothe-
sis that the UL state has an unbound terminus, and that while in that state conformational switching may be observable. For the
molecules and blockades shown, three are found by NMR to have one dominant ground state (no switching), while one of the
molecules is found by NMR to have two dominant low energy states (switching). This corresponds exactly with what has been
observed in terms of the existence of fine structure (toggling) in the UL blockade state.



outperformed in all cases studied by the entropic and variation
kernels. The original motivation for working with the entropic
kernel was to obtain a faster, more noise-resistant kernel for in-
formation obtained via an HMM feature extractor (instead of
the theoretically attractive choice of directly integrating the two
via a Fisher Kernel (Jaakkola and Haussler, 1998)). This led to
a general formulation where feature extraction was designed to
arrive at probability vectors (i.e., discrete probability distribu-
tions) on a predefined, and complete, space of possibilities. (The
different blockade levels, and their frequencies, for example.)
This turns out to be a very general formulation, wherein fea-
ture extraction makes use of signal decomposition into a com-
plete set of separable states. A probability vector formulation
also provides a straightforward hand-off to the SVM classifiers,
since all feature vectors have the same length with such an ap-
proach. What this means for the SVM is that geometric notions
of distance are no longer the best measure for comparing fea-
ture vectors. For probability vectors (i.e., discrete distributions),
the best measures of similarity are the various information-the-
oretic divergences: Kullback-Leibler, Renyi, etc. By sym-
metrizing over the arguments of those divergences we obtain a
rich source of kernels that might work well with the types of
probabilistic data obtained. Thus far, only the Kullback-Leibler
divergence has been extensively studied in this manner (giving
rise to the entropic kernel).

A multiclass discriminator can be implemented using bi-
nary SVMs grouped in a decision tree architecture (as in Fig.
3). Alternatively, a (single) multiclass SVM can be imple-
mented. The latter takes on a much more complicated form
that appears much more susceptible to noise, however, and
is much more difficult to train since larger “chunks” are
needed to carry all the support vectors. Although the mono-
lithic SVM approach is clearly not scalable, it may offer bet-
ter performance when working with small class sets. The
monolithic approach also avoids the combinatorial explosion
caused when optimizing a decision tree architecture. It was
revealed in Winters-Hilt et al., (2003), however, that the
SVM’s rejection capability often leads to the optimal archi-
tecture reducing to a linear tree architecture with strong sig-
nals skimmed off class by class.

Calibration and feature extraction by HMM

A single HMM/EM process was used to perform feature
extractions in the experiments. If separate HMMs were used
to model each species, the HMM/EM processing could also 
be operated in a discriminative mode. This requires multiple
HMM/EM evaluations (one for each species) on each un-
known signal as it is observed. Increased computational bur-
den at the worst place in an on-line pattern recognition set-
ting: the expensive feature extraction stage. In ongoing work,
semiscalable, species-specific processing is being considered
for the HMM/EM in an indirect manner, by using prior
HMM/EM characterization of the species to identify a re-
duced set of features relevant to each species (the kinetic data
features). For the kinetic-type data analysis, this reduced fea-
ture set may be obtainable, reliably, via an unsupervised,
scalable, learning process (shown as the dotted arrow in
Fig. 3). The extent to which this is possible is being explored
this time.

Passive versus active signal stabilization

Reestablishing the �-hemolysin channel on a day-to-day ba-
sis presents a major complication to the pattern recognition task.
The class training data that would normally map to a single
cluster is shattered into a cluster of clusters, with greater dis-
persion and class overlap in the SVM feature vector space. SVM
classification in such circumstances faces weaker training con-
vergence and poorer signal calling. For the five classes con-
sidered in the prototype, a passive stabilization approach was
used that optimized the kernels for high rejection. More active
(computationally based) stabilization methods are being stud-
ied for larger multiclass problems and improved accuracy over-
all. These methods entail incorporation of control molecules
into the experiment (like the eight base-pair hairpin in Fig. 2a)
that are tracked as they are randomly sampled along with the
analytes of interest.

CONCLUSION

Nanopore cheminformatics based on the �-hemolysin
nanopore detector offers a new method for single molecule ex-
perimentation. Molecules can be classified by characterization
of their binding kinetics and dissociation kinetics (i.e., termi-
nal base pair “breathing” rates). The new, preliminary, result
indicated here is that conformational kinetics may be observ-
able as well. On the signal analysis side of this experiment,
there is one critical linkage remaining: a link between the ki-
netic feature information and a retrained SVM decision tree.
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