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Abstract

Generative probability models such as hidden Markov models pro�
vide a principled way of treating missing information and dealing
with variable length sequences
 On the other hand� discriminative
methods such as support vector machines enable us to construct
�exible decision boundaries and often result in classi
cation per�
formance superior to that of the model based approaches
 An ideal
classi
er should combine these two complementary approaches
 In
this paper� we develop a natural way of achieving this combina�
tion by deriving kernel functions for use in discriminative methods
such as support vector machines from generative probability mod�
els
 We provide a theoretical justi
cation for this combination as
well as demonstrate a substantial improvement in the classi
cation
performance in the context of DNA and protein sequence analysis


� Introduction

Speech� vision� text and biosequence data can be di�cult to deal with in the context
of simple statistical classi
cation problems
 Because the examples to be classi
ed



are often sequences or arrays of variable size that may have been distorted in par�
ticular ways� it is common to estimate a generative model for such data� and then
use Bayes rule to obtain a classi
er from this model
 However� many discrimina�
tive methods� which directly estimate a posterior probability for a class label �as
in Gaussian process classi
ers ���� or a discriminant function for the class label
�as in support vector machines ���� have in other areas proven to be superior to
generative models for classi
cation problems
 The problem is that there has been
no systematic way to extract features or metric relations between examples for use
with discriminative methods in the context of di�cult data types such as those
listed above
 Here we propose a general method for extracting these discriminatory
features using a generative model
 The features we propose are generally applicable
but are most naturally suited to kernel methods for discriminative classi
cation


� Kernel methods

Here we provide a brief introduction to kernel methods� see� e
g
� ��� ��� for more
details
 Suppose now that we have a training set of examples Xi and corresponding
binary labels Si ����
 In kernel methods� as we de
ne them� the label for a new
example X is obtained from a weighted sum of the training labels
 The weighting of
each training label Si consists of two parts� �� the overall importance of the example
Xi as summarized with a coe�cient �i and �� a measure of pairwise �similarity�
between between Xi and X � expressed in terms of a kernel function K�Xi� X�
 The
predicted label �S for the new example X is derived from the following rule�

�S � sign

�X
i

Si �iK�Xi� X�

�
���

We note that this class of kernel methods also includes probabilistic classi
ers� in
which case the above rule refers to the label with the maximum probability
 The
free parameters in the classi
cation rule are the coe�cients �i and to some degree
also the kernel function K
 To pin down a particular kernel method� two things
need to be clari
ed
 First� we must de
ne a classi
cation loss� or equivalently� the
optimization problem to solve to determine appropriate values for the coe�cients
�i
 Slight variations in the optimization problem can take us from support vector
machines to generalized linear models
 The second and the more important issue is
the choice of the kernel function � the main topic of this paper
 We begin with a
brief illustration of generalized linear models as kernel methods


��� Generalized linear models

For concreteness we consider here only logistic regression models� while emphasizing
that the ideas are applicable to a larger class of models�
 In logistic regression
models� the probability of the label S given the example X and a parameter vector
� is given by�

P �SjX� �� � �
�
S�TX

�
���

�Speci�cally� it applies to all generalized linear models whose transfer functions are
log�concave�

�Here we assume that the constant �� is appended to every feature vector X so that
an adjustible bias term is included in the inner product �TX�



where ��z� � �� � e�z��� is the logistic function
 To control the complexity of
the model when the number of training examples is small we can assign a prior
distribution P ��� over the parameters
 We assume here that the prior is a zero
mean Gaussian with a possibly full covariance matrix �
 The maximum a posteriori
�MAP� estimate for the parameters � given a training set of examples is found by
maximizing the following penalized log�likelihood�

X
i

logP �SijXi� �� � logP ��� �
X
i

log�
�
Si�

TXi

�
�
�

�
�T���� � c �	�

where the constant c does not depend on �
 It is straightforward to show� simply
by taking the gradient with respect to the parameters� that the solution to this
�concave� maximization problem can be written as�

�� �
X
i

Si�i �Xi� where ���

�i �
�

�z
log��z�

����
z�Si ��TXi

� �
�
�Si��

TXi

�
���

Note that the coe�cients �i appear as weights on the training examples as in the
de
nition of the kernel methods
 Indeed� inserting the above solution back into the
conditional probability model gives

P �SjX� ��� � �

�
S
X
i

Si�i �X
T
i �X�

�
���

By identifying K�Xi� X� � XT
i �X and noting that the label with the maximum

probability is the one that has the same sign as the sum in the argument� this gives
the decision rule ���


Trough the above derivation� we have written the primal parameters � in terms of
the dual coe�cients �i

�
 Consequently� the penalized log�likelihood function can
be also written entirely in terms of �i� the resulting likelihood function speci
es
how the coe�cients are to be optimized
 This optimization problem has a unique
solution and can be put into a generic form �see ��� for details�
 Also� the form of
the kernel function that establishes the connection between the logistic regression
model and a kernel classi
er is rather speci
c� i
e
� has the inner product form
K�Xi� X� � XT

i �X 
 However� as long as the examples here can be replaced with
feature vectors derived from the examples� this form of the kernel function is the
most general
 We discuss this further in the next section


� The kernel function

The inner product form K�Xi� X� � XT
i �X for the kernel above is actually quite

general
 For a general kernel function to be valid� roughly speaking it only needs
to be positive semi�de
nite �see e
g
 �����
 According to the Mercer�s theorem�

�This corresponds more generally to a Legendre transformation of the loss functions
log ��z	�

�This is possible for all those � that could arise as solutions to the maximum penalized
likelihood problem
 in other words� for all relevant ��



any such valid kernel function admits a representation as a simple inner product
between suitably de
ned feature vectors� i
e
�

K�Xi� Xj� � �TXi
�Xj

���

where the feature vectors come from some 
xed mapping X � �X 
 For example�
in the previous section the kernel function had the form XT

i �Xj � which is a simple

inner product for the transformed feature vector �X � �
�

�X 


Specifying a simple inner product in the feature space de
nes a Euclidean met�
ric space
 Consequently� the Euclidean distances between the feature vectors are
obtained directly from the kernel function�

k �Xi
� �Xj

k�� K�Xi� Xi�� �K�Xi� Xj� �K�Xj � Xj� ���

In addition to de
ning the metric structure in the feature space� the kernel de
nes
a pseudo metric in the original example space through D�Xi� Xj� � k �Xi

� �Xj
k


Thus the kernel embodies prior assumptions about the metric relations between the
original examples
 No systematic procedure has been proposed for 
nding kernel
functions� let alone 
nding ones that naturally handle variable length examples etc

This is the topic of the next section


� Kernels from generative probability models� the Fisher

kernel

The key idea here is to derive the kernel function from a generative probability
model
 While the need for such a kernel function is clear� it is less apparent how it
can be derived from the generative model in a general way
 We arrive at the same
kernel function from two di erent perspectives� that of enhancing the discriminative
power of the model �discussed in Appendix A� and from an attempt to 
nd a
natural comparison between examples induced by the generative model
 The latter
perspective is presented in this section


We have seen in the previous section that de
ning the kernel function automati�
cally implies assumptions about metric relations between the examples
 We argue
that these metric relations should be de
ned directly from a generative probability
model P �X j��
 When our goal is classi
cation� this generative model may include
the classi
cation variable S as a latent variable
 However� of interest here is the
di erence in the generative process between a pair of examples Xi and Xj � rather
than say the di erences in the posterior probabilities for the labels S computed
separately for each of the example� which is all that is used for discrimination in
the purely generative approach


To capture the generative process in a metric between examples we use the gradient
space of the generative model
 The gradient of the loglikelihood with respect to a
parameter describes how that parameter contributes to the process of generating a
particular example
 For the exponential family of distributions� under the natural
parameterization �� these gradients� less a normalization constant that depends on
�� form su�cient statistics for the example
 This gradient space also naturally pre�
serves all the structural assumptions that the model encodes about the generation
process




To develop this idea more generally� consider a parametric class of models P �X j���
� � !
 This class of probability models de
nes a Riemannian manifold M� with a
local metric given by the Fisher information matrix I � where I � EXfUXU

T
Xg� UX �

r� logP �X j��� and the expectation is over P �X j�� �see e
g
 ����
 For simplicity
we have suppressed the dependence of I and UX on the parameter setting �� or
equivalently� on the position in the manifold
 The gradient of the log�likelihood�
UX � is called the Fisher score� and plays a fundamental role in our development


The local metric onM� de
nes a distance between the current model P �X j�� and a
nearby model P �X j����
 This distance is given by D��� ���� � �

�
�T I�� which also

approximates the KL�divergence between the two models for a su�ciently small �


The Fisher score UX � r� logP �X j�� maps an example X into a feature vector
that is a point in the gradient space of the manifold M�
 We call this the Fisher
score mapping
 This gradient UX can be used to de
ne the direction of steepest
ascent in logP �X j�� for the example X along the manifold� i
e
� the gradient in the
direction � that maximizes logP �X j�� while traversing the minimum distance in
the manifold as de
ned by D��� �� ��
 This latter gradient is known as the natural
gradient �see e
g
 ���� and is obtained from the ordinary gradient via �X � I��UX 

We will call the mapping X � �X the natural mapping of examples into feature
vectors
 Again� we have supressed dependence on the parameter setting � here
 The
natural kernel of this mapping is the inner product between these feature vectors
relative to the local Riemannian metric�

K�Xi� Xj� � �TXi
I�Xj

� UT
Xi
I��UXj

���

We call this the Fisher kernel owing to the fundamental role played by the Fisher
scores in its de
nition
 The role of the information matrix is less signi
cant� indeed�
in the context of logistic regression models� the matrix appearing in the middle of
the feature vectors relates to the covariance matrix of a Gaussian prior� as show
above
 Thus� asymptotically� the information matrix is immaterial� and the simpler
kernel KU �Xi� Xj� � UT

Xi
UXj

provides a suitable substitute for the Fisher kernel


While from the metric point of view a scaled"translated kernel #K�Xi� Xj� �
cK�Xi� Xj� � c� �where c� c� � �� is an equivalent kernel� such operations may
be important in practice
 For example� in the logistic regression context� the addi�
tive constant in the kernel has to do with the prior variance of the bias term	
 The
multiplicative factor c relates to the overall prior variance of the remaining param�
eters� i
e
� to the natural gradients� and can be of order � whenever the information
matrix is included


More generally� we emphasize that the Fisher kernel de
ned above provides only
the basic comparison between the examples� de
ning what is meant by an �inner
product� between examples when the examples are objects of various types �e
g

variable length sequences�
 The way such a kernel function is used in a discrimi�
native classi
er is not speci
ed here
 Using the Fisher kernel directly in a kernel
classi
er� for example� amounts to 
nding a linear separating hyperplane in the
natural gradient �or Fisher score� feature space
 The examples may not be linearly
separable in this feature space although the the natural metric structure is given by
the Fisher kernel
 It may be advantageous to search in the space of quadratic �or

�We have tacitly assumed the that the original examples were given in homogenous
coordinates�



higher order� decision boundaries� which is equivalent to transforming the Fisher
kernel according to #K�Xi� Xj� � �� �K�Xi� Xj��

m and using the resulting kernel
#K in the classi
er


We are now ready to state a few properties of this kernel function in the form of a
theorem�

Theorem � For any �suitably regular
� probability model P �X j�� with parameters
�� the Fisher kernel

K�Xi� Xj� � UT
Xi

I�� UXj
����

where UX � r� logP �X j�� has the following properties�

a� it is a valid kernel function

b� it is invariant to any invertible �and di�erentiable� transformation of the
parameters

c� a kernel classi�er employing the Fisher kernel derived from a model that
contains the label as a latent variable is� asymptotically� at least as good a
classi�er as the MAP labeling based on the model

The 
rst property is immediate since I is positive de
nite
 The second property
follows from the fact that the kernel was derived with reference only to the manifold
M�� which is intrinsic to the class of probability models and not dependent on the
parameterization
 � The third property can be established on the basis of the
discriminative derivation of this kernel �see Appendix A�
 We omit the details for
brevity


To summarize� we have de
ned a generic procedure for obtaining kernel functions
from generative probability models
 Consequently the bene
ts of generative mod�
els are immediately available to the discriminative classi
er employing this kernel
function
 We now turn the experimental demonstration of the e ectiveness of such
a combined classi
er


� Experimental results

Here we consider two relevant examples from biosequence analysis and compare
the performance of the combined classi
er to the best generative models used in
these problems
 We start with a DNA splice site classi
cation problem� where the
objective is to recognize true splice sites� i
e
� the boundaries between expressed
regions �exons� in a gene and the intermediate regions �introns�
 The data set used
in our experiments consisted of �	�� DNA fragments from C� elegans collected by
Jonathon King of the Sanger Centre and Arun Jagota at UCSC
 Each of the ����
true examples is a sequence X over the DNA alphabet fA�G� T� Cg of length ��
centered on the consensus $GT� at the �� splice boundary
 The �	�� false examples
are similar sequences centered at instances of $GT� that occur near but not at ��

�We must have a twice di�erentiable likelihood so that the Fisher information I exists�
and I must be positive de�nite at the chosen ��

�A mechanical proof involving Jacobians is also straightforward�



splice sites
 All recognition rates we report on this data set are averages from ��fold
cross�validation


To use the combined classi
er in this setting requires us to choose a generative
model for the purpose of deriving the kernel function
 In order to test how much
the performance of the combined classifer depends on the quality of the underlying
generative model� we chose the poorest model possible
 This is the model where
the DNA residue in each position in the fragment is chosen independently of others�
i
e
�

P �X j�� �

�	Y
i��

P �Xij�i� ����

and� furthermore� the parameters �i are set such that P �Xij�i� � �	� for all i and
all Xi � fA�G� T� Cg
 This model assigns the same probability to all examples X 

As poor a model as this is� we can still derive the Fisher kernel from such a model
and use it in a discriminative class
er
 In this case we used a logistic regression
model as in ��� with a quadratic Fisher kernel #K�Xi� Xj� � �� � K�Xi� Xj��

�

Figure � shows the recognition performance of this kernel method� using the poor
generative model� in comparison to the recognition performance of a naive Bayes
model or a hierarchical mixture model
 The comparison is summarized in ROC
style curves plotting false positive errors �the errors of accepting false examples�
as a function of false negative errors �the errors of missing true examples� when
we vary the classi
cation bias for the labels
 The curves show that even with such
a poor underlying generative model� the combined classi
er is consistently better
than either of the better generative models alone


In the second and more serious application of the combined classi
er� we consider
the well�known problem of recognizing remote homologies �evolutionary"structural
similarities� between protein sequences� that have low residue identity
 Considerable
recent work has been done in re
ning hidden Markov models for this purpose ��� ��
	� ��� and such models current achieve the best performance

 We use these state�
of�the�art HMMs as comparison cases and also as sources for deriving the kernel
function
 Here we used logistic regression with the simple kernel KU �Xi� Xj�� as
the number of parameters in the HMMs was several thousand


The experiment was set up as follows
 We picked a particular superfamily �glycosyl�
transferases� from the TIM�barrel fold in the SCOP protein struture classi
cation
���� and left out one of the four major families in this superfamily for testing while
training the HMM as well as the combined classi
er on sequences corresponding
to the remaining three families
 The false training examples for the discriminative
method came from those sequences in the same fold but not in the same superfam�
ily
 The test sequences consisted of the left�out family �true examples� and proteins
outside the TIM barrel fold �false examples�
 This gave us a scheme for four�fold
cross validation
 The number of training examples varied around ��� depending
on the left�out family
 As the sequences among the four glycosyltransferase fam�
ilies are extremely di erent� this is a challenging discrimination problem
 Figure
� shows the recognition performance curves for the HMM and the corresponding

�These are variable length sequences thus rendering many discriminative methods
inapplicable�

	See http���cyrah�med�harvard�edu��jong�assess final�html
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Figure �� Comparison of classi
cation performance between a kernel classi
er from
the uniform model �solid line� and a mixture model �dashed line�
 In a� the mixture
model is a naive Bayes model and in b� it has three components in each class
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Figure �� Comparison of homology recognition performance between a hidden
Markov model �dashed line� and the corresponding kernel classi
er �solid line�


kernel method� averaged over the four�way cross validation
 The combined classi
er
yields a substantial improvement in performance over the HMM alone


� Discussion

The model based kernel function derived in this paper provides a generic mechanism
for incorporating generative models into discriminative classi
ers
 For discrimina�
tion� the resulting combined classi
er is guaranteed to be superior to the generative
model alone with little additional computational cost
 We note that the power of
the new classi
er arises to a large extent from the use of Fisher scores as features
in place of original examples
 It is possible to use these features with any classi
er�
e
g
 a feedforward neural net� but kernel methods are most naturally suited for
incorporating them


Finally we note that while we have used classi
cation to guide the development of
the kernel function� the results are directly applicable to regression� clustering� or
even interpolation problems� all of which can easily exploit metric relations among
the examples de
ned by the Fisher kernel
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A A discriminative derivation of the model based kernel

Consider a class of generative probability models P �X j�� where the label S appears
as a latent variable� i
e
� P �X j�� �

P
S P �X jS� ��P �Sj��� and where the marginal

probability over the label P �Sj�� is functionally independent of the parameters in
the conditional probabilities P �X jS� ��
 We can use this model to classify any new
example based on the posterior probability P �SjX� �� that it assigns to the labels


Our goal now is to derive a kernel function from this model in such a way that that
a kernel classi
er employing this kernel would be in most cases more powerful and�



in all cases� at least as powerful as the original model
 We start by de
ning what
we call a di�erential extension of the original model and show that the maximum
posterior probability decisions from the original model can be obtained as a special
case from the extended model
 We then turn the decision rule from the extended
model into a kernel classi
er


A�� Di�erential extension

Consider two models� P �X j��� and P �X j����� where their parameters are dif�
ferentially close to �� i
e
� �� � ��� � �
 Below we de
ne a di erential ex�
tension of the original model P �X j�� by associating the above two models with
the �� values of the label S and de
ning the extended joint probability�� as
Pext�X�S� � P �X j�S�Pext�S� for S � f��g
 We claim that the posterior probabil�
ity from this extended model can be reduced to the same classi
er as the original
model
 To this end� we de
ne

&S � P �Sj��� P � 'Sj�� ����

&SjX � P �SjX� ��� P � 'SjX� �� ��	�

where 'S denotes the binary complement of S
 We can now impose the follow�
ing di erential change to the marginal P �Sj�� �possible because of the functional
independence assumption made earlier�

P �X j�S� �
X
S�

P �X jS�� ��

�
P �S�j��

� � 
SS�

� � 
&S

	
� P �X j��

� � 
&SjX

� � 
&S

����

where the second equality is straightforward to verify
 If we also choose Pext�S� �
�� � 
&S�	�� the extended posterior probability becomes

Pext�SjX� �
P �X j�S�Pext�S�

Pext�X�
�

�

�
�� � 
&SjX� ����

where the second equality is again straightforward to obtain �details omitted here
for brevity�
 Since &SjX is positive for the label with the maximum posterior
probability relative to P �SjX� ��� it is evident that this is also the most likely label
according to Pext�SjX�
 Thus the decision rule for the extended model is the same
as that of the original model


A�� Model based kernel from the di�erential extension

Let us now return to the general form of the extended posterior probability and
rewrite it in terms of the logistic function

Pext�SjX� � �



log

P �X j�S�

P �X j� �S�
� log

Pext�S�

Pext� 'S�

�
����

where ��	� is the logistic function as before
 Since the parameters �� and ��� are
di erentially close to � we can expect the Taylor expansions

logP �X j�S� � logP �X j�� � ��S � ��Tr� logP �X j�� ����

� logP �X j�� � ��S � ��TUX ����

�
The di�erential assumption applies only to the parameters �S 
 there are no constraints
on Pext�S	�



to be accurate
 Here UX � r� logP �X j�� is the Fisher score
 Inserting these back
into the posterior probability formulation gives

Pext�SjX� � �



��S � � �S�

TUX � log
Pext�S�

Pext� 'S�

�
����

� �
�
S��� � ����

TUX
�

����

where we have assumed for clarity only that Pext�S� � Pext� 'S�
 The resulting
decision rule is a logistic regression model with the parameter vector #� � ��� �
���� and �examples� UX 
 To complete this derivation� we assign a natural prior
distribution over the new parameters #� that assigns low probability to values that
would arise when there are large di erences in the probability models corresponding
to �� and ����

P �#�� � exp f�KL��� k ���� g � exp

�
�

Z
X

P �X j��� log
P �X j���

P �X j����
dX



����

� exp

�
�
�

�
��� � ����

T I ��� � ����



� exp

�
�
�

�
#�T I #�



����

where I is the Fisher information matrix at �
 The validity of the approximation
used above follows again from the di erential assumption that �� � ���


Finally� equation ��� above shows that in the dual variables� the logistic regression
model ���� with the above prior yields the model

Pext�SjX� � �

�
S
X
i

Si�i �U
T
Xi

I�� UX�

�
� ��	�

which is the general form for logistic regression using the Fisher score function as
the feature vector and the Fisher kernel

K�Xi� X� � UT
Xi

I�� UX � ����

This shows that logistic regression with the Fisher kernel is always at least as
powerful a classi
cation method as the underlying generative model� and motivates
the choice of the Fisher kernel as a natural choice from the perspective of di erential
discrimination with respect to the generative model



