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Utility of the wavelet transform to analyze the stationarity of
single ionic channel recordings
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a Centre de Recherches Emile Pardé, BP 87, 38702 La Tronche cedex, France
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Abstract

Wavelet transform, a time-scale analysis, is presented as a new tool to analyze single-channel recordings. This method makes
it possible to verify the stationarity, to identify episodes of change in the kinetic channel behavior (burst, flickering, cooperativity)
or episodes of noise, and to localize stationary segments in long single-channel current recordings. It can help the conventional
analysis of the kinetic behavior of ionic channels leading to better understand the gating mechanism. © 2000 Elsevier Science B.V.
All rights reserved.
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1. Introduction

It is now thought that ionic channels, an extremely
large group of heterogeneous proteins having the ability
to form a pore for the passive movement of ions across
membranes, are present in most cell types and play an
important role of signal transduction in the cellular
physiology. An electrophysiological technique, the
patch-clamp (Hamill et al., 1981), has sufficient resolu-
tion to record currents through individual ionic chan-
nels of biological membranes. Ionic channels control
the passive flux of selected ions by gating their pores in
response to various factors such as agonists or mem-
brane potential. The gating is thought to arise from a
series of conformational changes. Channels open and
close very quickly. Thus, the currents through channels
appear to be rectangular current pulses of random
duration but fixed amplitude if the electrochemical
gradient does not change. The stochastic behavior of
single-channel current in a steady state has been inter-
preted as the channel’s state transitions between several
open and shut states, and these transitions have been
regarded as a homogeneous Markov process with a

definite transition rate constant at each transition step
(Colquhoun and Hawkes, 1995). Kinetic analysis of
single-channel current is important to understand the
gating mechanism of an ion channel; it requires the
acquisition of sufficiently long records of stationary
single-channel currents.

A stochastic process is called stationary if the proba-
bility of being in each state does not depend on time.
Without sudden change introduced by the experimenter
during the recording, the important sources of nonsta-
tionarity for nonvoltage-dependent channels are an un-
intentional drift in the experimental conditions, a
run-down of the preparation or possible bursting and
flickering activities of channels. These changes can con-
stitute an important artefact in the kinetic analysis of
long records of single-channel currents. Thus, it is very
important to verify the stationarity of these recordings.
With this aim, we present here a new tool, the wavelet
transform (WT), which expands a signal into a time-
scale representation, similar to a time–frequency repre-
sentation. WT has already been used in the signal
processing of biomedical signals (Akay, 1995) and even,
in our laboratory, for the spike detection in electroen-
cephalogram signals (Clochon et al., 1993; Clarençon et
al., 1996) but never in patch-clamp data analysis. In
this latter domain, we show that the wavelet analysis is
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a performing tool to verify the hypothesis of stationar-
ity, and that it can detect and localize stationary seg-
ments in long single-channel current recordings.

2. Material and methods

2.1. Introduction to wa6elet transform

As proposed by Morlet et al. (1982) for seismic signal
analysis, the continuous wavelet transform Cg(a,b) of a
signal s(t) is the decomposition of this signal onto a set
of basis functions ga,b(t):

Cg(a,b)=�s,ga,b�=
&�
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where g*a,b(t) is the complex conjugate of ga,b(t).
The basis functions ga,b(t) are obtained from a given

analyzing wavelet g(t) by dilatations or contractions
(time-scale parameter a) and by time shifts (parameter
b):
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Computing the WT of a signal consists of mapping
the signal into a time-scale plane. The notion of scale
(parameter a) is introduced as an alternative to fre-
quency. Wavelet function g(t) is often a time complex
function, as the function defined by Morlet et al.
(1982):

g(t)=p−1/4 e− ikt e-t2/2 (3)

Therefore, WT is a complex-valued function and it
conveys both modulus and phase information. Both are
necessary to reconstruct the signal. However, a descrip-
tion based only on the squared modulus, providing an
energy density distribution and referred to as scalogram
throughout this paper, is often preferred. The scalo-
gram distributes the energy Eg of the signal all over the
time-scale plane (Rioul and Flandrin, 1992):&�
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The real time function, the so-called ‘Mexican hat’
function (Daubechies, 1989), is also currently adopted
for the wavelet function g(t):

g(t)=
2


3
p−1/4(1− t2) e− t2/2 (5)

This wavelet function presents one of the best possi-
ble simultaneous concentration properties both in time
and frequency domains. The corresponding piecewise
constant function, the so-called ‘top hat’ wavelet of Eq.
(6), is currently adopted for an approximation of the
‘Mexican hat’ function (Arneodo et al., 1989).

g(t)=
1 if �t �B1

−0.5 if 1B �t �B3
0 if �t �\3

(6)

We have chosen this latter wavelet because its shape
was close to the rectangular current pulses of single-
channel recording. Since this function is a real function,
the wavelet transform is a real-valued function.

2.2. Computing wa6elet transform

The discrete wavelet transform has been obtained by
computing the convolution of the digitized signal with
this latter analyzing wavelet after discretization of a
and b parameters. A software program has been written
in our laboratory with Labwindows/CVI (National In-
struments, USA). It runs on a PC microcomputer under
a Windows 3.1x or higher environment. It opens data
files in ASCII format and in Biopatch 3.41 (Bio-Logic
software, France) format. Modulus, squared modulus,
and eventual phase of WT can be calculated for the
wavelet functions of Eqs. (3), (5) and (6). After defining
the required parameters as a choice of analyzing fre-
quencies, computing is applied to all points of the entire
data file. Results are saved on the hard disk before
displaying. They can be displayed in time-scale repre-
sentation in false colors (thermal color palette) or in
inverse grey scale (luminance palette), and in a time
graph for each frequency. The threshold and maximum
of WT can be defined for the application of linear or
logarithmic color or grey scale. Time-scale representa-
tions and time graphs can be filtered. Moving or zoom-
ing into the signal is possible. In the case of condensed
representations, displayed results represent the arith-
metical mean of WT round the point, the number of
data for computing each mean value being in propor-
tion to the condensation. In the case of extended repre-
sentations, linear interpolation is applied between
calculated WT for displaying additional pixels.

3. Results

To demonstrate the nature of the WT produced, two
test signals were shown.

First, Fig. 1 shows a time-scale representation of the
energy density distribution based on the squared mod-
ulus of WT (scalogram) of an ionic channel recording
where we have introduced a noisy segment made by
linear combination with a sinusoidal function at 50 Hz
frequency. A ‘top hat’ wavelet is used. The ability of
the transform to localize in both time and scale this
noisy segment is clearly evident.

Second, we wished to demonstrate the utility of the
wavelet analysis in the detection of breaking-down
points of the stationarity in the kinetic behavior of
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Fig. 1. Wavelet transform of a noisy ionic channel recording obtained
using the ‘top hat’ wavelet. (A) Signal was formed by a single-channel
recording filtered at 3 kHz and digitized at 9600 Hz, where the second
part was a linear combination with a sinusoidal function (frequency,
50 Hz; amplitude, 1 pA). (B) Time-scale representation of energy
density distribution based on the squared modulus of wavelet trans-
form (scalogram). Seventeen frequencies are shown in the vertical
axis, distributed according to three sub-octaves between 12.5 and 200
Hz. The inverse grey scale is applied after a logarithmic conversion of
WT values. A dark color represents a high-energy density.

ionic channels, and in the localization of stationary
segments into signals. We chose to show the analysis of
an artificial signal created by concatenation of station-
ary segments. The stationarity of these segments was
obtained by computing, with Biopatch 3.41 software,
simulated ionic channel currents according to the the-
ory of Markov chains. A white gaussian noise was
artificially created with Biopatch 3.41 software, and
mixed with the signal in order to reproduce the aspect
of a biological signal. Fig. 2A represents a signal
formed by concatenation of four segments of 1 min
simulating stationary kinetic behavior of two ionic
channels. The parameters of kinetic models for the
simulation and the signal-to-noise ratio were chosen so
as to make difficult the visual detection of stationary
segments into the signal. Fig. 2B,C, respectively, repre-
sent the time-scale scalogram and the time plots of
squared modulus of WT for three analyzing frequencies
selected among the 13 calculated. As shown in these
figures, this easy signal processing makes possible, in
one stage and in a blind way, the localization of the
four stationary segments. Therefore, a precise cutting
out of the signal in stationary segments makes possible
the analysis of the kinetic behavior of ionic channels by
using Biopatch 3.41 software. So, for each cutting
segment, after verifying the functional independence of
the two channels and computing the dwell time distri-
butions in the three observable current levels corre-

Fig. 2. Wavelet transform of a simulated single-channel recording obtained using the ‘top hat’ wavelet. (A) Signal formed by concatenation of four
stationary segments of 1 min. The kinetic model for the simulation of each stationary segment is formed by two ionic channels with, for each
channel, one closed state, C, and one open state, O. The unitary current is 10 pA. The kinetic constant kO�C is fixed at 400 Hz for the four
simulations, and kC�O is successively 50, 1000, 400 and 50 Hz. An offset is applied to reset the mean of each stationary segment. A simulated
white gaussian noise is added (mean, 0; standard deviation, 6.66 pA). The signal-to-noise ratio defined as the ratio of unitary current to standard
deviation of noise is deliberately chosen low, equal to 1.5. The sampling frequency (SF) is 3 kHz. The simulation software rules out oscillations
of frequencies greater than SF/2. No additional filtering process is performed. (B) Scalogram using the ‘top hat’ wavelet function. Thirteen
frequencies are distributed according to three sub-octaves between 80 and 640 Hz. Inverse grey scale is applied after a logarithmic conversion of
WT values. (C) Time plots of squared modulus of WT for three analyzing frequencies: 640, 120 and 80 Hz (arbitrary scale in ordinate).
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Fig. 3. Wavelet transform of BK(Ca) channel recording. (A) Single-
channel current recording lasting 54.6 s in inside-out configuration on
N1E-115 cells. (B) Scalogram using the ‘top hat’ wavelet function.
Thirteen frequencies are distributed according to three sub-octaves
between 80 and 640 Hz. Inverse grey scale is applied after a logarith-
mic conversion of WT values.

this episode, the energy density appears higher and
shifts to higher frequencies. This pattern is representa-
tive of an episode of fast flicker process. Such a long
flickering episode is rare in BK(Ca) channel recordings
in N1E-115 cells, but is classically described in other
cells (Yellen, 1984). In this example, we can distinguish
three stationary segments according to the energy den-
sity distribution. There is no obvious difference between
the patterns of energy density distribution of segments
that precede and follow the flickering. This observation
is confirmed by the classical analysis methods (ampli-
tude distributions, dwell-time distributions in open and
close states, autocovariances and power spectral densi-
ties) (data not shown).

4. Discussion and conclusion

One important goal in the analysis of the ion channel
is to obtain a kinetic model for the gating. Kinetic
models provide working hypothesis for studies relating
structure to function. The kinetic analysis methods
usually applied require the acquisition of long records
of stationary single-channel currents. In a stochastic
signal, such as the one met in a single-channel current
recording in a steady state, stationarity is relevant to
the time invariance of the probabilistic behavior. The
mean value and the variance function are time invari-
ant. Therefore, currently, methods to analyze stationar-
ity of these signals consist of cutting signals in segments
and of verifying that means and variances of current
amplitude are constant all along the segmentation. An-
other method is the analysis of variance in a variance–
mean plot. These methods are dependent on the cutting
out of the record and cannot make it possible for a
precise localization in time of the possible change in
gating behavior. A stationary stochastic signal is also
fully characterized by a unique time-independent spec-
tral description, its power spectral density function. In
nonstationary signals, the power spectral density ap-
pears not sufficient for a physically meaningful descrip-
tion. The time-scale analysis (like WT analysis)
provides an alternative approach to analyze these non-
stationary signals, and gives an approximation of the
instantaneous energy for a given time and frequency.
As presented in this paper, the wavelet transform in the
scalogram mode appears as a good tool to verify the
stationarity and to localize stationary segments in long
single-channel current recordings. It can be used with-
out important filtering, i.e. without important distor-
sion of the signal, and it gives information about the
energy distribution in the time–frequency plane. It
therefore acts as a ‘mathematical microscope’ through
which one can observe different parts of the signal by
adjusting the focus. In Fig. 1, we have also demon-
strated the utility of WT in elimination of noisy signal
segments. Other applications of the WT can be tested in

sponding to the three open states (0, 1 and 2 open
channels), the two time constants of the kinetic model
calculated with the use of conventional methods
(Colquhoun and Sigworth, 1995) are close to the initial
values that are used for the simulations. The power
spectral density separately calculated from each cutting
segment shows that the powers released in the same
frequency bands as those studied for WT follow a
comparative evolution as the squared modulus of WT
from one segment to another. This observation
strengthens the idea that the scalogram is a time-scale
representation of energy density distribution.

Therefore, WT can be used to verify the stationarity,
to identify episodes of change in the kinetic channel
behavior and to localize stationarity segments in long
single-channel current recordings without important
filtering. Fig. 3 shows the scalogram of an ionic channel
recording filtered at 3 kHz and digitized at 9600 Hz.
The signal represents the current through one large
conductance calcium-activated potassium channel
BK(Ca) on N1E-115 neuroblastoma cells. This channel,
which we have previously characterized (Diserbo et al.,
1994, 1996), is here recorded in inside-out configuration
under symmetrical [K+] (145 mM) and pCa 5.3 in the
bath, and clamped to a membrane potential of 60 mV.
No change was introduced by the experimenter during
the recording but an apparent change in the kinetic
behavior of this channel occurred. As shown in Fig. 3B,
a scalogram using the ‘top hat’ wavelet is proved as a
good tool to detect in a blind way this episode. During
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the domain of patch-clamp signal processing. For ex-
ample, in BK(Ca) channel currents recorded in a cell-
attached configuration on excitable cells, WT can help
to detect perturbations or rhythmic activity produced
by calcium waves in cytosol or action potential in the
kinetic behavior of these channels. WT can also be
useful for detecting changes in cooperativity between
the channel complex since power spectral density func-
tion is known to be a very accurate indicator of cooper-
ativity (McGeoch and McGeoch, 1994). WT can also
help to study bursting in channel activity, or action of
drugs and toxins on kinetic behavior of ionic channels.
Therefore, WT may be considered as an efficient tool
that complements the currently used tools in single-
channel recording processing.
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