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to Neptune, whereas the second-largest moons (like Caliban or
S/2000 S 3) would have magnitudes of 24±25. Thus if a similar
irregular system is present around Neptune, its smaller members
were beyond the limits of the deepest known survey3 and Nereid
(Neptune's only distant satellite) is only the brightest member of a
population waiting patiently to be discovered. M
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Manipulating matter at the nanometre scale is important for
many electronic, chemical and biological advances1±3, but present
solid-state fabrication methods do not reproducibly achieve
dimensional control at the nanometre scale. Here we report a
means of fashioning matter at these dimensions that uses low-
energy ion beams and reveals surprising atomic transport phe-
nomena that occur in a variety of materials and geometries. The
method is implemented in a feedback-controlled sputtering
system that provides ®ne control over ion beam exposure and
sample temperature. We call the method `̀ ion-beam sculpting'',
and apply it to the problem of fabricating a molecular-scale hole,
or nanopore, in a thin insulating solid-state membrane. Such
pores can serve to localize molecular-scale electrical junctions and
switches4±6 and function as masks7 to create other small-scale
structures. Nanopores also function as membrane channels in all
living systems, where they serve as extremely sensitive electro-
mechanical devices that regulate electric potential, ionic ¯ow, and
molecular transport across cellular membranes8. We show that
ion-beam sculpting can be used to fashion an analogous solid-
state device: a robust electronic detector consisting of a single
nanopore in a Si3N4 membrane, capable of registering single DNA
molecules in aqueous solution.

When massive ions with energies of several thousand electron-
volts impinge on a surface, an atomic-scale erosion process, called
sputtering, removes approximately one atom from the surface for
every incident ion9±12. We reasoned that as material is removed from
a ¯at Si3N4 surface containing a cavity on its opposite surface
(Fig. 1a, top), the ¯at surface will ultimately intercept the bottom
of the bowl shaped cavity, forming a nanopore (Fig. 1a, bottom).
Creating a molecular-scale pore requires knowing precisely when
to stop the erosion process. The apparatus illustrated in Fig. 1b
implements a feedback-controlled ion sputtering system that counts
the ions transmitted through the opening pore and extinguishes the
erosion process at the appropriate time. The apparatus also controls
a number of parameters that we discovered to be important to the
ion-beam sculpting process. These include: (1) sample temperature;
(2) ion beam duty cycle (de®ned as the time the beam was on,
divided by the sum of the times it was on and off, for pulsed beams);
and (3) the instantaneous ion beam ¯ux, F, in ions nm-2 s-1 when
the beam is on the sample.

A sample with a large (,0.1-mm diameter) bowl-shaped cavity
was fabricated in a free-standing Si3N4 membrane supported on a
silicon frame (Fig. 1a). To create a molecular-scale nanopore, the
sample was ion-sculpted using 3-keV Ar+ ions in the apparatus
described above. Surprisingly, experiments on this sample at room
temperature did not yield the expected result; a nanopore did not
open even after excessively long ion beam exposure. We discovered
why by ion-sculpting a membrane that contained a through-hole,
rather than a bowl-shaped cavity. At room temperature, the trans-
mitted ion counting rate clearly decreased with increasing ion beam
exposure (Fig. 2a), suggesting that the hole was closing rather than
opening. The incident beam was switched off when the counting
rate fell to 40 counts s-1 (Fig. 2a, inset). Transmission electron
microscope (TEM) images of the hole before and after the ion-
beam exposure (Fig. 2b and c) revealed that the hole size had indeed
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been reduced from 60 nm to 1.8 nm by the growth of a thin
membrane (of the order of 10 nm, as deduced from electron micro-
scopy). With suf®cient ion beam exposure the nanopore completely
closed, and the ion count fell to zero. Thus, in addition to ion-sputter
erosion, there must be a lateral atomic ¯ow of matter into the pore,
stimulated by the ion beam. That this is a surface, or near-surface,
phenomenon is strongly suggested by computer simulations that
show the ion beam energy to be deposited within less than 5 nm of
the sample surface (J. F. Ziegler and J. P. Biersack, SRIM-2000,
available at http://www.research.ibm. com/ion/ionbeams).

The ¯ow of matter to the developing nanopore is temperature-
dependent (Fig. 3). A transition between pore opening and pore
closing was consistently seen at about 5 8C under the ion-beam
conditions of Fig. 3. When pore area is plotted versus dose rather
than time (Fig. 4), the slope of the data reveals that for continuous
beam exposure (grey trace, Fig. 4) the ef®ciency of pore closing
per incident ion is clearly greater at low ¯uxes than at high ¯uxes.
Figure 4 also shows that a pulsed beam (black data points) closes
pores more ef®ciently than does a continuous ion beam at the same
instantaneous ¯ux.

Our demonstrated ability to monitor changing dimensions con-
tinuously in the nanometre range while varying experimental
parameters provides an unusual opportunity to test microscopic
models to account for the observed materials phenomena. Compet-
ing processes are probably at work. One is responsible for opening

the pore, probably driven by ion-sputter erosion of the pore
edge. This process is probably dominant at low temperatures and
high ¯uxes. Established sputtering phenomenology9 could account
for this process, although a full understanding will depend on
knowing the detailed geometrical shape of the pore, not just its
diameter.

Two different views can explain the motion of matter necessary to
account for the pore-closing phenomenon. First, a very thin
(,5 nm) stressed viscous surface layer may be created by the
energy and matter deposited by the ion beam. An enhanced
collective motion, driven by a reduced viscosity and/or enhanced
stress owing to implantation effects or surface tension, causes the
layer to relax. A similar model has been invoked for atomic
transport in sputter-induced rippling (refs 13±15).

Second, we can account for our observations with a model in
which incident ions both create and annihilate excess, independent
and mobile surface `adatoms' (for example, atoms or molecular
clusters) that can diffuse to the pore. Adatom diffusion has been
successfully invoked in modelling sputter-induced ripple formation
on Si(001)16,17.

We propose that the concentration of surface adatoms C(r, t), is
governed by a two-dimensional diffusion equation:
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Figure 1 Strategy to make nanopores using argon ion-beam sputtering. a, Sputtering

removes material from a free-standing Si3N4 membrane with a cavity. b, Feedback-

controlled ion-beam sculpting apparatus housed in a high-vacuum chamber. a, A 500-

nm-thick low-stress (,200 MPa tensile) Si3N4 ®lm was deposited on a (100) silicon

substrate by low-pressure chemical vapour deposition25. Photolithography and

directional wet chemical etching of silicon were used to create a free-standing

25 mm 3 25 mm Si3N4 membrane26. Either a bowl-shaped cavity (a), or a single initial

pore of ,0.1 mm diameter (not shown), was created near the centre of the membrane

using, respectively, reactive ion etching27 or a focused ion beam (FIB) machine26. b, A

differentially pumped ion gun (VG Microtech model EX05) exposes the sample surface to

an Ar+ beam, ,0.2 mm in diameter. A Channeltron (Gallileo Optics) electron-multiplier-

style single-ion detector, positioned after the sample, counts transmitted ions.

De¯ection plates at the exit port of the ion gun could de¯ect the beam off the sample or

pulse the ion beam on and off the sample. A focusing Einzel lens and 608 electrostatic

de¯ection system between sample and detector are used to suppress electron, ion and

X-ray backgrounds. A 50-eV electron gun (Kimball Physics Model FRA-2x1-1) ¯oods the

sample to neutralize surface charging. A liquid-nitrogen-cooled shroud surrounds the

sample and Einzel lens and a quadrupole mass spectrometer, connected to the 10-9 torr

turbo-pumped vacuum chamber, monitors residual gas composition. A thermocouple

monitors the sample holder temperature, which is adjusted with cold nitrogen gas and a

resistance heater.
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Figure 2 Sculpting a nanopore. a, Transmitted ion count rate (left axis) and pore

area (right axis) versus integrated time the ion beam is on the 28 8C sample.

b, TEM image of initial 61-nm diameter pore made by FIB in a 500-nm Si3N4

membrane. c, TEM image of the same sample after Ar+ ion-beam exposure. Energy-

dispersive analysis of X-rays in the TEM reveals the presence of Si and N in the

membrane that has ®lled the pore, although the precise composition has not been

quanti®ed. Because the transmitted ion current is directly proportional to the area of

the pore, the instantaneous pore area indicated in all ®gures was calculated by

multiplying the initial pore area (determined by TEM) by the ratio of the instantaneous

to initial transmitted ion current. Temperature, 28 8C. Flux, 28 Ar+ s-1 nm-2. Duty cycle,

200 ms/1 s.
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where r and t are surface position and time. D is the adatom surface-
diffusion coef®cient and F the incident ion-beam ¯ux. ]C/]t
depends on: (1) a generation rate, taken proportional to the
incoming ¯ux through Ya; (2) an annihilation rate proportional
to F and C through an annihilation cross-section j, and an
annihilation rate due to trapping at surface defects, assumed to be
proportional to C through t-1

trap, with ttrap a lifetime. Term (2) causes
the model to exhibit a reduced ef®ciency of pore closing per incident
ion at increased ¯uxes.

The pore boundary is taken to be a perfect sink for adatoms,
which are there transformed to a thin layer of accumulating matter
that accounts for pore closure. (A vacancy source at the pore,
instead, could also produce this effect.) Our boundary condition
could arise from capillary forces, which under equilibrium condi-
tions drive the pore to close when the radius of curvature in the
plane of the membrane is smaller than that in an axial section, and
vice versa. The pore size at which the actual transition between
opening and closing occurs could be altered by the in¯uence of ion
bombardment on the energetics or kinetics governing atomic
transport.

From steady-state solutions to equation (1) the diffusional ¯ux
into the pore can be obtained. There results a characteristic distance
from the pore edge, Xm, within which adatoms are more likely to
reach the pore than be annihilated by traps or ion erosion, where:
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Adatoms beyond Xm are more likely to be annihilated before they
reach the pore.

In low-temperature experiments, where diffusional contributions
to pore closure are presumably frozen out (see Fig. 3), the sputter-
erosion process that contributes to pore opening can be determined.
We include this process (assumed to be temperature-independent)
taking Y a < 1 and a pore thickness of about 10 nm, and ®t Xm for
each incident ¯ux at 28 8C (where pores close); this yields the solid
curves in Fig. 4. As expected, Xm increases with decreasing ¯ux,
which accounts for the enhanced pore-closing ef®ciency at low ¯ux.
The resulting Xm values are consistent with equation (2), as shown
in the inset of Fig. 4, from which D < 103 nm2 s21 is extracted from a
linear ®t using j < 0:1 nm2 as a reasonable estimate.

The model qualitatively explains the pulsed ion-beam observa-
tions. When the ion beam is off, adatoms remain on the surface, but
the adatom annihilation channel associated with the incident beam
¯ux disappears. Thus, after the beam is extinguished, the remaining
adatoms may diffuse to the pore periphery from greatly increased
Xm. This can signi®cantly increase the ef®ciency per ion for pore
closing. The enhanced pore closing with increasing temperature

can be accounted for by a thermally activated adatom diffusion
coef®cient.

The diffusion model presented above is phenomenological and
contains idealizations and assumptions connected with our ignor-
ance of many microscopic properties of matter under ion beam
exposure. Nevertheless, extensions of the studies demonstrated
here, using pulsed as well as continuous beam exposures at
different temperatures, should permit the determination of
materials-speci®c parameters like D, ttrap, Ya and j that will enable
fabrication of useful nanoscale devices.

To demonstrate such a device we sculpted a nanopore in a Si3N4

membrane for use as a single-molecule electronic detector of DNA.
Proteinaceous nanopores, or channels, have been inserted into lipid
bilayers in aqueous solutions where they serve as electronic sensors
to identify and characterize single molecules18±20. But proteins in
lipid bilayers are labile and the channel diameters they provide
cannot easily be adjusted. Robust, solid-state nanopores, fashioned
to any desired diameter, could yield new data and understanding of
transport in con®ned spaces, and will make it possible to create
robust single-molecule-sensing devices to characterize molecules of
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separated two compartments ®lled with saline solution (1 M KCl, 10 mM Tris-HCl, 1 mM

EDTA, pH 8.0). Initially, with only the saline solution in the compartments, a 120-mV bias

between AgCl electrodes in each compartment resulted in a constant ionic current of

1.66 nA through the nanopore. This was consistent with the known conductivity of the

ionic solution, assuming a pore length of around 10 nm. After adding double-stranded

DNA, 500 base pairs long, to the negatively biased compartment, and allowing time for

diffusion, intermittent current blockades (two are illustrated) were observed. Si3N4

membranes with holes of about 100 nm in diameter that were completely closed by ion-

beam sculpting produced 20 GQ seals.
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DNA and other biopolymers at unprecedented speeds. Using
electrophysiology techniques8,21, we tested one of our robust,
electrically quiet, 5-nm-diameter pores with double-stranded
DNA. After applying a voltage bias that would draw the negatively
charged DNA molecules through the nanopore, we observed
diminutions of the ionic current (Fig. 5), reminiscent of the
ionic-current blockages observed when single strands of DNA
are translocated through the channel formed by a-haemolysin in
a lipid bilayer22,23. Because no such blockages were seen during one
hour of monitoring before adding DNA, and because the blockages
ceased when the voltage bias was reversed, we attribute these
blockages to interactions of individual DNA molecules with the
nanopore. The duration of these blockades was on the order of
milliseconds, and they consistently exhibited current reductions to
88% of the open-pore value. This last value is commensurate with
translocation of a rod-like molecule whose cross-sectional area is
3±4 nm2 (ref. 24).

The experimental observations, model considerations and the
demonstration of an electronic device show that ion-beam sculpt-
ing represents a promising new approach to nanoscale fabrication.
With feedback control, reproducibility does not depend on pre-
cisely matching all conditions and starting dimensions. The
method should be useful for fabricating a variety of nanoscale
semiconductor devices, as similar sculpting phenomena have been
observed for geometries such as thin slits, trenches and crosses, in
several materials, like SiO2, Si and Al. Furthermore, next-genera-
tion ion-source arrays and mask technologies (see http://www-
afrd.lbl.gov/ ibt.html) combined with multichannel ion detectors
will allow highly parallel applications of nanoscale ion sculpting
methods. M
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Nanostructured carbon materials are potentially of great techno-
logical interest for the development of electronic1,2, catalytic3,4 and
hydrogen-storage systems5,6. Here we describe a general strategy
for the synthesis of highly ordered, rigid arrays of nanoporous
carbon having uniform but tunable diameters (typically 6 nano-
metres inside and 9 nanometres outside). These structures are
formed by using ordered mesoporous silicas as templates, the
removal of which leaves a partially ordered graphitic framework.
The resulting material supports a high dispersion of platinum
nanoparticles, exceeding that of other common microporous
carbon materials (such as carbon black, charcoal and activated
carbon ®bres). The platinum cluster diameter can be controlled to
below 3 nanometres, and the high dispersion of these metal
clusters gives rise to promising electrocatalytic activity for
oxygen reduction, which could prove to be practically relevant
for fuel-cell technologies. These nanomaterials can also be pre-
pared in the form of free-standing ®lms by using ordered silica
®lms as the templates.

Various production methods7 such as arc discharge, laser abla-
tion, chemical vapour deposition, and template synthesis
techniques8 are used to obtain carbon nanotubes in the single-
wall, multi-wall or disordered-wall form. In general, during syn-
thesis of the nanotubes, the tube diameters are very dif®cult to
control. The carbon nanotubes are obtained as a powder, with
separate or entangled nanotubes that exhibit a broad distribution in
tube diameters. Some of the single-wall nanotubes undergo self-
organization to a bundle9. However, the organization is achieved
through weak van der Waals interactions, so that the bundle cannot
be considered as a system with rigid structural periodicity. Here we
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