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Nanopore Cheminformatics
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ABSTRACT

A cheminformatics method is described for classification, and biophysical examination, of individual mole-
cules. A novel molecular detector is used—one based on current blockade measurements through a nanome-
ter-scale ion channel (alpha-hemolysin). Classification results are described for blockades caused by DNA mol-
ecules in the alpha-hemolysin nanopore detector, with signal analysis and pattern recognition performed using
a combination of methods from bioinformatics and machine learning. Due to the size of the alpha-hemolysin
protein channel, the blockade events report on one DNA molecule at a time, which enables a variety of re-
producible, single-molecule biophysical experiments. To capture the full sensitivity of the nanopore detector’s
blockade signal, Hidden Markov Models (HMMs) were used with Expectation/Maximization for denoising
and for associating a feature vector with the ionic current blockade of each captured DNA molecule. Support
Vector Machines (SVMs) that employ novel kernel designs were then used as discriminators. With SVM train-
ing performed off-line, and economical HMM processing on-line, blockade classification was possible during
capture. HMMs were also used in conjunction with a time-domain finite state automaton (off-line) for fea-
ture discovery and kinetics analysis. Analysis of the DNA data indicates a variety of binding (DNA—protein),
fraying, and conformational shifts that are consistent with data obtained from thermodynamic analyses (melt-
ing curves), X-ray crystallography, and NMR studies. The software tools are designed for analysis of generic
blockades in ionic channels, including those in other biological pore-forming toxins, other biological channels
in general, and semiconductor-based channels.

INTRODUCTION tured nine base-pair DNA hairpin superimposed. Operation of
the a-hemolysin nanopore detector demonstrates that it is pos-
ANANOMETER—SCALE CHANNEL can be used to associate ioniible to obtain at least Angstrom-level resolution of structural
current measurements with single-molecule chdoloek- features (Winters-Hilet al, 2003). To accomplish this, how-
ades. A biologically based (protein) chanaehemolysin, isused ever, the detector must extract subtle differences between iopi
for this purpose because its solution soluble monomer eagilyrrent blockades Figure 2 shows blockade traces for a &
self-assembles in membranes as a heptamer channel (Gouauof five hairpins. Figure 2b shows the dominant blockades;
et al, 1994; Songet al, 1996). This leads to an inexpensiveand their frequencies, for the different hairpin molecules.
@)and reproducible nanopore detector (see Fig.ctbjemolysin A nanometer-scale-hemolysin based, channel detector, or
is also chosen because it is stable (e.g., nongating) and hasrdinopore detector,” can be used to observe single sSDNA mol-
mensions well suited to DNA/RNA measurement: ssDNAcules during channel translocation (Kasianoveical, 1996;
translocates while dsDNA does not, being held in the channefkesonet al, 1999; Melleret al, 2000, 2001), or to observe
cis-side vestibule instead. Figure 1b shows a crystal structihe ends of single dsDNA molecules captured by the pore (Ver-
(Songet al, 1996), with a 1.5-nm limiting aperture ringed bycoutereet al, 2001, Winters-Hilt et al., 2003). For thehe-
Glutamic Acids and Lysines. The entry aperture orctiside molysin nanopore detector, progress analyzing ssDNA translo-
is 2.6 nm in diameter (ringed by Threonines), which is largations has been limited due to the high speed of such
enough to admit (and capture) dsDNA. Figure 1b shows a canslations. Lowering the applied potential to slow the sSDNA
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FIG. 1. The nanopore detecton)(The electrochemistry setup for the nanopore devijeTlte crystallographic description of
the a-hemolysin channel with a 9-bp DNA hairpin superimposed.

translocation does not help either, since a minimal applied piie information that permitted this discrimination was found
tential is required to draw molecules into the channel, that ie,derive from an imprint of the DNA—protein binding kinetics

a free energy barrier must be overcome. For end-capture of @lsthe surrounding ionic flow. In this paper, preliminary results
DNA, on the other hand, extensive characterization of ionic cishow that a nanopore detector, coupled with modern pattern
rent blockades is possible because the molecules can be hetdgnition methods, can also be used to characterize the con-
and observed for as long a needed. A voltage-reversal sampfiognational kinetics of captured DNA hairpins.

cyclethen allows examination of many such dsDNA ends (Ver- In the nanopore signal analysis in (Winters-ldiltal,) (see
coutereet al, 2001; Winters-Hiltet al, 2003). Modifications to Fig. 3), a Hidden Markov Model (HMM) was used to extract
thea-hemolysin channel have been examined (Bayley, 2000), amfeature vector from each blockade example. HMMs can char-
semiconductor nanopores are being developeet(bl, 2001). acterize current blockades by identifying a sequence of sub-
In previous work (Winters-Hilet al, 2003) it was shown that blockades as a sequence of state emissions (@&taig1990;

molecular blockade information permitted highly accurate clas§lolquhoun and Sigworth, 1995; Chung and Gage, 1998). The
fication of DNA hairpins (99.6% accuracy, see Figs. 3 and 4arameters of an HMM can then be estimated using a method
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FIG. 2. The channel current blockade signa). The five DNA hairpins, with sample blockades, that were used to test the sen-
sitivity of the nanopore deviceb) The dominant blockades, and their frequencies, for the different hairpin molecules.
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Scame o Vg N I T | retraining of the SVM Decision Tree, however, so the focus in
Timte Degaain Fishe . . .. .. I
Praaseiper Bl —— | absis mee wwden || this work is on obtaining and examining preliminary results off-

line (via the “Kinetic Analyzer” module in Fig. 3).

Prior classification and mechanism results

- - Five DNA hairpins were used in the prototype study to ex-
Saap it Viroar Machine plore the sensitivity of the detector, as well as to probe the pore
— — geometry (see Discussion). The DNA hairpins studied (in Fig.
2a) differed only in their terminal base pairs. Classification ac-
curacy was 99.6% on average for the five DNA hairpins (see
e Fig. 4a), and this was accomplished by the 15th classification
Sippan Yok lachine 2. i )
s 111 v V- attempt (6 sec on average). The classification result for a mix-
: ture solution of 9TA and 9GC hairpin species (Fig. 4b) is shown
as the number of single molecule samplings is increased. The
mixture was in a 3:1 ratio of 9TA:9GC, consistent with the 75%
e it K rsin asymptote. Less than 1% error (on majority population size)
was obtained by the 100th observation.
FIG. 3. The signal processing architecture. Signal acquisition TMM/EM characterization on the five classes of hairpin sig-
was performed using a time-domain, thresholding, Finite Stdtatures revealed the existence of two major conductance block-
Automaton. This was followed by adaptive prefiltering using ade levels, one minor level intermediate between them, and one
wavelet-domain Finite State Automaton. Feature extraction tmthree other statistically relevant levels depending on the hair-
those acquired channel blockades was done by Hidden Marlgiw (see Fig. 2b). By examining the transition probabilities be-
Model processing; and classification was done by Support Vegreen the various levels it was found that blockades typically
tor Machine. The optimal SVM architecture is shown for cla$96'egan in the less common intermediate level, and from@

fication of molecules 9CG, 9GC, 9TA, 9AT, and 8GC. The ling; st always transitioned to the UL blockade level. Fig
ear tree multiclass SVM archlt_ectl_Jre benefits fro_m strong sig scribes the hypothesized blockade mechanism for the ni
skimming and weak signal rejection along the line of decisign . - -
nodes. Scalability to larger multiclass problems is possible si’il%se-palr hairpin blockades (Vercouteteal, 2003; Winters-
the main on-line computational cost is at the Hidden Markdyt €t al, 2003 for further results).
Model feature extraction stage. The accuracy shown is for sin-Preliminary results indicate that the UL blockade level may
gle-species mixture identification upon completing the 15th sihe unbound at its terminus, permitting conformational kinetics
gle-molecule sampling/classification (in approx. 6 sec). Off-lin® be seen. One example of this is that the upper level block-
kinetic feature extraction was done at the newly added HMMie (UL) plateaus once the hairpin stem length reaches seven
Level and tFSA Spike Identification module and the time-dgrase pairs. This plateau occurs well before that of the other
main FSA Kinetic Feature Projection module. blockade levels (which can be explained as the hairpin grow-
ing too long for the pore vestibule, causing the hairpin loop to
extend beyond the pore vestibule entrance). The explanation for
called Expectation/Maximization (Durbin, 1998). Althoughthe UL plateau centers on the tight flow geometry between
HMMs can be used to discriminate among several classes ofdhannel and captured hairpin. In such a geometry, much of the
put, multiclass computational scalability tends to favor their ugenic flow is confined to be in or near the grooves of the cap-
as feature extractors. This, and related signal processing isstieed DNA molecule. For the unbound molecule, this groove
can be found in Winters-Hiktt al (2003). Thus, HMMs, which flow can be directed towards the limiting aperture by appro-
are well suited to extraction of aperiodic information embeddgdiiate orientation of the hairpin molecule (which it is free to do
in stochastic sequential data, are used for feature extraction. Céisee it is unbound). The unbound molecule can thus cause a
sification of feature vectors obtained by the HMM (for each irishort circuit” effect, where the contribution to the ionic cur-
dividual blockade event) is then done using Support Vector M@nt is not significantly altered as the hairpin is extended (by
chines (SVMs), an approach which automatically provides base-pair addition), thus explaining the early plateau. This, and
confidence measure on each classification. SVMs are fast, easilyer, results (described in Winters-Hit al, 2003 and Ver-
> trained, discriminators (Burges, 1998; Vapnik, 1998), for whiatoutere et al., 2003) strengthen the hypothesis that the nine base-
strong discrimination is possible without the overfitting complipair DNA hairpin’'s UL blockade corresponds to a molecular
>cations common to neural net discriminators (Vapnik, 1998). state with unbound terminus.

In this work, the signal processing architecture shown in Fig-
ure 3 has grown to include an added feature identification
module (identification stage Il) and an added feature extraction
module (extraction stage Il). The purpose of these added com-
putational stages is to build on the feature identification/ex-
traction information available from the stage | modules, Su?\lha
that kinetic information can be directly extracted and repre-
sented. This information will eventually be used for on-line sig- Each experiment was conducted using erbBemolysin
nal processing (shown as the dotted arrow in Fig. 3). Such ehannel inserted into a diphytanoyl-phosphatidylcholine/hexa-
line processing will require a new feature vector structure addcane bilayer, where the bilayer was formed across a 20-mi-

MATERIALS AND METHODS

nopore implementation and DNA hairpin design
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FIG. 4. Single-species and mixture classification resuésThe prediction accuracy as the number of signal classification at-
tempts increases (allowing increase in the rejection threshb)dyhé prediction accuracy on 3:1 mixture of 9TA to 9GC DNA
hairpins.

cron diameter horizontal Teflon aperture (Vercouteteal, a preliminary indication of the single-molecule kinetics results
2001). The bilayer separates two Zllchambers containing 1.0 that follow. The effective duty cycle for acquiring the desired

M KCI buffered at pH 8.0 (10 mM HEPES/KOH). The ninel00-msec blockade measurements was one reading every 0.4
base-pair hairpin molecules examined share an eight base-pa@. Further details on the voltage toggling protocol and the
hairpin core sequence, with addition of one of the four permiime-domain FSA are in Winters-Hit al, (2003).

tations of Watson-Crick base pairs that may exist at the blunt

end terminus, that is, 8 - C-3, 5-C(G- 3', 5-T - A-3’, and Signal preprocessing and unsupervised

5'-A - T-3'. Denoted 9GC, 9CG, 9TA, and 9AT, respectivelyfeature extraction

The full sequence for the 9CG hairpin is GTTCGAACG

TTTTCGTICGANG 2, where e base.paring egan = ury S0 100TSee Snalacaied y e e omar fon cor
derlined. An eight base-pair DNA hairpin with &G - C-3' 9

SpC analog-to-digital sampling). Signal preprocessing was

terminus was also tested. The prediction that each hairpin wogl]sen used for adaptive low-pass filtering. For the data sets ex-

adopt one base-paired structure was tested and confirmed inined the preprocessing led to length compression on the sam-
ing the DNA mfold server (http://bioinfo.math.rpi.edu/~mfold prep g 9 P

dna/form1.cgi), which is based in part on data from (SantaL%l-e tsheeqnus:rer;ml?:resg(c):gr:gtriiioiaronfqeds g::ﬁirCHl:ng;fni?;s'
cia, 1998). The nanopore construction and the DNA synthe yreq y prog 9

tools are described in (Winters-Hét al, 2003). fable with .625 columns). The sjgnal preprocessilng makes use
of an off-line wavelet stationarity analysis (Off-line Wavelet
Stationarity Analysis, Fig. 3; also see Diseébal, 2000). With
completion of preprocessing, an HMM (Durbin, 1998) was used
The solution sampling protocol used periodic reversal of the remove noise from the acquired signals, and to extract fea-
applied potential to accomplish the capture and ejection of stares from them (Feature Extraction Stage, Fig. 3). The HMM
gle DNA molecules (added to tlwess chamber in 2uM con-  was implemented with 50 states, corresponding to current
centrations). The current blockade data was filtered at 10-kHipckades in 1% increments ranging from 20% residual current
bandwidth using an analog low-pass Bessel filter and recorded69% residual current. The HMM states, numbered 0 to 49,
at 20usec intervals using an Axopatch 200B amplifier couplecbrresponded to the 50 different current blockade levels in the
to an Axon Digidata 1200 digitizer (Axon Instruments, Fosteatiscrete sequences that it processed. The state emission para-
City, CA). A time-domain finite state automaton (FSA; Cormeters of the HMM were initially set so that the sjaté <
menet al, 1989) with eight states performed the generic sig=j <=49 corresponding to levél = j + 20, could emit all
nal identification/acquisition for the first 100 msec of blockadpossible levels, with the probability distribution over emitted
signal (Acquisition Stage, Fig. 3). An abrupt drop to 70% resitkvels set to a discretized Gaussian, with meand unit vari-
ual current, or less, triggered transition from the reset readyce. All transitions between states were possible, and initially
state to the signal active state. For DNA hairpins with stemg&re equally likely. Each blockade signature was denoised by
shorter than eight base pairs, multiple states were not cledilye rounds of Expectation-Maximization (EM) training on the
discernible by the prototype, presumably because the hairpgaameters of the HMM. After the EM iterations, 150 parame-
were too short to interact with the current constriction artdrs were extracted from the HMM. The 150 feature vector com-
strong forces near the limiting aperture. For nine base-pair hgionents were extracted from parameterized emission probabil-
pins, and longer, a clear 1/f noise (flicker noise) is discernibleities, a compressed representation of transition probabilities,

Sampling protocol and signal acquisition
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FIG. 5. The nine base pair DNA hairpin blockade mechanism. Molecular mechanisms underlying the observed current transi-
tions. @ When a 9-bp DNA hairpin initially enters the pore, the loop is perched in the vestibule mouth and the stem terminus
binds to amino acid residues near the limiting aperture. This results in the IL conductance)l&Vekrf the terminal base pair
desorbs from the pore wall, the stem and loop may realign, resulting in a substantial current increase to UL. Interc@aversion b
tween the IL and UL states may occur numerous times, or UL may convert to the Llc)stke (LL state corresponds to bind-

ing of the stem terminus to amino acids near the limiting aperture but in a different manner frdinAtan{g the LL bound

state, the duplex terminus may fray resulting in extension and capture of one strand in the pore constriction.

and use ofa posterioriinformation deriving from the Viterbi netic data is obtained. This data can be used to caldylate
path solution (further details in Winters-Hdt al, 2003). This andk. rates for binding events, as well as indirectly calculate
information elucidates the blockade levels (states) charactef@rces by means of the van't Hoff Arrhenius equation (or other
tic of a given molecule, and the occupation probabilities farguments based on Boltzmann factors).

those levels (Fig. 2b), but does not directly provide kinetic in-

formation. The resulting parameter vector, normalized such ti@alassification training

vector components sum to unity, was used to represent the 3he normalized feature vectors obtained from the feature ex-
quired signal in discrimination at the Support Vector Machlr} )
Faction stage are classified using binary Support Vector Ma

stages. chines (SVMs). Binary SVMs are based on a decision-hyper-
plane heuristic that incorporates structural risk management by
attempting to obtain the greatest training-instance void, or “mar-
Extraction of kinetic information begins with identificationgin,” around the decision hyperplane. Binary SVMs can be
of the main blockade levels for the various blockade classg®uped into a classifier tree to perform multiclass discrimina-
(off-line). This information is then used to scan through alreadipn, and this was done here for the five classes of DNA hair-
labeled (classified) blockade data, with projection of the blockin (shown in classification stages -1V in Fig. 3). Tuning on
ade levels onto the levels identified for that class of molecutee multiclass SVM architecture itself was done for perfor-
A time-domain FSA performs the above scan, and uses therimance optimization, and separate tuning was done on the po-
formation obtained to tabulate the lifetimes of the various bloclarization strength used in the data cleaning. Tuning was also
ade levels. Once the lifetimes of the various levels are obtainddne on the SVM internals, over families of kernels based on
a variety of kinetic properties can be obtained. If the experegularized distances (Jaakkola and Haussler, 1998) and regu-
ment is repeated over a range of temperatures, a full set ofl&iized information divergences. In the former case, the squared

Kinetic feature extraction
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Euclidean distance between feature vecxaasdy, d(x,y) = such switching are thought to exist in one, dominant, helical
Sk(Xk — Y2, also known as the squaréginorm on k-y), conformation. Since much of the current flow is thought to re-
[12(x-y)]? = d3(x,y), is associated with the Gaussian kernekide in the DNA’s major groove (see Discussion section), it is
Ka(x,y) = exp(—d3(x,y)/20?). The latter case represents anderstandable why changes in helical conformation might im-
whole new class of kernels (see Winters-ldiital, 2003, for print as toggles in the UL blockade level. Information from
more details) based on information-theoretic measures of d¥MR studies on the same tetranucleotide termini confirms the
tance between probability vectors (discrete distributions). Thesults indicated, for example, the molecule thought to be ex-
information divergence (relative entropy) between probabilifyibiting conformational switching in Figure 6 is found in NMR
vectorsx andy, D(x|ly) = Sxdog(x/yk), can be associated studies to have two low energy states.

with the “Entropic kernel:” Kg(x,y) = exp(—[D(x|ly) +
D(y||x)]12c?). The terminating SVM node of the classifier tree
(stage IV in Fig. 1) performed best with such an Entropic ker-
nel. The other nodes of the classifier tree used a regularized-
distance type kernel, the “Variation-distance kernel,” based on
the square root of thg-horm, wheré;(x-y) = Syxx — Y|, with
kernelK (x,y) = exp(— Vly(x-y)/20?).

DISCUSSION

Nanopore cheminformatics provides a powerful new tool
for single molecule biophysics. Preliminary efforts indicate
that a variety of sequencing and other biotechnology schemes
will be possible. Likewise, nanopore-based cheminformatics
Discriminator implementation offers an exciting new arena in which to develop and test the

The SVM discriminators were trained by solving their KK‘[IateSt machine learning approaches. So far, every machine-

relations using the Sequential Minimal Optimization (SMO'fearning method i““"‘?'%“?ed’ including HMMs and SVMs, has
procedure (Platt, 1998). A Chunking (Osue al, 1997: énabled greater sensitivity to be extracted from the nanopore

Joachims, 1998) variant of SMO was employed to manage ff/ice-
large training task at each SVM node. The multiclass SVM )
training was based on over 10,000 blockade signatures for ebd®jor groove ion flow

DNA hairpin Species. The data cleaning need_ed_ on the raininGsiven the restricted flow geometry between protein channel
data was accomplished b.y an ext.ra SVM. training round (fuéhd a captured DNA hairpin, it is perhaps surprising that a num-
ther details on data cleaning in Winters-Héiltal, 2003). ber of unexpected nanomechanical and nanofluidic issues have
not arisen. So far, there is only the odd “short circuit” effect
Prototype testing protocol described earlier. Further study of conformational switching
will inevitably have to address some of these issues, since they

In the five DNA hairpin study, the test data consisted of OV&le observable in precisely the odd state referred to above. One

2000 blockade signals for each DNA hairpin species and w esting possibility along these lines is that of cooperative

inter
drawn from experiments that were run on days (and nanoporﬁgil -

. . 2 . along the major groove the DNA molecule.
different from those used to acquire the training data. Testing 9 1079

on single-species mixture calling was done directly, with clas- ]
sification on observations from single-species solutions in theExonuclease as a brake on ssDNA translocation

cis-chamber. One goal of the study was to find how many clas-ygjng |ambda exonuclease as an ssDNA brake appears to be
sification attempts were required to classify the single-specigsssiple. Conditions have been obtained where both the ex-
solutions with very high confidence. Scoring was possible Ry, ,clease retains function and the toxin self-assembles. Other
tracking the known labels on the test data. For the mixture tegfSyk on methylated or dye-tagged ssDNA and dsDNA appears

some of the train data was used for an added calibration. @nyfer significant new information as well (without laser ex-

extra calibration was required because true mixtures of hairpiis;sion of dyes being introduced yet). Experiments with laser
are sensitive to the different (entropic) acceptance rates aRfqulation of analytes are in progress.

(discriminator) rejection rates by the nanopore instrument for
the different hairpin species. Force/geometry probing using DNA hairpins
For a forthcoming manuscript, a variety of DNA hairpins are
RESULTS used as probes of thehemolysin protein channel geometry.
The same experiments also serve to reveal the forces at vari-
The prototype study described in the introduction indicatesis points in the channel. This is done by building on the work
that the UL blockade state (see description with Fig. 5) can deVercoutereet al, (2001), a series of blunt-ended DNA hair-
understood as a captured DNA hairpin with unbound termingihs are used to probe the depth of the vestibule. The blockade
base pair. This enables a study of the conformational dynasignal exhibits a single blockade level for hairpins with stem
ics at the ends of DNA molecules by focusing on the UL statiengths ranging from three base pairs (3 bp) to seven base pairs
of nine base-pair DNA hairpins. In preliminary results, showfY bp). For the 8-bp hairpin a telegraph signal appears, with the
in Figure 6, it can be seen that the UL blockade state for sopramary blockade level at the greater resistance. For 9-bp hair-
of the hairpin molecules actually has internal structure. pins, and those with longer stems, there appear to be three main
This is currently hypothesized to be due to conformationkgvels. The geometric bottom of the vestibule is reached with
switching in the hairpin stem. DNA hairpins that do not exhibé 9-bp hairpin;= 1 bp. Using the 9 bp hairpin as a base, and
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FIG. 6. UL toggle correlates with NMR predicted conformational switching. Preliminary results add credence to the hypothe-
sis that the UL state has an unbound terminus, and that while in that state conformational switching may be observable. For the
molecules and blockades shown, three are found by NMR to have one dominant ground state (no switching), while one of the
molecules is found by NMR to have two dominant low energy states (switching). This corresponds exactly with what has been
observed in terms of the existence of fine structure (toggling) in the UL blockade state.

taking into account the’draying/extension hypothesis (men-or so (amounting to about three nucleotides length of SSDNA).
tioned in the mechanism description in Fig. 5), single-strand&tus, single-molecule sequencing will require further progress
DNA overhangs of varying length were added to the baseimtthe force/geometry probing and the enzyme braking efforts.
the 3 terminus. This permits critical force/geometry probing obince dsDNA carries much more information than ssDNA (i.e.,

the transmembrane part of the channel in a very controllethe molecular motions are much more constrained and read-
manner, by a single (captured) molecule event. Preliminary sle), progress may eventually be made with easily formed syn-
sults indicate two significattansmembrane constrictions, onethetic/ssDNA chimeric molecules that are sized more like

at the limiting aperture, and one near trens-opening. The ssDNA, but have the richer bond-formation structure of dsDNA.

resolving power of the limiting-apertutelns-opening con-

strictions is of critical importance in DNA sequencing anfjon-PCR expression analysis

biosensor applications, and is undetermined as of yet. )
One of the key strengths of nanopore detectors is that they

Sequencing possibilities analyze populations of single molecules. With signal process-
ing and pattern recognition, this information enables a new type
The highly accurate “read” on the end of nine base pair DN cheminformatics. For single nucleotide polymorphism (SNP)
hairpins appears to extend to 10, 11, and 12 base pair hairpifgtification, a nanopore detector also offer the prospect that
as well. Thus, the possibility of performing a similar “read” 0Bnly small sample volumes need be used, such that PCR am-
the end of native blunt-ended dsDNA seems possible as wgllfication may not even be needed. Non-PCR expression analy-
In conjunction with capillary electrophoresis, this offers thgjs in general, may offer a new method for biological experi-

prospect of the entire Sanger sequencing protocol being Agentation on live cells using patch-clamp methods.
formed on a microchip-sized laboratory. If ssSDNA transloca-

tion througha-hemolysin can be slowed enough, by use (Novel kernels

single-enzyme couplings or servo-electronics, then single-

molecule DNA sequencing may prove possible as well. For The kernels studied were not limited to those satisfying Mer-
single-molecule sequencing to be successful, however, the’s conditions. The variation and entropic kernels, however,
deconvolution problem must be solved for the collection @irobably satisfy Mercer’s conditions, since they can be de-
bases at the main current restrictions (where, presumably, skkebed as metrics “regularized” by incorporation as positive ar-
greatest physical imprint is made on the ionic current). Decaguments in a decaying exponential. The Gaussian kernel, which
volution of base content from a single blockade signal may batisfies Mercer's conditions, has the exponential form (with
possible if dominant contributions to resistance span only 20EAiclidean distance squared between feature vectors) and was
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outperformed in all cases studied by the entropic and variatiBassive versus active signal stabilization

kernels. The original motivation for working with the entropic I .

. - . . Reestablishing the-hemolysin channel on a day-to-day ba-
kernel was to obtain a faster, more noise-resistant kernel foréns- resents a maior complication to the pattern recoanition task
formation obtained via an HMM feature extractor (instead P ! P P g '

the theoretically attractive choice of directly integrating the tw he cla_ss training d_ata that would normally map to a snng_le
. ) . cluster is shattered into a cluster of clusters, with greater dis-
via a Fisher Kernel (Jaakkola and Haussler, 1998)). This led 0. .
) ! - rsion and class overlap in the SVM feature vector space. SVM
a general formulation where feature extraction was designedfo_ .. — .~ . . .
f o . - - o<~ classification in such circumstances faces weaker training con-
arrive at probability vectors (i.e., discrete probability distribu- . ; .
. ) e, ergence and poorer signal calling. For the five classes con-
tions) on a predefined, and complete, space of possibilities. (Th : . I
. : . sidered in the prototype, a passive stabilization approach was
different blockade levels, and their frequencies, for examplé. - . o .
. : . Used that optimized the kernels for high rejection. More active
This turns out to be a very general formulation, wherein fea- . I .
; . L computationally based) stabilization methods are being stud-
ture extraction makes use of signal decomposition into a com- . )
. -1ed for larger multiclass problems and improved accuracy over-
plete set of separable states. A probability vector formulatio

also provides a straightforward hand-off to the SVM classifier%ﬂ' These methods entail incorporation of control molecules

. . into the experiment (like the eight base-pair hairpin in Fig. 2a)
since all feature vectors have the same length with such an AR .
. . . . that are tracked as they are randomly sampled along with the

proach. What this means for the SVM is that geometric notions ;

. . fanalytes of interest.
of distance are no longer the best measure for comparing fea-
ture vectors. For probability vectors (i.e., discrete distributions),
the best measures of similarity are the various information-the-
oretic divergences: Kullback-Leibler, Renyi, etc. By sym-
metrizing over the arguments of those divergences we obtain a}\l heminf ) based heh Vsi
rich source of kernels that might work well with the types of anopocrjet Ctem'; ormatics ai’ﬁ d fon t | emolysml
probabilistic data obtained. Thus far, only the Kullback-Leibldf2"OPOre detector olters a new method for singié molecule ex-

divergence has been extensively studied in this manner (givf?1 imentation. Molecules can be classified by characterization
fise to the entropic kernel) of their binding kinetics and dissociation kinetics (i.e., termi-

A multiclass discriminator can be implemented using bl‘-"’(‘j:_ b‘isz f]a'r pretﬁti:mg frates)t._ Th? Irg_ewt’_ prellmlnsry, tr)esult
nary SVMs grouped in a decision tree architecture (as in plgoicated here is that contformational KINEtcs may be observ-

3). Alternatively, a (single) multiclass SVM can be imple= le as well On thg signal analysls S'de. of this expenment,
mented. The latter takes on a much more complicated fomgre is one critical linkage remaining: a link between the ki-
that appears much more susceptible to noise, however gﬁgc feature information and a retrained SVM decision tree.

is much more difficult to train since larger “chunks” are
needed to carry all the support vectors. Although the mono-
lithic SVM approach is clearly not scalable, it may offer bet-
ter performance when working with small class sets. The ) ) ) ]
monolithic approach also avoids the combinatorial explosion FOr their many helpful conversations and technical assis-
caused when optimizing a decision tree architecture. It wi@§ice, We thank our colleagues at the University of California,
revealed in Winters-Hiltet al, (2003), however, that the Se_mta Cruz: Veronica DeGuzman, David Deamer, Andrea Sol-
SVM's rejection capability often leads to the optimal arch2ig: and Clarence Lee. We also thank our colleagues at the

tecture reducing to a linear tree architecture with strong Sig_niversity of New Orleans and the Research Institute for Chil-
nals skimmed off class by class. ren, New Orleans: Andrew Duda and Seth Pincus. This work

was funded by the Research Institute for Children, New Or-
Calibration and feature extraction by HMM leans, the University of New Orleans, the National Human

Genome Research Institute, and by the Howard Hughes Med-
A single HMM/EM process was used to perform featurgal Institute.

extractions in the experiments. If separate HMMs were used

to model each species, the HMM/EM processing could also

be operated in a discriminative mode. This requires multiple REFERENCES
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