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Abstract
Background: Ionic current blockade signal processing, for use in nanopore detection, offers a
promising new way to analyze single molecule properties, with potential implications for DNA
sequencing. The alpha-Hemolysin transmembrane channel interacts with a translocating molecule
in a nontrivial way, frequently evidenced by a complex ionic flow blockade pattern. Typically,
recorded current blockade signals have several levels of blockade, with various durations, all
obeying a fixed statistical profile for a given molecule. Hidden Markov Model (HMM) based duration
learning experiments on artificial two-level Gaussian blockade signals helped us to identify proper
modeling framework. We then apply our framework to the real multi-level DNA hairpin blockade
signal.

Results: The identified upper level blockade state is observed with durations that are
geometrically distributed (consistent with an a physical decay process for remaining in any given
state). We show that mixture of convolution chains of geometrically distributed states is better for
presenting multimodal long-tailed duration phenomena. Based on learned HMM profiles we are
able to classify 9 base-pair DNA hairpins with accuracy up to 99.5% on signals from same-day
experiments.

Conclusion: We have demonstrated several implementations for de novo estimation of duration
distribution probability density function with HMM framework and applied our model topology to
the real data. The proposed design could be handy in molecular analysis based on nanopore current
blockade signal.

Background
In its quest for survival the bacterium Staphylococcus aureus
secretes α-hemolysin monomers that bind to the outer
membrane of susceptible cells, where seven such units can
oligomerize to form a water-filled transmembrane chan-

nel [1-4]. The channel can cause death to the target cell by
rapidly discharging vital molecules (such as ATP) and dis-
turbing the membrane potential.
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Suspended in lipid bilayer [see Additional File 1] the α-
hemolysin channel becomes a sensor when large mole-
cules interact with the nanopore and modulate uniform
ionic flow through the channel. Driven by transmem-
brane potential, single stranded DNA or RNA molecules
translocate through the nanopore [5,6], while more com-
plex hairpins either unzip and translocate [7,8] or toggle
in the channel's vestibule [8,9] [see Additional File 1]. The
durations of ionic flow blockade events in these experi-
ments are important signatures of interacting nucleic acid
fragments composition [7,10] or in certain cases charac-
terize the molecular length [11].

Two distinct approaches of duration modelling have been
proposed for HMM framework by speech recognition
community, based on explicit duration modelling, which
is normally implemented with histograms or parametric
distributions, and implicit modeling based on set of geo-
metrically distributed self-recurring nodes [12]. The most
common way of implementing explicit duration model is
Generalized Hidden Markov Model (GHMM), where each
state can emit more than one symbol at a time [13]. Fol-
lowing [14], the optimal GHMM parse could be expressed
by the following equation

where ϕ is a parse of the sequence consisting of a series of
states qi and state durations di, 0 ≤ i ≤ n, with each state qi
emitting subsequence Si of length di, so that the concate-
nation of all S0S1 ... Sn produces the complete output
sequence S. Pe(Si|qi, di) denotes the probability that state
qi emits subsequence Si of duration di. Pt(qi|qi-1) is GHMM
transition probability from state qi-1 to state qi and Pd(di|qi)
is the probability that state qi has duration di. The primary
objective, expressed in (1), is to combine probability
returned by content probabilistic model (such as HMM)
with duration probability for optimal parse. The GHMM
implementation, as well as HMM-with-Duration
approach mentioned in [15], require explicit assignment
of duration histogram to run Viterbi decoding.

When we try to classify single DNA base pair by nanopore
ionic flow blockade signal processing [16], we frequently

have to deal with a sequence of blockades resulting from
complex molecular interactions with unknown states. For
this reason, we are interested in de novo learning of emis-
sion content and duration distributions corresponding to
these stationary blockade states. In this study we research
several approaches to the problem of duration and con-
tent sensor learning in the context of nanopore ionic flow
blockades analysis.

Results and discussion
Explicit duration model learning experiment
The objective of this experiment was to evaluate the ability
of a randomly initialized explicit Duration HMM
(DHMM), as described [see Section The explicit duration
HMM implementation], to learn the original duration phe-
nomena present in artificial data. We use the Expectation
Maximization (EM) training procedure, as discussed [see
Appendix D], to iteratively reinforce the network structure
to match the test data set topology. For the model training
purposes we have generated 120 sequences of 1,000 emis-
sions each with the maximum state durations of 30
according to protocol discussed [see Section Running orig-
inal explicit DHMM in generative mode].

First, we learned randomly initialized geometric model, as
described [see Section Geometric duration distribution and
convolution of geometric states], for 200 iterations to reliably
recover the two major Gaussian emitting components and
roughly estimate the average duration for two states. An
accuracy of 85.75% has been achieved by Viterbi decoding
[see Appendix D] on the learned geometric duration model
for the test set, which constitutes 95.72% performance of
the original explicit DHMM run on the same test set. Here
and further we identify accuracy as the ratio of correctly
decoded emissions to the entire number of emissions in
the given time series

where True Positives (TP), True Negatives (TN), False Pos-
itives (FP) and False Negatives (FN) are among the classi-
fied data points.

We use the recovered Gaussian emissions and initial prob-
abilities to initialize the explicit DHMM, and we use
learned average state duration as the expected prior for the
explicit duration histogram initialization. We freeze the
emission Gaussian Probability Density Functions (PDFs)
so that they don't change. Upon convergence of the
explicit DHMM to a local likelihood maximum we record
88.98% Viterbi decoding accuracy on the test set, which is
99.33% of the original explicit DHMM performance, i.e.
we were able to recover the duration phenomena with
performance almost identical to the original explicit
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DHMM. Figure 1 shows histograms obtained for the state
durations. Although their shape approximates the original
duration PDF pretty well, the recovered histograms expe-
rience substantial abrupt and unwanted variations.
Another shortcomings of this duration learning strategy is
that it is extremely slow and requires simultaneous esti-
mation of large number of parameters. Therefore, in the
next section we present an approach based on a convolu-
tion chain of geometric duration states.

Convolution of states learning experiment
In this experiment we construct aggregate model states as
convolution chain of three geometric distributions. The
convolution chain for identical geometric distributions
can be represented as a bell-shaped Negative Binomial
discrete PDF, as discussed [see Section Geometric duration
distribution and convolution of geometric states].

The resulting convolution model trained with EM algo-
rithm [see Appendix D] on an artificial nanopore signal
with maximum state duration of 30 of 120 sequences
1,000 emissions each, generated according to protocol
discussed [see Section Running original explicit DHMM in
generative mode], is shown in Figure 2. In this learning
experiment we use known emissions (45, 20) and

(50, 20), that do not change in the process of learning,
and initialize the prior probabilities and transitions with
the expected state durations. Interestingly, direct use of
the learned convolution model in Viterbi decoding pro-
duces reconstruction fidelity substantially inferior to the
simple geometrically-distributed model. The convolution
chain has full power only for forward-backward proce-
dure [13] for likelihood estimation [see Appendix D] and
does not work for representing duration phenomena in
case of Viterbi decoding. Therefore, we use the histograms
shown in Figure 2 to initialize explicit DHMM transitions.

Such hybrid explicit DHMM achieves on Viterbi decoding
accuracy of 90.20%, which is 99.69% performance of
original explicit DHMM on the same test set. Therefore, by
learning chains of convolving geometrically-distributed
components we achieve similar or better performance as
compared to direct learning of explicit DHMM, in much
shorter time period. The experiment clearly demonstrates
the ability of a convolution chain to learn the complex
duration phenomena in the data, outperforming the sim-
ple geometric duration model. Convolving states cannot
generate or model duration phenomena shorter than the
chain length (three in our case), therefore the number of
convolving states should be used conservatively.

Performance of Viterbi decoding depending on blockade 
maximum duration
We run Viterbi decoding for the original models presented
[see Sections The explicit duration HMM implementation
and Geometric duration distribution and convolution of geo-
metric states] with results shown in Table 1. In case of the
geometric model we used transitions assigned according
to simple maximum likelihood formula [see Section Geo-
metric duration distribution and convolution of geometric
states] estimated on the test set emissions of the original
explicit DHMM.

The geometric distribution model runs faster, but decod-
ing performance is always inferior compared to the
explicit DHMM. The geometric HMM appears to be sim-
ple and crude approximation to the duration signal.
Explicit DHMM runs D times slower than simple geomet-
ric model, but produces superior results to any other types
of implementations, given the exact duration histogram.
The higher the maximum state duration D and the longer
the average phenomena duration is, the better decoding
quality we can obtain for all the models.

Learning durations on the real blockade signal
Here we analyze the ionic flow blockade signal resulting
from the nine base pair "upper level toggler" hairpin DNA
molecule CGTGGAACGTTTTCGTTCCACG, generated
according to protocol described in [9] (signal was filtered
at 50 kHz bandwidth using an analog low pass Bessel fil-
ter with the 20 μs analog-to-digital sampling). Due to its
unique sequence in the stem region and its interactions
with the channel's vestibule it produces a rich signal (the
upper level toggle) [17].

From the physical perspective the hairpin molecule can
undergo different modes of capture blockade, such as
Intermediate Level (IL), Upper Level (UL), Lover Level
(LL) conductance states and spikes (S) [18]. When a 9 bp
DNA hairpin initially enters the pore, the loop is perched
in the vestibule mouth and the stem terminus binds to




Recovered duration histograms by learning the randomly ini-tialized explicit duration DHMM for the maximum state duration of 30Figure 1
Recovered duration histograms by learning the randomly ini-
tialized explicit duration DHMM for the maximum state 
duration of 30.
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amino acid residues near the limiting aperture. This
results in the IL conductance level. When the terminal
basepair desorbs from the pore wall, the stem and loop
may realign, resulting in a substantial current increase to
UL. Interconversion between the IL and UL states may
occur numerous times with UL possibly switching to the
LL state. This LL state corresponds to binding of the stem
terminus to amino acids near the limiting aperture but in
a different manner from IL. From the LL bound state, the
duplex terminus may fray, resulting in extension and cap-
ture of one strand in the pore constriction resulting into
short term S state. The allowed transition events between
these levels IL ⇔ UL ⇔ LL ⇔ S can happen at any time
during the analysis procedure.

For the purposes of de novo emission levels detection we
have learned the mixture of six Gaussian (MoG) compo-

nents [see Appendix B] on the raw ionic flow blockade sig-
nals. EM learning step converged to the following mixture
of six Gaussian components

as could be seen in Figure 3, where (x|μ, σ2) is normal
PDF.

We took four primary components from the recovered
MoG (2) and applied them as emissions to the convolu-
tion model [see Section Geometric duration distribution and
convolution of geometric states] for four aggregate states. We
learn the model on the ionic flow blockade signal of size

p x x x x( ) . ( | . , . ) . ( | . , . ) . ( |= × + × + ×0 228 52 26 1 18 0 08 62 35 13 57 0 18   555 05 6 13

0 09 42 29 3 92 0 28 38 82 1 68 0 1

. , . )

. ( | . , . ) . ( | . , . ) .+ × + × + x x 44 59 87 1 83×( | . , . )x

(2)



Learned convolution model for the two known Gaussian emitting components with maximum state duration of 30Figure 2
Learned convolution model for the two known Gaussian emitting components with maximum state duration of 30. Discrete 
duration distribution histograms are put next to each aggregate state.
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Table 1: Test set decoding performance for various aggregate state sizes. Here we show percentage of states recovered correct in 
Viterbi decoding for various methods.

Max. state duration Explicit DHMM Geometric duration HMM

6 81.04% 72.70%
10 83.36% 74.43%
24 88.80% 82.18%
30 90.06% 87.94%
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173,000 samples with the recovered topology shown in
Figure 4. The graph of transition nodes connecting the
learned aggregate states appears to be sparse with nonzero
transitions [see Additional File 2]. This analysis shows
that not all transitions between molecular interaction
states are allowed. Interestingly enough, the second state
has transitions to other three states. According to the inter-
action physical model discussed above the molecule
should bounce back and fourth between the deeper block-
ade levels, thus components (52.26, 1.18) and

(38.82, 1.68) dominate. The recovered geometric dis-
tribution of the blockade events (a classic physical decay
phenomenon), indicate that upper level toggler molecule
has constant state-dependent probability to dissociate
from one interaction state and transit to another physi-
cally feasible conformation.

Aggregate states 1, 3 and 4 converged to pure geometric
distributions with no apparent bell-shaped duration phe-
nomena, as could be seen in Figure 4. However, as could
be seen in Figures 5(a) and 5(d), the long-tailed distribu-
tion does not fall nicely in the framework of geometric
duration. The geometric durations learned on these long-
tailed distributions does not approximate well neither the
initially sharp peak nor the long tail in duration histo-
grams and therefore should really be treated as multimo-

dal distribution approximated by mixture of geometric
components. On the other hand, the histograms shown in
Figures 5(b) and 5(c) fall perfectly into framework of geo-
metric PDF.

We improve the histograms for multimodal long-tailed
distributions by training the mixture of two convolution
chains. Resulting convolution mixture generative histo-
grams present the original phenomena much better as
could be seen in Figure 6. Upon introduction of convolu-
tion mixture the model logarithmic likelihood [see Appen-
dix B], given training sequence, has increased from -
420068.73 to -418636.5 for the fully trained topologies
which indicated better model fit to data. Mixing more
than two components per aggregate state did not provide
apparent improvements and unnecessarily complicated
the model.

System performance on the 9CG versus 9TA data
We took 3,460 ms ionic flow blockade signals for 9GC
and 9TA molecules, recorded according to protocol
described in [9], and automatically learned the convolu-
tion topology according to the strategy [see Section Learn-
ing durations on the real blockade signal]. The remaining
sequences, generated the same day, were used as a test set.
We have split the test set sequences into chunks of 100 ms
each to investigate short-term classification performance,




Resulting PDF for learning the mixture of six Gaussian components on ionic flow blockade signalFigure 3
Resulting PDF for learning the mixture of six Gaussian components on ionic flow blockade signal.
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resulting into 13,753 test fragments for 9TA signal and
15,652 9GC test fragments as could be seen in Figure 7.
We run both 9GC and 9TA learned HMM profiles on the
test sequences and classify them according to maximum
likelihood. We achieve classification accuracy of 99.56%
on the 9GC test set and 97.87% on the 9TA test set.

Conclusion
Although running slowly, the explicit DHMM design has
many advantages over other duration representation
methods for HMMs, such as using unmodified Viterbi
decoding algorithm and possibility for exact representa-
tion of any duration phenomena. Original explicit

DHMM produced the best results in all artificial test cate-
gories. However, learning of such topology can quickly
turn into a grim experience, since too many parameters
need to be learned with noisy data.

The geometric duration distribution HMM is simple, but
is not well suited to complex duration data analysis [see
Section Performance of Viterbi decoding depending on block-
ade maximum duration]. Convolution of geometric states,
especially a mixture of such aggregate states, is a much
more robust and powerful method of interpolating noisy
multimodal duration phenomena encountered in ionic
flow blockade time series analysis. The software used to

Learned convolution model for the four major MoG components recoveredFigure 4
Learned convolution model for the four major MoG components recovered. Transitions with weight 0.001 are negligible and 
were forcefully assigned by learning algorithms not to cause underflow in forward-backward procedure.
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conduct experiments in this report is freely available at
http://logos.cs.uno.edu/~achurban.

Methods
The explicit duration HMM implementation
In Figure 8 we show the explicit DHMM topology we use
to combine duration with content sensors, which we refer
to as the original explicit DHMM throughout the manu-

The duration histograms recoveredFigure 5
The duration histograms recovered. Histograms recovered by running Viterbi decoding of learned convolution model on the 
ionic flow blockade signal are shown in red. Blue histograms (to the right in each subfigure) are produced by running learned 
convolution model in generative mode.
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(c) Component N (55.05, 6.13)
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(d) Component N (59.87, 1.83)

The duration histograms recoveredFigure 6
The duration histograms recovered. In this case we approximate long-tailed histogram by mixture of two convolution chains, 
which produces better fit as compared to Figures 7a and 7d.
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script. This model follows the topology discussed in [19]
for exact duration implementation and is similar in com-
putational complexity to a more common explicit dura-
tion modeling of GHMM [13,14,20]. Our
implementation takes advantage of intuitive duration
presentation, instead of using disjoint parametric distri-
butions or histograms for duration modeling that compli-

cate decoding algorithm well beyond standard Viterbi
procedure.

Our model uses standard Viterbi decoding algorithm [see
Appendix D], which we implemented in linear memory
using linked list of back pointers in addition to imple-
mentation of Forward-Backward algorithm [21] for EM

Sample 100 ms nanopore blockade signals for 9TA and 9GC molecules with corresponding MoG densitiesFigure 7
Sample 100 ms nanopore blockade signals for 9TA and 9GC molecules with corresponding MoG densities.
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learning [see Appendix D] with memory use proportional
to the number of states. The maximum state duration D
has to be imposed on each duration histogram in this
model which might seem as a limitation in case of long-

tailed distribution. This deficiency could easily be
resolved by adding the geometrically distributed states to
explicit DHMM, that are capable of modeling simple infi-
nite long tailed durations [see Section Geometric duration

The explicit DHMM topology we use with the maximum state duration of 6Figure 8
The explicit DHMM topology we use with the maximum state duration of 6. Discrete duration distribution histograms are put 
next to each aggregate state.
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distribution and convolution of geometric states], and use
explicit part of the model to catch only the initial complex
duration phenomena.

In this study we use two aggregate groups of states with
corresponding discrete duration PDF obtained by discre-
tizing to continuous PDFs [see Additional File 3], denoted
as first and second states. The thermal noise of ionic flow
at certain blockade level is approximated extremely well
by the Gaussian PDF emission from HMM hidden states
[see Appendix C]. The aggregate states are formed by loss-
less chains of transitions between hidden states, where we
sacrifice the probability score only to enter the chain. We
use Gaussian emissions (45, 20) and (50, 20) in
the first and second aggregate states, correspondingly. Ini-
tial probabilities correspond to 50% chance to begin
decoding in the first aggregate state and 50% for the sec-
ond aggregate state.

Running original explicit DHMM in generative mode
We run original explicit DHMM [see Section The explicit
duration HMM implementation] running in generative
mode to get the test set of 1,000,000 sample points of arti-
ficial nanopore blockade signal [see Additional File 4]. In
order to generate the test set we simply traverse the HMM
graph in stochastic fashion according to transition proba-
bilities assigned to edges, where each transition culmi-
nates in emission from PDF assigned to a state [see
Appendix C]. Along with the emissions we record the
known emitting hidden states for performance testing and
parameter estimates of geometrically distributed HMM
[see Section Geometric duration distribution and convolution
of geometric states]. We use the test set to evaluate perform-
ance of various HMM implementations and learning tech-
niques [see Sections Explicit duration model learning
experiment, Convolution of states learning experiment and Per-
formance of Viterbi decoding depending on blockade maximum
duration].

Geometric duration distribution and convolution of 
geometric states
The geometric duration distribution is implemented as a
self-recurring hidden state in the HMM framework and
there are many merits of such duration modeling. The
geometric duration distribution is modeled by only one
state, which results in very compact probability tables for
forward-backward and Viterbi decoding algorithms. Ran-
dom variable x is distributed according to geometric law
px(k) = p(1 - p)k - 1 where k = 1, 2, 3... and 1 - p is the prob-
ability to stay in the same state. Parameter p fully charac-
terizes this distribution and could be easily estimated by
maximum likelihood, which is calculated as following

where N is the number of discrete duration samples k1,...,
kN. The topology of the two state model with duration dis-
tributed according to geometric law [see Additional File
5].

The chain of consecutive identical geometrically distrib-
uted states could represent bell-shaped Negative binomial
duration distributions [19], as discussed [see Appendix A].
In the case of non-identical geometrically distributed con-
nected states the PDF remains bell-shaped since the

number of possible paths through the model 

increases as the number of trials k grows, but the total sum
of probabilities attributed to all these paths through n
geometric components decreases. The mixture of aggre-
gate states distributed according to Negative binomial
law, as shown in Figure 9, can interpolate duration distri-
bution even better, especially in case of multimodal distri-
butions. A nice attribute of the duration representation,
with geometrically distributed states, is that we are able to
interpolate the noisy duration histogram, common for
ionic flow time series, with much smoother discrete distri-
bution.
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Appendices
Appendix A – Convolution of geometric distributions
In statistics, the probability distribution of the sum of sev-
eral independent random variables is the convolution of
their individual distributions. Suppose random variable x
is distributed according to geometric law px(k) = p qk-1

where k = 1, 2, 3... is the number of trials to exit the state
and q = 1 - p is the probability to stay in the same state. The
moment generating function for geometric distribution is
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If random variable x is distributed according to Negative
binomial, i.e. x ~ NegBin(n, p), then the moment generat-
ing function is written as

The Negative binomial moment generating function is a
product of n geometric distribution moment generating
functions, which corresponds to convolution [19] of n
identical geometric distributions with parameter p [see
Additional File 6]. Distinct bell-shaped plot of Negative
binomial distribution PDF with parameters p = 0.99 and
n = 1,..., 5 presented [see Additional File 7].

Appendix B – Learning the mixture models
The one-dimensional MoG model [22] of M components
is a degenerate case of HMM

where αi is mixing proportions.

The objective of learning is to maximize likelihood func-

tion , i.e. we wish to

find locally optimal set of parameters

 by using Expectation Maximization

(EM) iterative procedure given the set of data points .

Expectation step in mixture fitting algorithm is made
through computing responsibility matrix of the compo-
nents given data points
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Mixture of convolutions for Aggregate states 1 (Agr1) and 4 (Agr4) where in brackets we include mixture component numberFigure 9
Mixture of convolutions for Aggregate states 1 (Agr1) and 4 (Agr4) where in brackets we include mixture component number. 
Transitions with weight 0.001 are negligible and were forcefully assigned by learning algorithms not to cause underflow in for-
ward-backward procedure.
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We use Bayesian rule to find posterior probability
(responsibility) of a mixture component with parameters
Θi for data point oj

Expectation step is followed my maximization step where
we re-estimate parameters

(a) Mixture proportions ,

(b) Mean ,

(c) Variance .

Appendix C – Definition of Hidden Markov Model
The Hidden Markov Model (HMM) is a widely accepted
stochastic modelling tool [23] used in various domains,
such as speech recognition [24] and bioinformatics [25].
HMM is a stochastic finite state machine where each tran-
sition between hidden states is culminated by a symbol
emission. The HMM could be represented as a directed
graph with N states where each state could emit either dis-
crete character or continuous value drawn from PDF. In
order to describe HMM we need the following parameters

• Set of states, we label individual states as S = {S1, S2,...,
SN}, and denote the state visited at time t as qt,
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• Set of PDFs from where emission is drawn, in our case
we use Normal distributions

,

• The state-transmission probability matrix A = {aij},
where aij = p(qt+1 = j|qt = i),

• The initial state distribution vector ∏ = {π1,..., πN}.

Set of parameters λ = (∏, A, B) completely specifies HMM.
A simple example of HMM with two states where emis-
sions are drawn from normal distributions (45, 20)

and (50, 20) is shown in Figure 10.

Appendix D – HMM forward-backward algorithm and 
Viterbi decoding
Here we adopt notation from [13] and report final HMM
parameters update rules for EM learning algorithm rigor-
ously derived in [22].

Viterbi algorithm for finding optimal parse
The Viterbi algorithm is a dynamic programming algo-
rithm that runs on HMM for finding the most likely
sequence of hidden states, called the Viterbi path, that
result in an observed sequence.

1. Initially δ1(i) = πi (o1|Θi), ψ1(i) = 0 for 1 ≤ i ≤ N,

2.

 for t = 2,..., T and 1 ≤ j ≤ N,

3. Finally , trace back

 for t = T - 1, T - 2,..., 1 with optimal

decoding .

HMM expectation step
We need to find expected probabilities of being at a cer-
tain state at a certain moment of time with forward-back-
ward procedure.

Forward procedure By definition αt(i) = p(o1, o2,..., ot, qt =
Si|λ) is calculated the following way

1. Initially α1(i) = πi (o1|Θi) for 1 ≤ i ≤ N,

2.  for t = 2, 3,..., T

and 1 ≤ j ≤ N,

3. Finally  is the sequence likelihood

according to model.

Backward procedure By definition βt(i) = p(ot+1, ot+2,..., oT,
qt = Si|λ) is calculated the following way

1. Initially βT(i) = 1 for 1 ≤ i ≤ N,

2.  for t = T - 1, T -

2,..., 1 and 1 ≤ i ≤ N,

3. Finally .

By definition ξt(i, j) is the probability of being in state i at
time t, and state j at time t + 1, given the model and the
observation sequence

By definition γt(i) as the probability of being in state i at
time t, given the observation sequence and the model

HMM maximization step
We update HMM parameters according to their expected
utilization

(a) Initial state probabilities estimate  = γ1(i) for 1 ≤ i ≤

N,

(b) State-transition probabilities estimate

 for 1 ≤ i, j ≤ N,

(c) Gaussian output probabilities estimate

 for 1 ≤ j ≤ N.
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Additional file 1
DNA hairpin molecule toggles in the α-hemolysin nanopore vestibule.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-S7-S14-S1.eps]

Additional file 2
Nonzero transitions between blockade levels.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-S7-S14-S2.eps]

Additional file 3
Artificial duration distributions represented as continuous PDFs of Beta 
mixtures. By discretizing these densities we can get duration histograms 
for any size of aggregate states used in our experiments. Here we use the 
following PDFs for the first state Mix1(x) = 0.1874 × Beta(x|3.0315, 
3.0097) + 0.8126 × Beta(x|3.9944, 9.4049) and Mix2(x) = 0.1583 × 
Beta(x|3.0446, 2.6063) + 0.8417 × Beta(x|8.0777, 2.8867) for the 
second state.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-S7-S14-S3.eps]

Additional file 4
Gaussian PDFs and corresponding emissions for DHMM model [see Sec-
tion The explicit duration HMM implementation] running in gener-
ative mode. Here the maximum duration of a state is 480 μs with 20 μs 
sampling rate.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-S7-S14-S4.eps]

Additional file 5
The HMM with geometric duration distribution corresponding to the 
maximum state duration of 6. Discrete duration distribution histograms 
are put next to each state.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-S7-S14-S5.eps]

Additional file 6
Convolution example of three consecutive geometric distributions.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-S7-S14-S6.eps]

Additional file 7
Bell-shaped plots for NegBin(n, p) PDF. Distributions for n = 1 follows 
geometric law.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-8-S7-S14-S7.eps]
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